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Abstract: Thetask of chedking if a computer system satisfies its timing specifications is extremely
important. These systems are often used in critical applications where failure to meet a deadline an have
serious or even fatal consequences. This paper presents an efficient methodfor performing this verification
task. In the proposed method a rea-time system is modeled by a state-transition graph represented by
binary decision diagrams. Efficient symbolic dgorithms exhaustively explore the state space to determine
whether the system satisfies a given specification. In addition, our approach computes quantitative timing
information such as minimum and maximum time delays between given events. These results provide
insight into the behavior of the system and assist in the determination o itstemporal corredness Theted-
nique evaluates how well the system works or how serioudly it fails, as oppased to only whether it works or
not. Based on these techniques a verification tool called Verus has been constructed. It has been used in the
verification d severa industrial rea-time systems such as the robotics g/stem described below. this dem-
onstrates that the method proposed is efficient enoughto be used in red-world designs. The examples ver-
ified show how the information produced can assist in designing more dficient and reliable real-time
systems.

1 Introduction

In many computer applications predictable response times are essential for the mrrectness of the system.
Such systems are cdled real-time systems. They occur in many criticd applications in which a late (or
sometimes early) response can have severe mnsequences. Examples of such applications include antrol-
lersfor aircraft, industrial machinery and robots. Due to the nature of such applicdions, errorsin real-time
systems can be extremely dangerous, even fatal. Guarantedng the mrredness of a complex rea-time sys-
tem is an important and nontrivial task.

Several other factors make the verification d real-time and nonrea -time systems particularly difficult. The
architecture of computer applications is becoming more and more complex each day. The more complex a
system, the higher the possibility of errors being introduced in its design. Moreover, performance is also
beaming a more important fador in the success of new applicaions. Competition has made design opti-
mizations essential. Consequently, new products have to fully utilize the available resources. A slow com-
ponent can compromise the performance of the whole system, and consequently its acceptance by the
market. Although nd traditionally associated with red-time systems, verifying timing properties of these
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applicationsis also criticd. The task of verifying that industrial real-time goplicaions stisfy their timing
specificationsis more critical and dfficult today than ever.

Thiswork describes Verus, an efficient tool for performing this verificationtask. A system being verified in
this tod is gecified in the Verus language. This language has been espedally designed to simplify the
description d time related charaderistics. The description d the system is then compiled into a state-tran-
sition graph which can be analyzed using several methods. A symbolic model chedker allows the verifica
tion of untimed properties expressed in CTL [15]. Time bounded properties can be verified using Real-
Time CTL model checking [10]. In addition, algorithms derived from symbolic model checking are used to
compute quantitative information about the model [1]. The information produced allows the user to check
the temporal correctness of the model: schedulability of the tasks of the system can be determined by com-
puting their response time; reaction times to events and several other parameters of the system can aso be
analyzed by this method. This information provides insight into the behavior of the system and in many
cases it can help identify inefficiencies and suggest optimizations to the design. The same agorithms can
then be used to analyze the performance of the modified design. The evaluation of how the optimizations
affect the design can be done before the actual implementation, significantly reducing development costs.
Ancther advantage of our approach is that the Verus language has been especialy designed to alow a
straightforward description d the temporal characteristics of programs.

Verus uses a discrete notion of time. The model of a Verus program is a finite state-transition graph and
ead transition in the graph corresponds to one time unit. An important consequence of this model is that
the algorithms court the number of computation steps between events, or the number of occurrences of
events in an interval. Because of this the discrete time model finds application in synchronous systems in
general, such as computer circuits and protocols. Real-time systems usually do not exeaute in lock-step
since contention for resources guch as processor time introduces nondeterminism in its exeaution. Because
of this red-time systems would not seam to fit naturally in our model. However, they are subjed to tight
timing constraints, which are difficult to satisfy in an asynchronous design. For this reason rea-time sys-
tem developers often significantly reduce aynchronism in their designs to ensure predictability. In fact,
most real -time systems we have analyzed present more synchronous feaures than traditional circuits, and
have been succesdully verified using Verus[5,6,7,8].

Related Work

There are several other approadhes to the verification d timed systems. For example, dense time is mod-
eled by [1,2,15,19]. Those methods provide a very accurate notion of passage of time. However, the state
space of dense time modelsis infinite, and these verification todls rely on the construction of afinite quo-
tient structure called region gaph. This constructionis extremely expensive, limiting the size of problems
that can be handled.

Discrete timeis used by other tools such as[11,13,22]. The tool described in [22] also uses symbolic algo-
rithmsusing BDDs. These toals, however, do na allow the quantitative analysis of systems as the proposed
method. In [10] quantitative analysis isimplemented, but with amore limited scope.

Anayticd methods for analyzing real-time systems also exist, such as the rate-monaonic scheduling
theory [16,17,21]. In this method areal-time system is characterized by a set of periodic tasks, each having
a period and an execution time. Assumptions abou system behavior are made (such as no task preanpts
itself), and if these assumptions are satisfied, simple formulas determine the schedulability of the system.
A strong limitation o this approach isthat only systems satisfying several restrictions can be verified such
as very limited synchronization models and severe restrictions on analyzing distributed systems. The rate-
monotonic theory algorithms have much simpler complexity than the other verification methods discussed,
but they also generate more restricted information.



Example: A Robotics Controller

The simplicity of the representation used by Verus makes it amenable to a symbalic implementation using
binary dedsion dagrams. This representation is very efficient, as attested by the real-time systems verified.
Several complex systems of industrial origin have been verified such as an aircraft controller [6], the PCI
local bus[8] and a distributed heterogeneous real-time system [5]. In all cases, the examples verified are
derived from existing systems or use comporents and protocols employed in current industrial products.

This paper describes in detail one of these systems, the controller for a robot used in nuwclear readors to
measure the shapes of pipes by moving around them with a distance sensor [7,14). In this example we have
been able to analyze the behavior of the robot from several perspectives. Our analysis has shown that it
would meet its deadlines, but that it was inefficient. We have discussed how to optimize the design and
then analyzed the performance of the modified design.

The remainder of the paper is organized as follows. Section 2 presents the Verus language, used to describe
the system being verified. In section 3 we briefly present the dgorithms used for verification. An example
of the verification d a real-time system is discussed in section 4, and conclusions are presented in
sedion 6.

2 TheVeruslLanguage

The main gadl of the Verus language isto allow engineas and designersto describe red-time systems ess
ily and efficiently. It is an imperative language with a syntax resembling that of C. Special primitives are
provided for the expression d timing aspects such as deallines, priorities, and time delays. These primi-
tives make timing assumptions explicit, leading to clearer and more wmplete spedfications.

The data types all owed in Verus are fixed-width integer and bodean. Nondeterminism is supported, which
allows partial spedficaions to be described. Language constructs have been kept simple in order to make
the compilation into a state-transition gaph as efficient as possible. Simple @nstructs alow the precise
expression d the desired features, whereas complex constructs sometimes force unrecessary details into
the spedfication. Smaller representations can then be generated, which is critical to the dficiency of the
verification and permits larger examples to be handed. Details on the Verus language can be fourd in [1].

Overview

A fragment of asimple real-time program is used to illustrate the basic features of the language. This pro-
gram implements a solution for the producer-consumer problem by bounding the time delays of its pro-
cesses. No synchronization is needed if the time delays of producer and consumer are defined properly.
The wde for the pr oducer processis $rown below. Variable p is a pointer to the buffer in which datais
stored. The pr oducer initializes its pointer p to 0 and the pr oduce variable to false. It then enters a
nonterminating loopin which items are produced at acertain rate. Line 7 introduces atime delay of 3 units,
after which an item will be produced. Line 8 marks the production of an item by assertingpr oduce. In
line 9 the painter is updated appropriately (addition in Verus is defined moduo its maximum value). Line
10 makes sure that the event pr oduce is observed. It is needed because the state of a Verus program can
only be observed at wai t statements.

producer (p)

{
bool ean produce;
p =0;
produce = fal se;
whil e(!stop) {
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7 wai t (3);

8 produce = true;
9 p=p+1

10 wait(1);

11 produce = fal se;
12 b

13 }

Figure 1. Producer code

Wai t Statements

In Verustime passesonly onwai t statements, therefore lines 4, 5 and 6 execute in time zero. This feature
allows an accurate control of time, and eliminates the posgbility of implicit delays influencing verification
results. It also generates smaller models, since contiguous statements are collapsed into one transition.
Noticethat this fedure affects the behavior of the program significantly. For example, a block of code not
containing thewai t statement executes atomicaly.

Nondeterminism

To illustrate another characteristic of Verus, let's assume that the pr oducer is not required to actually
produce an item after 3 time units, but may instead leave the value of p unchanged. This can be modeled in
Verus by changingline 9 to:

9 p = select{p, p+1};

Thesel ect statement introduces a nondeterministic choice in the program. The value of p after execut-
ingsel ect can be dther p or p+1 (addition in Verusis defined modul o the maximum value for the vari-
able). These dhoices can characterize the fact that the producer may produce an item, but it may also not
produceit. Thisway we can model both passibilities without having to spedfy all the details that are actu-
aly needed to dedde between these two options. Besides hiding unrecessary details, nondeterminism can
be used to verify partial specifications. Whenever the value of a variable hasn’t been determined by the
design, nordeterministic constructs can specify all possble values for the variable. This approximates the
behavior of the actual system by exploring all possibilities. As the design processevolves, the values can
be restricted urtil the correct behavior is determined. Nondeterminism encourages the use of automated
verification in earlier phases of the design. Components of the system can be verified before all modules
have been spedfied and errors can be uncovered before propagating to components added | ater.

14 consuner(p, c¢)

15 {

16 bool ean consune;

17

18 c = 0;

19 consune = fal se;

20 while (!stop) {

21 wait(1);

22 if (p'!'=2c) {

23 consume = true;
24 c =c¢ + 1;

25 wai t (1) ;

26 consune = fal se;
27 }

28 }



29 }
Figure 2. Consumer code

The consuner processisvery similar to the pr oducer . The basic differences are that it waits for less
time before consuming, and that it only consumes if p and ¢ have different values (p == c¢ signalsan
empty buffer). Notice that the pr oducer doesnat check if the buffer isfull before inserting another item.
The time delays of both processes guarantee that an overflow will never occur.

Themai n function

Asin the C language, mai n has a specia functionin Verus. In this function al processes are instantiated,
and global variables can be declared. The variablesp and ¢ (used as pointersin the buffer) are declared and
thepr oducer andconsuner processes are instantiated in the mai n function of the example code.

Process instantiation in Verus follows a synchronous model. All processes execute in lock step, with one
step in any process corresponding to one step in the other processes. Asynchronaus behavior can be mod-
eled by using stuttering [4]. An implicit instantiation d the mai n module is assumed, where the code in
mai n executes as another synchronous modue.

Spedfications can also follow the code & can be seen. The example given specify the computation of the
minimum and maximum time between producing an item and consuming it, as well as checking that a
pr oduce isawaysfollowed by aconsune.

30 main()

31 {

32 int p, c;

33

34 process prod producer(p),

35 cons consuner(p, c);

36

37 spec M N[ prod. produce, cons. consune]
38 MAX[ pr od. produce, cons. consumne]
39 AQ prod. produce -> AF cons. consune)
40 }

Figure 3. Producer/consumer main function

Timing Constructs

The timing charaderistics of the system can be eaily modeled using the periodic, deadline and exception
handling statements. For example, the ade below specifies that S1 must execute periodically, once every
100time units. Also, it must finish exeaution in less than 100 wnits, otherwise an exception will be raised:

periodic(0, 100, 100) {
S1;
1

Thefirst parameter of per i odi ¢ isthestart_time, which specifies how many time unitsthe periodic code
will idle before starting its execution for the first time. In this example it will start immediately. The second
parameter isthe period. In this case the statements following per i odi ¢ will execute onceevery 100 time
units. The third parameter defines a deadline. It states that the execution must finish in less than 100 time
units or an exception will be raised. Exeaution may take longer than the sum of the delaysin the wait state-



ments because of synchronizaion with other processes. The deadl i ne statement is similar, but it does
not specify a period. Exception handiing as well as the periodic and deadline statements are explained in
detail in [1].

3 TheVerification Algorithms. Quantitative Algorithms

Most verification algorithms assume that timing constraints are given explicitly. Typically, the designer
provides a constraint on response time for some operation, and the verifier automatically determinesif it is
satisfied or not. Unfortunately, these techniques do na provide aty information about how much a system
deviates from its expected performance, athouh this information can be extremely useful in fine-tuning
the behavior of the system.

Verus implements algorithms that determine the minimum and maximum length of al pathsleadingfrom a
set of starting statesto a set of final states. It aso has algorithms that cal culate the minimum and the maxi-
mum number of times a spedfied condtion can hdd ona path from a set of starting states to a set of final
states. For example, by choosing as starting states thase in which a process requests execution, and as fina
states those in which the process compl etes exeautionwe @an compute the response time for that process. If
we spedfy as third condtion for the same intervals the execution of lower priority processes we can com-
pute the anourt of priority inversion time that can affed the process. These agorithms are discussed in
detail in [3]. We briefly present the minimum and maximum delay algorithms below.

Our agorithms provide insight into how well a system works, rather than just determining whether it works
at al. They enable adesigner to determine the timing characteristics of a complex system given the timing
parameters of its components. This information is espedaly useful in the early phases of system design,
when it can be used to establish how changes in a parameter affect the global system behavior.

Several types of information can be produced by this method. As discussed, response time to events is
computed by making the set of starting states correspord to the event, and the set of final states correspond
to the response. Schedulability analysis can be done by computing the response time of each processin the
system, and comparing it to the process deadline. Performance @n be determined in a similar way. The
agorithms have been used to verify severa real-time and non red-time systems.

Minimum Delay Algorithm

The algorithm takes two sets of states asinput, start andfinal. It returns the length of (i.e. number of edges
in) ashortest path from astate in start to a state in final. If no such path exists, the dgorithm returns infin-
ity. In the algorithm, the function T(S) gives the set of states that are successors of some statein S. In other
words, T(S) ={s | N(s, ) holdsfor somes S}. In addition, the variables Rand R’ represent sets of states
in the algorithm.

proc min (start, final)

i =0;
R = start;
R=T(R OR
while ((R #R) O(R n final) =) do
i=i+1;
R=R;
R=T(R)OR;
if (Rn final #0)
thenreturni;
elsereturn o;

Figure 4. Minimum Delay Algorithm



The first agorithm is relatively straightforward. Intuitively, the loop in the agorithm computes the set of
states that are reachable from start. If at any point, we encounter a state satisfying final, we return the num-
ber of steps taken to reach the state.

Maximum Delay Algorithm

Thisagorithm also takes start and final asinput. It returns the length of alongest path from a state in start
to astate in final. If there exists an infinite path beginning in a state in start that never reaches a state in

final, the dgorithm returns infinity. The function T'l(S) gives the set of states that are predecessors of
some state in S (i.e. T'l(S) ={s| N(s, §) hdds for somes O S}). Rand R will once more be sets of
states. Finally, we denate by not_final the set of all states that are not in final.

proc max (start, final)

i =0;
R =true;
R =not _final;
while (R #R) O(R n start# [0)) do
i=i+1;
R=R;
R =TXR) n not_final;
if R=R)
then return oo;
esereturni;

Figure 5. Maximum Delay Algorithm

The upper bourd algorithm is more subtle than the previous agorithm. In particular, we must return infin-
ity if there exists a path beginningin start that remains within not_final. A backward search from the states
in not_final is more convenient for this purpose than aforward search. At each iteration it finds the set of
states which are the beginning of intervals with i states, none satisfying final. Initially, i is 0, and the fron-

tier is not_final. At the i iteration the aurrent frontier is the set of states that are the beginning of paths
with i states completely in not_final. We then compute the set of predecessors (in not_final) of the current
frontier. Those states are the beginning of paths with i+1 states completely in not_final. The agorithm

stops at thejth iteration when it deteds that there ae no statesin start that are the beginning of paths with
states completely in not_final. But thereis at least one path startingin start with j-1 statesin not_final, that
is, thisis a maximal path starting in start completely in not_final. We also assume that the transition rela-

tionistotdl, that is, thej—lth state has at |east one successor, which must bein final.

4 A Robotics System

One application o red-time systems that is becoming increasingly common is in robotics. Guaranteeing
that tasks are executed within their expected deadline is critical for the integrity of aroba and for its cor-
rect operation. The computation of quantitative properties can assist in validating such systems.
The example discussed in this sction is derived from the onein [14]. It describes a real robot used in
nuclea readors to measure the shapes of pipes by moving around them with a distance sensor. The robot
architecture has three subsystems, motor, measurement and command. The motor subsystem controls the
robot movements and position. The function of the measurement subsystem is to activate and control the



distance sensors. Finally, the command subsystem receives commands from the communication link and
sends them to the appropriate tasks.
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Figure 6. Robot architecture

Each subsystem consists of a set of tasks. The motor subsystem contains one task, motor_control. Its func-
tion is to receive data from sensors in the servo motors, and actuate them. The task consists of two sub-
tasks, servo_read and servo_control. The first one is an interrupt routine that reads data directly from the
physical devices. The second one processes these data and ouputs control signals to the motors at alower
priority. The measurement subsystem has two tasks, sensor_read and sensor_control. The first task reads
data from the distance sensors and preprocesss it. This information is then sent to sensor_control, which
processes it further and outputs theresults to a remote system to be aadyzed. Finaly, the
command subsystem also has two tasks. The command_read task receves commands from the communi-
cation link and interprets them. It consists of two subtasks: an interrupt routine, followed by a second sub-
task that has alower priority. The final task of this subsystem is command process. Its first subtask
receives the command interpreted by command_read, and the second ore then executesthe command.
Control variables updated bythis subtask are used to communicate commands to all other subsystems.

All tasks are periodic, and their timing requirements reflect the charaderistics of the environment in which
the roba works and the roba’s expeded response time. These requirements are summarized in the table
below. Each task is presented as a sequence of comporents, each with a different executiontime and prior-
ity. A component may correspond to a subtask, or subtasks may be split in more than one component due
to synchronization. For example, the first components of both motor_control and command_read corre-
spond to their interrupt routines and execute a high priorities. Synchronization accounts for the other com-
ponents. For example, the last component of command_process updates control variables that will be used
by other tasks. Interferencefrom other tasksis avoided by aacessing those variables at a high priority level.
The other components have been created to reflect the synchronization pattern between processes sharing



data (in this case sensor_read and sensor_control), and between command read and command_process.
Priority inheritance protocols have been used to avoid priority inversion [20]. These protocols change
the priority of the tasks at synchronization points, thus dividing the tasks into componrents.

Task Period Exec. Times Deadline Priorities
C | C |G Py | P2 | P3
Motor control 40 1 5 - 40 10 7 -
Sensor read 100 10 5 5 100 4 8 4
Sensor control 50 8 12| - 50 5 8 -
Command read 200 0|20 3 200 9 2 3
Command process 400 2 12| 10 400 3 1 6

Figure 7. Timing requirements for the controller

Specifying the Robotics System in Verus

The periodic statement. A Verus program has been written describing this system. The five processs
have been implemented using the basic structure shown below for the not or _cont r ol process. These
processes and their corresponding scheduler have been instantiated in the final model.

not or _control () {
bool ean start, end;

start = false; end = fal se;
periodi c(0, 40, 40) {
start = true;
priority(10) {
wait(1l);
start = fal se;

b
priority(7) {
wait(5);

s

end = true;
wait(1l);
end = fal se;

Figure 8. The basic structure for the Verus program

However, because of efficiency in the verification some modificaions have been made to this dructure.
The main modification arises from redizing that each process needs one cunter for each peri odi c

statement [3]. It ismore dficient to group al periodic statements using oy one wunter. This can be done
by declaring orly one munter and raising a “periodic” flag whenever this counter reaches values that are
multiples of the desired period. For example, in this system the periods of all processes are 40, 50, 100, 200
and 4@. The code below shows how to implement periodic statements for these periods using ane counter
(the aurrent version d Verus does not implement the #def i ne directive & well as other minor sintactic
constructs shown. They are presented here to simplify the presentation):

9



int t;

#define tinmeout40 ((t == 0) || (t == 40) || (t == 80) ||
(t == 120) || (t == 160))
#define timeout50 ((t == 0) || (t ==50) || (t == 100) ||
(t == 150))
count () {
t = 0;
while (true) {
t =t + 1 % 400;
1
}

Finaly, the code shown onthe left side below is then replaced by the code onthe right:

periodic(0, 40, 40) { while (true) {
Si; while (!tinmeoutd40) wait(1l);
3 S1;

}
Figure 9. An efficient grouping of peri odi ¢ statements

The scheduler. The scheduler isimplemented with the ad of auxiliary variables. A variable granted is
used to determine which process will exeaute next. Each process uses a variable r eqi to signa to the
scheduler that it is requesting execution and at which priority level. Whenever requesting execution, pro-
cess pi setsvariabler eqi to its priority level. When it finishes exeauting it resets the variable. During exe-
cution it must wait urtil the variable gr ant ed has its index before proceeding (this level of detail in the
code can be hidden with the use of preprocessors):

/* Begi nni ng of execution */

reql = 10;

while (granted !'= 1) wait(1);

wait(1l); /* execute for one time unit */
reql = 7;

while (granted !'= 1) wait(1);

wait(1l);

while (granted !
wait(1);

/* End of execution */
reql = 0O;

wait(1l);

1) wait(l);

The scheduler reads all r eq variables and decides which processwill exeaute next. It then sets the variable
gr ant ed to the index of the process with highest priority, as shown in the simplified scheduler bel ow:

schedul er(reql, reqg2, req3, granted)

{
while (true) {

if (reql >= req2) {
if (reql >=reg3) granted = 1; else

10



granted = 3;
} else {
if (req2 >=reg3) granted = 2; else
granted = 3;
1
it(1);

i

The final model has the aode for the five processes, the ourting process and the scheduler. The specifica
tions complete the code:

spec
M N(pl.start, pl.end);
MAX(pl.start, pl.end);
M N(p2.start, p2.end);
MAX( p2.start, p2.end);
M N(p3.start, p3.end);
MAX(p3.start, p3.end);
M N(p4.start, p4.end);
MAX(p4.start, p4.end);
M N(p5.start, p5.end);
MAX( p5. start, p5.end);

The model can be executed with the command below, where r obot . or d is the BDD variable ordering
file used for this example:

>verus -i robot.ord robot.ver

A summary of the results produced is (the running times refer to a Pentium 200with 64 megs of memory):

Time to construct the nodel: User : 19.37 s System 0.12 s
Result is 6 : MN(pl.start, pl.end);
Result is 16 : MAX(pl.start, pl.end);
Result is 45 : M N(p2.start, p2.end);
Result is 95 : MAX(p2.start, p2.end);
Result is 20 : MN(p3.start, p3.end);
Result is 49 . MAX(p3.start, p3.end);
Result is 181 : M N(p4.start, p4.end);
Result is 190 : MAX(p4.start, p4.end);
Result is 219 : M N(p5.start, p5.end);
Result is 223 . MAX(p5.start, p5.end);

Execution information

Ti nme - User : 43.28 s System 0.14 s
BDD nodes used - Transition relation: 35690 Tot al : 123463
Bytes al |l ocat ed - 3139320
Bool ean vari abl es - 115

St at es - Tot al : 2.36118e+22 Reachabl e: 400

11



The Analysis of the Robotics System

Computing resporse times for all processes generated the results in the table below. This table shows that
the task set is schedulable. Moreover, the maximum execution times of many tasks are close to
their deadlines. Thisindicates ahigh load onthe system; it isunlikely that adding more tasks to the task set
would produce a schedulable system. This information allows the designer to optimize the system.

Task Deadline Exec times
min max
Motor control 40 6 16
Sensor read 100 45 95
Sensor corntrol 50 20 49
Commandred 200 1a 190
Command process 400 210 223

Figure 10. Schedulability analysisfor origina system

Using the results computed by our algorithms, we have been able to suggest changes to the design and to
analyze the dfects of such changes. In the original design sensor_read generates data that are used by
sensor_control. However, the two tasks execute independently of one aicther. In some cases
sensor_control might execute even if data ae not yet available. In this case, sensor_control uses data gen-
erated by the previousinstantiation d sensor_read, which may be obsolete. We have changed the system to
avoid this problem and have analyzed the resulting design. The modification consists of making the termi-
nation o sensor_read trigger the execution  sensor_control. Care must be taken, however, because the
processes involved have different periods; sensor_read executes every 100 ms, while sensor_control exe-
cutes every 50 ms. We change the system so that sensor_read signals the exeaution of sensor_control
every 100 ms, but sensor_control also executes independently 50 ms after sensor_read runs. In this case
one instantiation of sensor_control is synchronized with sensor_read while the other is independent. The
schedulability analysis of the modified exampleis given in the following table:

Task Deadline Exec times
min max
Motor control 40 6 16
Sensor read 100 20 36
Sensor corntrol 50 21 121
Command read 200 91 91
Command process 400 96 296

Figure11. Schedulability analysisfor modified system

The new design is not schedulable, since sensor_control can take upto 121 msto execute. We @an use the
same quantitative dgorithmsto find ou more aout the behavior of the system and to correct the problem.
A more detailed analysis reved s that the two instantiations of sensor_control have very distinct behaviors.
Whenever executing periodically (and independent of sensor_read), sensor_control takes between 21 and
121 msto finish. However, whenever exeauting after sensor_read, it takes exadly 26 msto exeaute in the
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modified model. This $hows that the periodic execution of sensor_control is the bottleneck of the system.
One solution to the problem is simply removing the periodic instantiation o sensor_control. This solution
was easily implemented, and the schedulability analysisis presented in table:

Task Deadline Exec times
min max
Motor control 40 6 16
Sensor read 100 20 36
Sensor control 50 26 26
Commandrea 200 91 91
Command process 400 70 270

Figure 12. Schedulability analysisfor fina system

The system is again schedulable, but now sensor_control executes only once every 100 ms. Isthis a satis-
fadory solution? Again, we can use the same dgorithms to analyze the modified design. By computing the
time between the end of the execution of sensor_read and the beginning of sensor_control we can verify if
data produced by the first task is being consumed timely by the second one. In the modified model this
time is between 1 and 7 ms, meaning that data produced by sensor_read are promptly consumed by
sensor_control. Therefore we @an conclude that in spite of changing the periodicity of sensor_control we
are still maintaining corredness The cndtion courting algorithms have also been useful in analyzing the
performance of this model. We have been able to verify how the old periodicity of sensor_control relates
tothe new model. We @n consider all execution paths from the time sensor read starts until
sensor_control finishes as the adive period for the measurement subsystem. During such a period, how
many times can the 50 ms time-out occur? In other words, how many times would sensor_control be acti-
vated using the original periodicity during an active period? The result is from 1 to 3 times. We conclude
that the modified system satisfies the original timing constraints, even though it has alighter load.

5 Other Verification Algorithmsin Verus

CTL and RTCTL Model Checking

Verus allowsthe verification d untimed properties expressed as CTL formulas [15] and of timed properties
expressed as RTCTL formulas[10]. CTL formulas alow the verification o properties such “p will eventu-
aly occur”, or “p will never be asserted”. However, it is not possible to express bounded properties such as
“p will occur inlessthan 10ms” directly. RTCTL model checking overcomesthisrestriction by introducing
time bounds on all CTL operators [10]. For example, the formula below specifies that requests will always
be acknowledged in 10 time units or less:

AG (req -> AF 0..10 ack)

Many important properties of red-time systems can be verified using both CTL and RTCTL model check-
ing. For example, we have used this methodto show the existence of priority inversion in area-time sys-
tem [4,20]. Priority inversion occurs when a higher priority process is blocked by alower priority ore. It
can be cused by unconstrained process communication. In this example, we have modeled a simple real-
time system in which processes communicate in a non-regular pattern. The main dbjective is to determine
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which problems can arise from this communication and how to avoid them. The bounded until operator
alows usto determine the existence of priority inversion, and to check that the solution implemented, pri-
ority inheritance, avoids the problem.

Selective Quantitative Analysisand Interval Model Checking

The dgorithms described above compute the minimum and maximum time delays along every possible
exeaution sequence of areal-time system. In many situations, however, we may be interested in computing
time delays that relate only to a subset of the execution sequences that satisfy a given property. For exam-
ple, in the aircraft controller example [6] the time between requesting the activation of the weapons and
their actual firing time is computed. The maximum time in that example is infinity. The weapons may
never fire because the firing sequence can be aorted. It may be the case, however, that the designers want
to compute the maximum response time of the weapon subsystem provided that no abort occurs.

We propose a methodfor specifying and verifying properties sich asthese. The user can restrict the set of
paths that will be considered by specifying a property that must be satisfied in all paths traversed. This
property is expressed using linear-time temporal logic (LTL) [9]. Specia model chedking techniques [9]
are then used to ensure that only paths that satisfy the formula ae considered by the algorithms. Selective
guantitative analysis has been used to analyze the distributed heterogeneous system described in [5].

6 Conclusions

In this paper we present a new method for analyzing and verifying real-time systems. The system being
analyzed is described in the Verus language, which has been especially designed to simplify the expression
of timing characteristics. Symbalic algorithms are then used to compute quantitative timing information
abou the system such as response times and the number of occurrences of events in gven intervals. The
results produced by the algorithms can assist in determining the corredness of the system as well as pro-
vide important information about system behavior that can help in urderstanding how the system behaves
under different conditions.

We have used this tool to analyze severa rea-time systems of industrial complexity, such as an aircraft
controller [6], the PCI local bus[8] and a distributed heterogeneous g/stem [5]. In all cases we have been
able to determine the temporal correctness of the system. In several instances the results produced by our
agorithms suggested modifications to the design that resulted in more dficient systems. From our experi-
ence with Verus we believe that it can be very useful in designing better and more efficient rea-time sys-
tems.
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