
1

Analysis and Verification of Real-Time Systems
using Quantitative Symbolic Algorithms

Sérgio Vale Aguiar Campos1

scampos@dcc.ufmg.br
Universidade Federal de Minas Gerais, Belo Horizonte, Brasil

Edmund Clarke2

 emc@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, USA

Abstract: The task of checking if a computer system satisfies its timing specifications is extremely
important. These systems are often used in critical applications where failure to meet a deadline can have
serious or even fatal consequences. This paper presents an eff icient method for performing this verification
task. In the proposed method a real-time system is modeled by a state-transition graph represented by
binary decision diagrams. Efficient symbolic algorithms exhaustively explore the state space to determine
whether the system satisfies a given specification. In addition, our approach computes quantitative timing
information such as minimum and maximum time delays between given events. These results provide
insight into the behavior of the system and assist in the determination of its temporal correctness. The tech-
nique evaluates how well the system works or how seriously it fails, as opposed to only whether it works or
not. Based on these techniques a verification tool called Verus has been constructed. It has been used in the
verification of several industrial real-time systems such as the robotics system described below. this dem-
onstrates that the method proposed is efficient enough to be used in real-world designs. The examples ver-
ified show how the information produced can assist in designing more efficient and reliable real-time
systems.

1 Introduction

In many computer applications predictable response times are essential for the correctness of the system.
Such systems are called real-time systems. They occur in many critical applications in which a late (or
sometimes early) response can have severe consequences. Examples of such applications include control-
lers for aircraft, industrial machinery and robots. Due to the nature of such applications, errors in real-time
systems can be extremely dangerous, even fatal. Guaranteeing the correctness of a complex real-time sys-
tem is an important and non-trivial task.

Several other factors make the verification of real-time and non real-time systems particularly difficult. The
architecture of computer applications is becoming more and more complex each day. The more complex a
system, the higher the possibility of errors being introduced in its design. Moreover, performance is also
becoming a more important factor in the success of new applications. Competition has made design opti-
mizations essential. Consequently, new products have to fully utilize the available resources. A slow com-
ponent can compromise the performance of the whole system, and consequently its acceptance by the
market. Although not traditionally associated with real-time systems, verifying timing properties of these

1. This research was sponsored in part by CNPq — Conselho Nacional de Pesquisa e Desenvolvimento under the project “Métodos Formais para
a Verificação de Sistemas Computacionais de Complexidade Industrial” .

2. This research was sponsored in part by the National Science Foundation under grant no. CCR-9217549, by the Semiconductor Research Cor-
poration under contract 95-DJ-294 and by the Defense Advanced Research Projects Agency, Information Science and Technology Office,
under the title “Research on Parallel Computing” , ARPA Order No. 7330, issued by DARPA/CMO under Contract MDA972-90-C-0035.

2

applications is also critical. The task of verifying that industrial real-time applications satisfy their timing
specifications is more critical and difficult today than ever.

This work describes Verus, an efficient tool for performing this verification task. A system being verified in
this tool is specified in the Verus language. This language has been especially designed to simplify the
description of time related characteristics. The description of the system is then compiled into a state-tran-
sition graph which can be analyzed using several methods. A symbolic model checker allows the verifica-
tion of untimed properties expressed in CTL [15]. Time bounded properties can be verified using Real-
Time CTL model checking [10]. In addition, algorithms derived from symbolic model checking are used to
compute quantitative information about the model [1]. The information produced allows the user to check
the temporal correctness of the model: schedulability of the tasks of the system can be determined by com-
puting their response time; reaction times to events and several other parameters of the system can also be
analyzed by this method. This information provides insight into the behavior of the system and in many
cases it can help identify inefficiencies and suggest optimizations to the design. The same algorithms can
then be used to analyze the performance of the modified design. The evaluation of how the optimizations
affect the design can be done before the actual implementation, significantly reducing development costs.
Another advantage of our approach is that the Verus language has been especially designed to allow a
straightforward description of the temporal characteristics of programs.

Verus uses a discrete notion of time. The model of a Verus program is a finite state-transition graph and
each transition in the graph corresponds to one time unit. An important consequence of this model is that
the algorithms count the number of computation steps between events, or the number of occurrences of
events in an interval. Because of this the discrete time model finds application in synchronous systems in
general, such as computer circuits and protocols. Real-time systems usually do not execute in lock-step
since contention for resources such as processor time introduces nondeterminism in its execution. Because
of this real-time systems would not seem to fit naturally in our model. However, they are subject to tight
timing constraints, which are diff icult to satisfy in an asynchronous design. For this reason real-time sys-
tem developers often significantly reduce asynchronism in their designs to ensure predictability. In fact,
most real-time systems we have analyzed present more synchronous features than traditional circuits, and
have been successfully verified using Verus [5,6,7,8].

Related Work

There are several other approaches to the verification of timed systems. For example, dense time is mod-
eled by [1,2,15,19]. Those methods provide a very accurate notion of passage of time. However, the state
space of dense time models is infinite, and these verification tools rely on the construction of a finite quo-
tient structure called region graph. This construction is extremely expensive, limiting the size of problems
that can be handled.

Discrete time is used by other tools such as [11,13,22]. The tool described in [22] also uses symbolic algo-
rithms using BDDs. These tools, however, do not allow the quantitative analysis of systems as the proposed
method. In [10] quantitative analysis is implemented, but with a more limited scope.

Analytical methods for analyzing real-time systems also exist, such as the rate-monotonic scheduling
theory [16,17,21]. In this method a real-time system is characterized by a set of periodic tasks, each having
a period and an execution time. Assumptions about system behavior are made (such as no task preempts
itself), and if these assumptions are satisfied, simple formulas determine the schedulability of the system.
A strong limitation of this approach is that only systems satisfying several restrictions can be verified such
as very limited synchronization models and severe restrictions on analyzing distributed systems. The rate-
monotonic theory algorithms have much simpler complexity than the other verification methods discussed,
but they also generate more restricted information.

3

Example: A Robotics Controller

The simplicity of the representation used by Verus makes it amenable to a symbolic implementation using
binary decision diagrams. This representation is very efficient, as attested by the real-time systems verified.
Several complex systems of industrial origin have been verified such as an aircraft controller [6], the PCI
local bus [8] and a distributed heterogeneous real-time system [5]. In all cases, the examples verified are
derived from existing systems or use components and protocols employed in current industrial products.

This paper describes in detail one of these systems, the controller for a robot used in nuclear reactors to
measure the shapes of pipes by moving around them with a distance sensor [7,14]. In this example we have
been able to analyze the behavior of the robot from several perspectives. Our analysis has shown that it
would meet itsdeadlines, but that it was inefficient. We have discussed how to optimize thedesign and
then analyzed the performance of the modified design.

The remainder of the paper is organized as follows. Section 2 presents the Verus language, used to describe
the system being verified. In section 3 we briefly present the algorithms used for verification. An example
of the verification of a real-time system is discussed in section 4, and conclusions are presented in
section 6.

2 The Verus Language

The main goal of the Verus language is to allow engineers and designers to describe real-time systems eas-
ily and efficiently. It is an imperative language with a syntax resembling that of C. Special primitives are
provided for the expression of timing aspects such as deadlines, priorities, and time delays. These primi-
tives make timing assumptions explicit, leading to clearer and more complete specifications.

The data types allowed in Verus are fixed-width integer and boolean. Nondeterminism is supported, which
allows partial specifications to be described. Language constructs have been kept simple in order to make
the compilation into a state-transition graph as efficient as possible. Simple constructs allow the precise
expression of the desired features, whereas complex constructs sometimes force unnecessary details into
the specification. Smaller representations can then be generated, which is critical to the efficiency of the
verification and permits larger examples to be handled. Details on the Verus language can be found in [1].

Overview

A fragment of a simple real-time program is used to illustrate the basic features of the language. This pro-
gram implements a solution for the producer-consumer problem by bounding the time delays of its pro-
cesses. No synchronization is needed if the time delays of producer and consumer are defined properly.
The code for the producer process is shown below. Variable p is a pointer to the buffer in which data is
stored. The producer initializes its pointer p to 0 and the produce variable to false. It then enters a
nonterminating loop in which items are produced at a certain rate. Line 7 introduces a time delay of 3 units,
after which an item will be produced. Line 8 marks the production of an item by asserting produce. In
line 9 the pointer is updated appropriately (addition in Verus is defined modulo its maximum value). Line
10 makes sure that the event produce is observed. It is needed because the state of a Verus program can
only be observed at wait statements.

1 producer(p)
2 {
3 boolean produce;
4 p = 0;
5 produce = false;
6 while(!stop) {

4

7 wait(3);
8 produce = true;
9 p = p + 1;

10 wait(1);
11 produce = false;
12 };
13 }

Figure 1. Producer code

Wait Statements

In Verus time passes only on wait statements, therefore lines 4, 5 and 6 execute in time zero. This feature
allows an accurate control of time, and eliminates the possibility of implicit delays influencing verification
results. It also generates smaller models, since contiguous statements are collapsed into one transition.
Notice that this feature affects the behavior of the program significantly. For example, a block of code not
containing the wait statement executes atomically.

Nondeterminism
To illustrate another characteristic of Verus, let’s assume that the producer is not required to actually
produce an item after 3 time units, but may instead leave the value of p unchanged. This can be modeled in
Verus by changing line 9 to:

9 p = select{p, p+1};

The select statement introduces a nondeterministic choice in the program. The value of p after execut-
ing select can be either p or p+1 (addition in Verus is defined modulo the maximum value for the vari-
able). These choices can characterize the fact that the producer may produce an item, but it may also not
produce it. This way we can model both possibilities without having to specify all the details that are actu-
ally needed to decide between these two options. Besides hiding unnecessary details, nondeterminism can
be used to verify partial specifications. Whenever the value of a variable hasn’t been determined by the
design, nondeterministic constructs can specify all possible values for the variable. This approximates the
behavior of the actual system by exploring all possibil ities. As the design process evolves, the values can
be restricted until the correct behavior is determined. Nondeterminism encourages the use of automated
verification in earlier phases of the design. Components of the system can be verified before all modules
have been specified and errors can be uncovered before propagating to components added later.

14 consumer(p, c)
15 {
16 boolean consume;
17
18 c = 0;
19 consume = false;
20 while (!stop) {
21 wait(1);
22 if (p != c) {
23 consume = true;
24 c = c + 1;
25 wait(1);
26 consume = false;
27 };
28 };

5

29 }
Figure 2. Consumer code

The consumer process is very similar to the producer. The basic differences are that it waits for less
time before consuming, and that it only consumes if p and c have different values (p == c signals an
empty buffer). Notice that the producer does not check if the buffer is full before inserting another item.
The time delays of both processes guarantee that an overflow will never occur.

The main function
As in the C language, main has a special function in Verus. In this function all processes are instantiated,
and global variables can be declared. The variables p and c (used as pointers in the buffer) are declared and
the producer and consumer processes are instantiated in the main function of the example code.

Process instantiation in Verus follows a synchronous model. All processes execute in lock step, with one
step in any process corresponding to one step in the other processes. Asynchronous behavior can be mod-
eled by using stuttering [4]. An implicit instantiation of the main module is assumed, where the code in
main executes as another synchronous module.

Specifications can also follow the code as can be seen. The example given specify the computation of the
minimum and maximum time between producing an item and consuming it, as well as checking that a
produce is always followed by a consume.

30 main()
31 {
32 int p, c;
33
34 process prod producer(p),
35 cons consumer(p, c);
36
37 spec MIN[prod.produce, cons.consume]
38 MAX[prod.produce, cons.consume]
39 AG(prod.produce -> AF cons.consume)
40 }

Figure 3. Producer/consumer main function

Timing Constructs
The timing characteristics of the system can be easily modeled using the periodic, deadline and exception
handling statements. For example, the code below specifies that S1 must execute periodically, once every
100 time units. Also, it must finish execution in less than 100 units, otherwise an exception will be raised:

 periodic(0, 100, 100) {
 S1;
 };

The first parameter of periodic is the start_time, which specifies how many time units the periodic code
will idle before starting its execution for the first time. In this example it will start immediately. The second
parameter is the period. In this case the statements following periodic will execute once every 100 time
units. The third parameter defines a deadline. It states that the execution must finish in less than 100 time
units or an exception will be raised. Execution may take longer than the sum of the delays in the wait state-

6

ments because of synchronization with other processes. The deadline statement is similar, but it does
not specify a period. Exception handling as well as the periodic and deadline statements are explained in
detail in [1].

3 The Ver ification Algor ithms: Quantitative Algor ithms

Most verification algorithms assume that timing constraints are given explicitly. Typically, the designer
provides a constraint on response time for some operation, and the verifier automatically determines if it is
satisfied or not. Unfortunately, these techniques do not provide any information about how much a system
deviates from its expected performance, although this information can be extremely useful in fine-tuning
the behavior of the system.

Verus implements algorithms that determine the minimum and maximum length of all paths leading from a
set of starting states to a set of final states. It also has algorithms that calculate the minimum and the maxi-
mum number of times a specified condition can hold on a path from a set of starting states to a set of final
states. For example, by choosing as starting states those in which a process requests execution, and as final
states those in which the process completes execution we can compute the response time for that process. If
we specify as third condition for the same intervals the execution of lower priority processes we can com-
pute the amount of priority inversion time that can affect the process. These algorithms are discussed in
detail in [3]. We briefly present the minimum and maximum delay algorithms below.

Our algorithms provide insight into how well a system works, rather than just determining whether it works
at all. They enable a designer to determine the timing characteristics of a complex system given the timing
parameters of its components. This information is especially useful in the early phases of system design,
when it can be used to establish how changes in a parameter affect the global system behavior.

Several types of information can be produced by this method. As discussed, response time to events is
computed by making the set of starting states correspond to the event, and the set of final states correspond
to the response. Schedulability analysis can be done by computing the response time of each process in the
system, and comparing it to the process deadline. Performance can be determined in a similar way. The
algorithms have been used to verify several real-time and non real-time systems.

Minimum Delay Algor ithm

The algorithm takes two sets of states as input, start and final. It returns the length of (i.e. number of edges
in) a shortest path from a state in start to a state in final. If no such path exists, the algorithm returns infin-
ity. In the algorithm, the function T(S) gives the set of states that are successors of some state in S. In other
words, T(S) = { s′ | N(s, s′) holds for some s ∈ S} . In addition, the variables R and R′ represent sets of states
in the algorithm.

proc min (start, final)
i = 0;
R = start;
R′ = T(R) ∪ R;
while ((R′ ≠ R) ∧ (R ∩ final) = ∅) do

i = i + 1;
R = R′;
R′ = T(R′) ∪ R′;

if (R ∩ final ≠ ∅)
then return i;
else return ∞;

Figure 4. Minimum Delay Algorithm

7

The first algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes the set of
states that are reachable from start. If at any point, we encounter a state satisfying final, we return the num-
ber of steps taken to reach the state.

Maximum Delay Algor ithm

This algorithm also takes start and final as input. It returns the length of a longest path from a state in start
to a state in final. If there exists an infinite path beginning in a state in start that never reaches a state in

final, the algorithm returns infinity. The function T -1(S′) gives the set of states that are predecessors of

some state in S′ (i.e. T -1(S′) = { s | N(s, s′) holds for some s′ ∈ S′}). R and R′ will once more be sets of
states. Finally, we denote by not_final the set of all states that are not in final.

proc max (start, final)
i = 0;
R = true;
R′ = not_final;
while ((R′ ≠ R) ∧ (R′ ∩ start ≠ ∅)) do

i = i + 1;
R = R′;
R′ = T -1(R′) ∩ not_final;

if (R = R′)
then return ∞;
else return i;

Figure 5. Maximum Delay Algorithm

The upper bound algorithm is more subtle than the previous algorithm. In particular, we must return infin-
ity if there exists a path beginning in start that remains within not_final. A backward search from the states
in not_final is more convenient for this purpose than a forward search. At each iteration it finds the set of
states which are the beginning of intervals with i states, none satisfying final. Initially, i is 0, and the fron-

tier is not_final. At the ith iteration the current frontier is the set of states that are the beginning of paths
with i states completely in not_final. We then compute the set of predecessors (in not_final) of the current
frontier. Those states are the beginning of paths with i+1 states completely in not_final. The algorithm

stops at the jth iteration when it detects that there are no states in start that are the beginning of paths with j
states completely in not_final. But there is at least one path starting in start with j-1 states in not_final, that
is, this is a maximal path starting in start completely in not_final. We also assume that the transition rela-

tion is total, that is, the j-1th state has at least one successor, which must be in final.

4 A Robotics System

One application of real-time systems that is becoming increasingly common is in robotics. Guaranteeing
that tasks are executed within their expected deadline is critical for the integrity of a robot and for its cor-
rect operation. The computation of quantitative properties can assist in validating such systems.
The example discussed in this section is derived from the one in [14]. It describes a real robot used in
nuclear reactors to measure the shapes of pipes by moving around them with a distance sensor. The robot
architecture has three subsystems, motor, measurement and command. The motor subsystem controls the
robot movements and position. The function of the measurement subsystem is to activate and control the

8

distance sensors. Finally, the command subsystem receives commands from the communication link and
sends them to the appropriate tasks.

Figure 6. Robot architecture

Each subsystem consists of a set of tasks. The motor subsystem contains one task, motor_control. Its func-
tion is to receive data from sensors in the servo motors, and actuate them. The task consists of two sub-
tasks, servo_read and servo_control. The first one is an interrupt routine that reads data directly from the
physical devices. The second one processes these data and outputs control signals to the motors at a lower
priority. The measurement subsystem has two tasks, sensor_read and sensor_control. The first task reads
data from the distancesensors and preprocesses it. This information is then sent to sensor_control, which
processes it further and outputs the results to a remote system to be analyzed. Finally, the
command subsystem also has two tasks. The command_read task receivescommands from the communi-
cation link and interprets them. It consistsof two subtasks: an interrupt routine, followed by a second sub-
task that has a lower priority. The final task of this subsystem is command_process. Its first subtask
receives the command interpreted by command_read, and the second one then executes the command.
Control variables updated by this subtask are used to communicate commands to all other subsystems.

All tasks are periodic, and their timing requirements reflect the characteristics of the environment in which
the robot works and the robot’s expected response time. These requirements are summarized in the table
below. Each task is presented as a sequence of components, each with a different execution time and prior-
ity. A component may correspond to a subtask, or subtasks may be split in more than one component due
to synchronization. For example, the first components of both motor_control and command_read corre-
spond to their interrupt routines and execute at high priorities. Synchronization accounts for the other com-
ponents. For example, the last component of command_process updates control variables that will be used
by other tasks. Interference from other tasks is avoided by accessing those variables at a high priority level.
The other components havebeen created to reflect the synchronization pattern between processessharing

servo
read

servo
control

motor control

sensor
read

sensor
control

comm.
read

comm.
interpr.

comm. read

comm.
exec.

comm.
process

comm. proc.

buffer

control
vars

Data flow Control flow

9

data (in this case sensor_read and sensor_control), and between command_read and command_process.
Priority inheritance protocols have been used to avoid priority inversion [20]. These protocols change
thepriority of the tasks at synchronization points, thus dividing the tasks into components.

Figure 7. Timing requirements for the controller

Specifying the Robotics System in Verus

The per iodic statement. A Verus program has been written describing this system. The five processes
have been implemented using the basic structure shown below for the motor_control process. These
processes and their corresponding scheduler have been instantiated in the final model.

motor_control() {
 boolean start, end;

 start = false; end = false;
 periodic(0, 40, 40) {
 start = true;
 priority(10) {
 wait(1);
 start = false;
 };
 priority(7) {
 wait(5);
 };
 end = true;
 wait(1);
 end = false;
 };
}

Figure 8. The basic structure for the Verus program

However, because of eff iciency in the verification some modifications have been made to this structure.
The main modification arises from realizing that each process needs one counter for each periodic
statement [3]. It is more efficient to group all periodic statements using only one counter. This can be done
by declaring only one counter and raising a “periodic” flag whenever this counter reaches values that are
multiples of the desired period. For example, in this system the periods of all processes are 40, 50, 100, 200
and 400. The code below shows how to implement periodic statements for these periods using one counter
(the current version of Verus does not implement the #define directive as well as other minor sintactic
constructs shown. They are presented here to simplify the presentation):

Task Per iod Exec. Times Deadline Pr ior ities

C1 C2 C3 P1 P2 P3

Motor control 40 1 5 - 40 10 7 -

Sensor read 100 10 5 5 100 4 8 4

Sensor control 50 8 12 - 50 5 8 -

Command read 200 10 20 3 200 9 2 3

Command process 400 2 12 10 400 3 1 6

10

int t;

#define timeout40 ((t == 0) || (t == 40) || (t == 80) ||
 (t == 120) || (t == 160))
#define timeout50 ((t == 0) || (t == 50) || (t == 100) ||
 (t == 150))
...
count() {
 t = 0;
 while (true) {
 t = t + 1 % 400;
 };
}

Finally, the code shown on the left side below is then replaced by the code on the right:

periodic(0, 40, 40) { while (true) {
 S1; while (!timeout40) wait(1);
}; S1;

}
Figure 9. An eff icient grouping of periodic statements

The scheduler. The scheduler is implemented with the aid of auxiliary variables. A variable granted is
used to determine which process will execute next. Each process uses a variable reqi to signal to the
scheduler that it is requesting execution and at which priority level. Whenever requesting execution, pro-
cess pi sets variable reqi to its priority level. When it finishes executing it resets the variable. During exe-
cution it must wait until the variable granted has its index before proceeding (this level of detail in the
code can be hidden with the use of preprocessors):

 /* Beginning of execution */
 req1 = 10;
 while (granted != 1) wait(1);
 wait(1); /* execute for one time unit */
 req1 = 7;
 while (granted != 1) wait(1);
 wait(1);
 ...
 while (granted != 1) wait(1);
 wait(1);
 /* End of execution */
 req1 = 0;
 wait(1);

The scheduler reads all req variables and decides which process will execute next. It then sets the variable
granted to the index of the process with highest priority, as shown in the simplified scheduler below:

scheduler(req1, req2, req3, granted)
{
 while (true) {
 if (req1 >= req2) {
 if (req1 >= req3) granted = 1; else

11

 granted = 3;
 } else {
 if (req2 >= req3) granted = 2; else
 granted = 3;
 };
 wait(1);
 };

The final model has the code for the five processes, the counting process and the scheduler. The specifica-
tions complete the code:

spec
 MIN(p1.start, p1.end);
 MAX(p1.start, p1.end);
 MIN(p2.start, p2.end);
 MAX(p2.start, p2.end);
 MIN(p3.start, p3.end);
 MAX(p3.start, p3.end);
 MIN(p4.start, p4.end);
 MAX(p4.start, p4.end);
 MIN(p5.start, p5.end);
 MAX(p5.start, p5.end);

The model can be executed with the command below, where robot.ord is the BDD variable ordering
file used for this example:

>verus -i robot.ord robot.ver

A summary of the results produced is (the running times refer to a Pentium 200 with 64 megs of memory):

...

Time to construct the model: User : 19.37 s System : 0.12 s

Result is 6 : MIN(p1.start, p1.end);
Result is 16 : MAX(p1.start, p1.end);
Result is 45 : MIN(p2.start, p2.end);
Result is 95 : MAX(p2.start, p2.end);
Result is 20 : MIN(p3.start, p3.end);
Result is 49 : MAX(p3.start, p3.end);
Result is 181 : MIN(p4.start, p4.end);
Result is 190 : MAX(p4.start, p4.end);
Result is 219 : MIN(p5.start, p5.end);
Result is 223 : MAX(p5.start, p5.end);

Execution information:

Time - User : 43.28 s System : 0.14 s
BDD nodes used - Transition relation: 35690 Total : 123463
Bytes allocated - 3139320
Boolean variables - 115
States - Total : 2.36118e+22 Reachable: 400

12

The Analysis of the Robotics System

Computing response times for all processes generated the results in the table below. This table shows that
the task set is schedulable. Moreover, the maximum execution times of many tasks are close to
their deadlines. This indicates a high load on the system; it is unlikely that adding more tasks to the task set
would produce a schedulable system. This information allows the designer to optimize the system.

Figure 10. Schedulability analysis for original system

Using the results computed by our algorithms, we have been able to suggest changes to the design and to
analyze the effects of such changes. In the original design sensor_read generates data that are used by
sensor_control. However, the two tasks execute independently of one another. In some cases
sensor_control might execute even if data are not yet available. In this case, sensor_control uses data gen-
erated by the previous instantiation of sensor_read, which may be obsolete. We have changed the system to
avoid this problem and have analyzed the resulting design. The modification consists of making the termi-
nation of sensor_read trigger the execution of sensor_control. Care must be taken, however, because the
processes involved have different periods; sensor_read executes every 100 ms, while sensor_control exe-
cutes every 50 ms. We change the system so that sensor_read signals the execution of sensor_control
every 100 ms, but sensor_control also executes independently 50 ms after sensor_read runs. In this case
one instantiation of sensor_control is synchronized with sensor_read while the other is independent. The
schedulability analysis of the modified example is given in the following table:

Figure 11. Schedulability analysis for modified system

The new design is not schedulable, since sensor_control can takeup to 121 ms to execute. We can use the
same quantitative algorithms to find out more about the behavior of the system and to correct the problem.
A more detailed analysis reveals that the two instantiations of sensor_control have very distinct behaviors.
Whenever executing periodically (and independent of sensor_read), sensor_control takes between 21 and
121 ms to finish. However, whenever executing after sensor_read, it takes exactly 26 ms to execute in the

Task Deadline Exec. times

min max

Motor control 40 6 16

Sensor read 100 45 95

Sensor control 50 20 49

Command read 200 181 190

Command process 400 219 223

Task Deadline Exec. times

min max

Motor control 40 6 16

Sensor read 100 20 36

Sensor control 50 21 121

Command read 200 91 91

Command process 400 96 296

13

modified model. This shows that the periodic execution of sensor_control is the bottleneck of the system.
One solution to the problem is simply removing the periodic instantiation of sensor_control. This solution
was easily implemented, and theschedulability analysis is presented in table:

Figure 12. Schedulability analysis for final system

The system is again schedulable, but now sensor_control executes only once every 100 ms. Is this a satis-
factory solution? Again, we can use the same algorithms to analyze the modified design. By computing the
time between the end of the execution of sensor_read and thebeginning of sensor_control we can verify if
data produced by the first task is being consumed timely by the second one. In the modified model this
time is between 1 and 7 ms, meaning that dataproduced by sensor_read are promptly consumed by
sensor_control. Therefore we can conclude that in spite of changing the periodicity of sensor_control we
are still maintaining correctness. The condition counting algorithms have also been useful in analyzing the
performance of this model. We have been able to verify how the old periodicity of sensor_control relates
to the new model. We can consider all execution paths from the time sensor_read starts until
sensor_control finishes as the activeperiod for the measurement subsystem. During such a period, how
many times can the 50 ms time-out occur? In other words, how many times would sensor_control be acti-
vated using the original periodicity during an active period? The result is from 1 to 3 times. Weconclude
that the modified system satisfies the original timing constraints, even though it has a lighter load.

5 Other Verification Algor ithms in Verus

CTL and RTCTL Model Checking

Verus allows the verification of untimed properties expressed as CTL formulas [15] and of timed properties
expressed as RTCTL formulas [10]. CTL formulas allow the verification of properties such “p will eventu-
ally occur” , or “p will never be asserted” . However, it is not possible to express bounded properties such as
“p will occur in less than 10ms” directly. RTCTL model checking overcomes this restriction by introducing
time bounds on all CTL operators [10]. For example, the formula below specifies that requests will always
be acknowledged in 10 time units or less:

 AG (req -> AF 0..10 ack)

Many important properties of real-time systems can be verified using both CTL and RTCTL model check-
ing. For example, we have used this method to show the existence of priority inversion in a real-time sys-
tem [4,20]. Priority inversion occurs when a higher priority process is blocked by a lower priority one. It
can be caused by unconstrained process communication. In this example, we have modeled a simple real-
time system in which processes communicate in a non-regular pattern. The main objective is to determine

Task Deadline Exec. times

min max

Motor control 40 6 16

Sensor read 100 20 36

Sensor control 50 26 26

Command read 200 91 91

Command process 400 70 270

14

which problems can arise from this communication and how to avoid them. The bounded until operator
allows us to determine the existence of priority inversion, and to check that the solution implemented, pri-
ority inheritance, avoids the problem.

Selective Quantitative Analysis and Interval Model Checking

The algorithms described above compute the minimum and maximum time delays along every possible
execution sequence of a real-time system. In many situations, however, we may be interested in computing
time delays that relate only to a subset of the execution sequences that satisfy a given property. For exam-
ple, in the aircraft controller example [6] the time between requesting the activation of the weapons and
their actual firing time is computed. The maximum time in that example is infinity. The weapons may
never fire because the firing sequence can be aborted. It may be the case, however, that the designers want
to compute the maximum response time of the weapon subsystem provided that no abort occurs.

We propose a method for specifying and verifying properties such as these. The user can restrict the set of
paths that will be considered by specifying a property that must be satisfied in all paths traversed. This
property is expressed using linear-time temporal logic (LTL) [9]. Special model checking techniques [9]
are then used to ensure that only paths that satisfy the formula are considered by the algorithms. Selective
quantitative analysis has been used to analyze the distributed heterogeneous system described in [5].

6 Conclusions

In this paper we present a new method for analyzing and verifying real-time systems. The system being
analyzed is described in the Verus language, which has been especially designed to simplify the expression
of timing characteristics. Symbolic algorithms are then used to compute quantitative timing information
about the system such as response times and the number of occurrences of events in given intervals. The
results produced by the algorithms can assist in determining the correctness of the system as well as pro-
vide important information about system behavior that can help in understanding how the system behaves
under different conditions.

We have used this tool to analyze several real-time systems of industrial complexity, such as an aircraft
controller [6], the PCI local bus [8] and a distributed heterogeneous system [5]. In all cases we have been
able to determine the temporal correctness of the system. In several instances the results produced by our
algorithms suggested modifications to the design that resulted in more efficient systems. From our experi-
ence with Verus we believe that it can be very useful in designing better and more efficient real-time sys-
tems.

7 References

[1] R. Alur, C. Courcourbetis, and D. Dill . Model-checking for real-time systems. In Proceedings of the 5th Sympo-
sium on Logics in Computer Science, pp. 414-425, 1990.

[2] R. Alur and D. Dill . Automata for modeling real-time systems. In Lecture Notes in Computer Science, 17th

ICALP. Springer-Verlag, 1990.

[3] S. V. Campos. A quantitative approach to the formal verification of real-time systems. Ph.D. thesis, SCS, Carnegie
Mellon University, 1996.

[4] S. V. Campos. The priority inversion problem and real-time symbolic model checking. Technical Report CMU-
CS-93-125, Carnegie Mellon University, 1993.

15

[5] S. V. Campos and O. Grumberg. Selective quantitative analysis and interval model checking: verifying different
facets of a system. In: Computer Aided Verification, 1996.

[6] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics of
finite-state real-time systems. In IEEE Real-Time Systems Symposium, 1994.

[7] S. V. Campos, E. M. Clarke, W. Marrero and M. Minea. Verus: a tool for quantitative analysis of finite-state real-
time systems. In: Workshop on Languages, Compilers and Tools for Real-Time Systems, 1995.

[8] S. V. Campos, E. M. Clarke, W. Marrero and M. Minea. Verifying the performance of the PCI local bus using
symbolic techniques. In: ICCD, 1995.

[9] E. Clarke, O. Grumberg, and H. Hamaguchi. Another look at LTL model checking. In: Sixth Conference on Com-
puter-Aided Verification, Lecture Notes in Computer Science 818, pages 415-427. Springer-Verlag, 1994.

[10] P. Clements, C. Heitmeyer, G. Labaw, and A. Rose. MT: a toolset for specifying and analyzing real-time sys-
tems. In IEEE Real-Time Systems Symposium, 1993.

[11] W. Elseaidy, R. Cleaveland and J. Baugh. Modeling and verifying active structural control systems. In: Science
of Computer Programming, 29(1-2):99-122, July 1997.

[12] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In Lecture Notes in
Computer Science, Computer-Aided Verification. Springer-Verlag, 1990.

[13] A. N. Fredette and R. Cleaveland. RTSL: a language for real-time schedulability analysis. In IEEE Real-Time
Systems Symposium, 1993.

[14] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority scheduling of hard real-time
systems. IEEE Transactions on Software Engineering, 20(1), 1994.

[15] T. Henzinger, P. Ho, H. Wong-Toi. HyTech: the next generation. In: IEEE Real-Time Systems Symposium, 1995.

[16] J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling theory for hard real-time sys-
tems. In Foundations of Real-Time Computing - Scheduling and Resource Management. Kluwer Academic Publish-
ers, 1991.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1), 1973.

[18] K. L. McMill an. Symbolic model checking - an approach to the state explosion problem. Ph.D. thesis, SCS, Car-
negie Mellon University, 1992.

[19] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems. In Lecture Notes in Com-
puter Science, Real-Time: Theory in Practice. Springer-Verlag, 1992.

[20] R. Rajkumar. Task synchronization in real-time systems. Ph.D. thesis, ECE, Carnegie Mellon University, 1989.

[21] L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time systems. In Foundations of
Real-Time Computing - Scheduling and Resource Management. Kluwer Academic Publishers, 1991.

[22] J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-driven real-time systems. In IEEE Real-
Time Systems Symposium, 1993.

