
Compiling Path Expressions into VLSI Circuits

‘I‘. S. Annntharaman
E. M. Clarke
M. J. Foncrt

l3. Mishra

Dcparlmcnt of Computer Science,
Carncgic-Mellon University

Pittsburgh, Pennsylvania 15213

:\ hstrart: Path cxprcssions wcrc originally proposed by Campbell and
Habcrmann II] as a mechanism Ibr pnscss synchronization at the
rnonitljr lcvcl in %oftwarc. Not uncxpccrcdly, they also probidc a useful
notation for specifying the bcbavior of asynchronous circuits.
Ylotivatcd by this potential application WC invcstigatc how to directly
translate path cxprcssions into hardware.

Our implcmcntation is complicated in the cast of multiple path
cxprcssions by the need for synchronization on cvcnt narncs that arc
common to more than one path. Morcovcr. since cvcnts arc inherently
asynchronous in our mudcl. all ofour circuits must bc self-timed.

Ncvcrthdcss. UK circuits produced by our construction have area
propordonal to N slog(N) whcrc N is the total length of the multiple
path crprcssion under consideration. ‘Ibis bound holds regardless of
rhc number of individual paths or the dcgrec of synchronization
bctwccn paths.

1. Introduction
As the boundary brtwccn software and hardware grows less and less

distinct. it bccomcs increasingly important to invcstigatc methods of

diicctly implementing various programming langungc features in

ha&are. Since many of the problems in interfacing hardware devices

involve some form of process synchronization. language fcaturcs for

synchrcmiration dcscrvc considcrablc attention in such investigations.

In this paper WC consider tbc problem of directly implcmcnting path

‘Current address: Dcpartmcnt of Computer Scicncc, Columbia
Univcnity, New York. New York 10027,

This research was p,uGdly alpportcd by NSF Grant MCS-82-16706.
-md the Dcfcnsc Adunccd Rcscarch Projects Agency (DOD). ARPA
Order No. 3597. monitored hy the Air Force Avionics Labornlory
U:idcr Conrract F3361541-K-1539.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commcnzial advantage, the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
othewir. or to republish, requires a fee and/or specific permission.

“1984 ACM O-89791-147-4/85/001/0191 $00.75

cxprcssions as self-timed VLSI circuits. Path expressions were

originally proposed by Campbell and Habermann [l) for restricting

acccbs by other proccsscs to the procedures of a monitor. For example,

the timplc rcadcrs and writers problcrn with two rcadcr proccsscs and a

single writer process is solved by tie following multiple path

expression:

path R, + Wend,
path R, + Wend.

‘fhc first path cxprcssion prohibits a read operation by the first process

from occurring at the same time as a write opcralion. The second path

cxprcssion cnforccs a similar restriction on the behavior of the second

rc&r process. In a computation under control of the multiple path

cxprcssion, the two read operations may occur simult:mcously. but a

read and write operation cnnnot occur at the same time.

Path cxprcssions arc useful for proccs5 synchronization for two

reasons: First d~c close relationship between path cxprcssions and

regular cxprcssions simplifies the task of writing and rcaso:ling about

programs which use this synchronization mcchnnism. Secondly, the

synchronization in many concurrent programs is finite state and thus,

can bc adcquatcly dcscrihcd by regular cxprcssions. For prcciscly the

same reasons, path cxprcssions arc useful for controlling the behavior

of complicated asynchronous circuits. The rcadcrs and writers example

above could equally well dcscribc a simple bus arbitration schcmc. In

facr. the finite-state assumption may bc cvcn more reasonable at the

hardware lcvcl than at the monitor level.

Which brings us to the topic of this paper: What is the best way to

translate path cxprcssions into circuits? Iauer and Campbell have

shown how to compile path expressions into Petri nets [cj], and Patil has

shown how to implcmcnt Petri nets as circuits by using a PLA-like

dcvicc called an asynchronous logic array 1111. Thus. an obvious

method for compiling path expressions into circuits would bc to first

translate the path cxprcssion into a Petri net and then to implcmcnt the

191

Petri net as a circuit using an asynchrouous logic array. However,

careful examination of Iaucr and Campbell’s schcmc shows that a

multiple path cxprccsion consisting of M paths each of Icngth K can

result in a Petri net with K” places. Thus, the naive approach will in

gcncral be infeasible if the number of individual p&s in a multiple

path expression is large.

For the cast of a path expression with a single path their schcmc dots

rcsulf in Petri net whtch is comparabic in size to tltc path expression.

However, direct implcmcnmtion of such a ncr using Path’s ideas may

still result in a circuit wi!h an unacceptably large area. An asynchronous

logic array for a Petri net with P places and ‘1‘ transitions wi!l have ~1”s

proportional to P.‘T‘ rcgardlcss of the number of arcs in the net. Since

the nets obtained from path cxprcssions tend to have sparse cdgc SCLF,

this quilcir;ltic bch&or stay w:lFtC significant chip arca.

Pcthaps, the work that is cluscst to ours is due to I .i and Inucr [S] who

do indeed implcmcnt path cxprcs+ons in VISI. Iiowcvcr. their circuits

differ significantly from ours: in particular. their circuits are

synchronous. and synchronization with the cxtcrnnl world (wltich is. of

cut’r<c. inhcrcntly asynchronous) is not considcrcd. I:urtitcrmorc. their

circuits use PIA’s that result in an arca complexity of O(N2). Itern [I31

has invcstigatcd the USC of a hicmrchicnlly structured path exprcssion-

like language fur specifying CMOS circuits. Although hc does show

how certain spccilications can be translated into circuits, hc does not

describe how to handle synchronization or give a general layout

algorithm that products arca cfticicnt circuits,

In contrast. the circuits produced by the construction drscribcd in this

paper have arra proportional to N ‘log(N) where N is the total length of

the mulriplc path cxprcssion under consideration. Furthcrmorc, this

bound holds regardless of the number of individual paths or the dcgrcc

of syn~hrunization bctwccn paths. As in [3] and [4] JJIC basic idea is to

pcncratc circuits for which the underlying graph structure has a

constant scparstor theorem [7]. For path cxprcssions with a single path

the tcchniqucs used by [3] and [4] can bc adapted without great

difhculty. For multiple paths with common cvcnt names. however, the

construction is not straightforward, bccausc of the potential need for

synchronization at many diffcrcnt points on each individual path.

Morrovcr. the actual circuits that WC USC must bc much more

complicated than the spnchrouous ones used in ([3]. 141). Since cvcnts

dre inhcrcntly asynchrouous in our model, all of our circuits must be

self-timed. This requires the use of special circuit &sign techniques

and significantly complicates the proof that this circuit corrcetly

cal)turec the semantics ofpath expressions.

Ihe paper is organixcd as follows: A formal semantics for path

expressions in terms of partially ordcrcd multiscts[!Z] is given in

s<ctian 2. In srctions 3.4, and 5 WC give a hierarchical description of our

KhCJilC for i!nplcmcnting path cxprcssions as circuits. In section 3 we

first describe how the complctc circuit intcrfaccs with the cxtcrnal

world. WC then show how to build a syrchrwrizcr that coordinates the

behavior of the circuits for the individual path cxprcssions in a multiple

path cxprcssion. In section 4 WC dcscribc a circuit for implcmcnting

single path cxprcssions which WC call a sequencer. In section 5 WC show

how the arbiter circuit used in scction 3 can bc implcmcntcd. We also

argue that thcsc circuits arc correct and can bc laid ot11 cflicicntly. The

paper concludes in section 6 with a discussion of issues such as fairness

and of open problems such as the possibility of cxtcnding our

construction to other synchronization mechanisms like the ones used in

CCS and CSP.

2. The Semantics of Path Expressions

In this section WC give a simple but formal semantics for path

expressions in terms of partially ordered multiscts of events [12]. We

also relate our semantics to the one in terms of Petri Nets given by

Lauer and Campbell 161.

Dcflnition 1: A purhlly ordered m&se/ (pomsct) over Z: is a

triple (Q, b, F) where (Q, I) is a partially ordered set and F is a

function which maps Q into Z, 0

An example of a pomsct is shown in Figure 2-1. We use subscripts to

distinguish diffcrcnt instances of the same element of X. Note that we

could have alternatively defined a pomsct as a direetcd acyclic graph in

which each node is labeled with some element of L.

Figure 2-1: An example pomset

If LhC OrdCI’hg relation of a pomsct P over Z is a total order, then we

Ciltl naturally ilSSOCiiltC a scqucncc of clcmcnts of X with Y; WC will use

S(P) to dcnotc this scqucncc. In fact. a pomsct should bc rcgardcd as a

natural gcncrali/,ation of a scqucncc in which ccrtnin clcmcnts are

pcrmittcd to bc concurrent; this is why the concept is useful in

modeling systems whcrc several cvcnts may occur simultaneously.

Definition 2 IfP = (Q. <. l-9 is a pomsct over Z and Z, c Z, then

the rmricriorl of P to Z, is the pomset P(
3

= (Q,, <t. F,) where

Q, = {d (. Q 1 P(d) e Z, } and 5,. F, arc restrictions of 5. F to

Q,. rcspcctivcly. q

192

If P is a totally ordcrcd pomset over I: and Z, c L. then S(PI,> is

just the su6scquence of S(P) obtained by dclcting all of those clcments

of Z which arc not in 2,.

A simple purh expression is a regular cxprcssion wit!1 an outermost

Klccnc star, The only operators pcrmittcd in the regular cxprcssion arc

(in order of prcccdcnce) “*“, ‘I;“, and “+‘I. The “*” operator is the

Klccne star, “:” is the scqucncing operator, and “+” rcprescnts

exclusive choice. Operands are cvcnt names from some set of cvcnts X

that WC will assume to bc fixed in this paper. The outermost Kleene

star is usually rcprcscntcd by the delimiting keyword path . . . end. Thus

(a)’ would be rcprescnted as path a end.

A multiple path expression is a set of simple path cxprcssionr. As we

will see shortly. each additional simple path cxprcssion further

constrains the order in which events can occur. However, we cannot

simply take as our semantics for multiple path expressions the

intersection of the languages corresponding to the individual patb

expressions; two events whose order is not explicitly rcstrictcd by one

of the simple path expressions may bc concurrent. For example, in the

multiple path cxprcssion for the rcadcrs and writers problrm discussed

in the introduction the two mad cvcnts R, and R, $rray occuf

simultaneously. Ncvcrthcless. WC will stil! have occasion to use

ordinary regular cxprcssions in giving the semantics for path

cxprcssions; if R is an ordinary regular cxprcssion over L, rhcn Z, c E

will bc the set of symbols of Z that actually appear in II and I,, c Zi

will bc regular language which corresponds to R.

Definition 3: I.ct Z bc a finite set of cvcnts: a /race over Z is a

fmitc pomscr ‘I’ = (Q, 5, F) over Z. WC say that i E Q is an

instance of an cvcnt c E Z if F(i) = c. An instance i, of event cl

precedes an instance i2 of event c2 if i, prcccdcs i2 in the partial

order I. An instance it of cvcnt et is concurrent with an instance i,

of cvcnt cz’ if it is not the cast that il prcccdcs i2 or that i2 prccedcs

it. 0

path A; D end,
path h;C end.

with Z = {A. I$ C}. It is easy to XC that the trace in Figure 2-1 is

consistent with rrrch of the simple path expressions in M and hcncc is in

‘I’rJM).

3. Synchronizers for Multiple Path Expressions

‘Ibis section dcscrihcs our implcmcni.ttion of ~ynchrorG.crs for

multiple p;rth cxprcssions. Frgurc 3-I ilh~strcltcs the ir;tcrfacc bctwccn a

synchronizer and the cxtcrnal world. lhch event e is asstriatcd with a

rcqucst lint HI:()~ and acknowlcdgc lint ACK~. The synchronidcr

coopcrams with the cxtcrnal world to cnsurc that tbcsc rcqucst and

acknowlcdgc lines follow a 4-cycle protocol:

1. ‘l’hc cxtcrnal world raises nEoQ, to indicate that it would like
to proceed with event e.

2. ‘I’hc synchronizer raises ACK~ to allow the cxtcrnal world to
proceed with event e.

3. The cxtcrnal world lowers REQ, signifying completion of
cvcnt e.

4. The synchronizer lowers ACK~ signifying the end of the
cycle and permission to begin a new enc.

In this implementation, on event will occur during the period between

cycles 2 and 3 in this protocol, whcrc both REQ and ACK arc high.

Thus, multiple oecurrcnccs of any event e arc non-overlapping in time.

since any two occurrcnccs are scparatcd by the lowering of ACK and the

raising of REQ.

REQ

ACK

REO

ACK

REO

ACK

7.

7.

3 . . . Synchronizer

Figure 3-1: A synchronizer
In the example above A1 precedes A2’ but B, and C, are concurrent.

Dclinition 4: Let R be a simple path cxprcssion with event set L,

A trace T is consisrenf with R iff TlrR is totally ordered and

S(TI
5

) is a prefix of some scqucnce in L, . If M is a multiple

path expression, then a trace T is consistent wi/h M iff it is

consistent with each simple path cxprcssion R in M. Tr,(M) is the

set of all tracts which arc consistent with M. 0

Consider, for example, the multiple path expression M:

An ovcrvicw of a synchronizer circuit is shown in Figure 3-2. We

dcscribc below some of the bui!ding blocks in the circuit.

Tbe C gate in Figure 3-2 is a Mullcr C-clcmcnt; the output of a

C*clcmcnt remains low until all inputs are high and thcrcaftcr remains

high until all inputs are low again. Its behavior then cycles. For an

implcmcntation see (141.

The arbiter in Figure 3-2 cnforccs pairwisc mutual exclusion over the

outputs corresponding to pairs of cvcnts which occur in the same path

183

. . . SEQ i
. . .

DIS e TR e TA c . . .

n

ACK, (
. I

ACK,

1 i
4-l
IN, ’

e
r

Figure 3-2: A synchronizer circuit

cxprcssion.In addition to enforcing mutual exclusion tic arbiter tries to

raise any output whose input is high. Most implcmcntations of arbiters

will have mctastahlc states during which fcwcr signals than possible

may be high at the output. Dcspitc the mctastablc stltcs. howcvcr. once

an output signal has been raised, it remains high as long as the

corresponding input remains high. lhc implcmcntation of such an

arbiter is discussed in detail in section 5.

t%ch scqucnccr block in Figure 3-2 cnsurcs th.11 the scqucncc of

cvcnts wtisfics one of the simptc pall1 cxprcssions that comgrisc the

multiple path cxprcssion. ‘1%~ synchronizer circuit contains one

scqucnccr for each simple path cxprcssion. so t!iat each simple path

cxprcssion is satisfied by an cxccution cvcnt tract. For each cvcnt e

that appcan in a simple path, the corresponding scqucnccr has three

connections: a rcqucst TRf, an acknowlcdgc TA,, and a disable DISe.

Events arc scqucnccd by cxccuting a 4-cycle protocol over one pair of

the TUTh lines. I’hc IX outputs of the scqucnccr arc only valid

bctwccn thcsc cycles (when all TR and ‘U arc low), and indicate which

events would violate the simple path. TIIC synchronizer will not initiate

a cycle for any cvcnt whose 111s lint is high. ‘lhc irnplcmcntation of the

scqucnccr is given in seclion 4.

WC now describe how the components of the circuit are

intcrconncctcd. Kcfcr to Figure 3-2. I.ct S’:‘Q, dcnotc the set of

scqucnccrs for simple paths that contain event e. Every scquenccr in

SEQ, has its DIS, signal connected to a wired-YcoR gate for e, its TA,

signal conncctcd to a c gate for e, and its mIRF signal conncctcd to ACKe.

Tl~c output of the latch at the end of the c gate for e, which is lab&d

CLR~, is conncctcd to each of the NOR gates in front of the arbiter which

corresponds to cvcnt e or to some event mutually exclusive to e.

Ihc following is an informal description of how the circuit works.

The circuit bchavcs as shown in the timing diagram in Figure 3-3.

When RFQC is raised. event e is not a!lowcd to proceed unfea each

sequcnccr in S/:‘Q, signals that at least one e type transition is enabled

by negating t)tSe. Once this happens IN, is raised, provided no mutually

exclusive event is executing tha second half of its cyc!c (and hence has

its CIA high). If the arbiter dccidcs in favor of some other pending

cvcnt mllnially cxclusivc to e, the above process rcpcats until e again

gets a chance at the arbiter. Othcrwisc I\CIC~ will bc raised and latched

by the NOR gate arrangcmcnt in front of the arbiter. At this point the

cxtcrnal world may proceed with cvcnt c. Simultaneously each

scqucnccr in SEQ, will find l‘RI high and after some time raise TA(

When all scqucnccrs in S”:‘Q, have raised ‘TAG and the cxtcrnal world

acknowlcdgcs completion of cvcnt e by loccring Kt:QI. cI.R, will bc

r&cd. ‘I-his causes ACKc to bc lowcrcd. F’ch scqucnccr in SEQ, wiil

And ‘I’R, low and after some time lower The. When ail such scqucnccn

arc done. CI.Rp is !owcrcd, and the cycle is completed.

ACK

l‘o &)mlally establish the corrcctncss of our circuit . WC must establish

two things: First, WC must show that the circuit allows only semantically

correct event tracts; second, that the circuit will allow any semantically

correct event trace for some behavior of the cxtcrnal world. These

properties of the circuit arc oticn called s&ness and liveness

rcspcctivcly. Our proof will make USC of propcrtics of the various

ciKuit components shown in Figure 3-2. We list the most important of

thcsc propcrtics as propositions, namely those relating to the sequencer,

the arbiter, and the cxtcmal world. Propertics of other circuit

components such as SR Hip-Flops, NOR gates, etc., arc assumed to bc

well known and arc used without further discussion. The proof also

makes certain assumptions about the delays of the components:

1. ‘Ihc delay of the main NOR gate plus the 2-input NOR gate
is less than that of the main Mullcr-C clcmcnt plus the SR
Flip-Flop.

2. ‘fhc maximum variation in delay for Lhc NOR gates in front
of the arbiter is less th:m the minimum delay of the arbiter.

WC begin by introducing some notation that will bc nccdcd in t&

proof. LCI the scqucnccrs bc dcnotcd by SI~Q, .,. sIQp corresponding to

the path cxprcssions RI .,. Rp c hl. and Ict Z R1 . . . Z,, bc the subsets of

Z that actually appear in Rl . . . Rp rcspcctivcly. Let 1 bc a set of time

intervals, which may include semi-infinite intervals cxtcnding from

some finite instant to infmity. Each clcmcnt in 1 is labcllcd by an

elcmcnt in 2. Ilcfinc ‘r(I) to be the trace which has an elcmcut for each

elcmcnt in I and has the obvious partial order defined bctwecn

elcmcnts whose time intcnials are non-overlapping. Rcfcrring to

Figure 3-3. let

l Ent = set of time intervals labcltcd ‘cxtcmal’,
l lnt = set of time intervals labcllcd ‘internal’.
l Srq@ = set of time intervals labcllcd ‘scqucnccr’ for

scquenccr SEQ,

For every interval in lnt with label e there arc corresponding intervals

with the same label in Ext and in every Scq(j) such that e Q Lw namely

those which start at the same thnc. WC assume that the starting points

of intervals in Int lie within some tinitc time period of interest, and the

intervals in Ext and Scqu) arc rcsuictcd to intervals corresponding to

those in Int.

With this notation in place we state some propositions, or axioms,

that dcscribc the propertics of the circuit of Figure 3-2. These

propcrtics will be used to prove that the circuit is safe and live. The

propositions that arc not self-cvidcnt will bc justiticd in later sections of

this paper.

Proposition 5: (External world protocol): For all events e,

1. REQ is raised only if ACKr is low.
2. wlip: is lowcrcd only if ACK, is high. 0

Proposition 6: (Arbiter safety and livcncss):

1. For any cvcnts el,e2 thl\t are mutually cxclusivc. ACK,, and

ACK~~~I’C IICVX high simultaneously.
2. I:or any cvcnt e, hcK,,is raised only if IS~ is r&cd.
3. For any cvcnt 2 M’Kc is lowcrcd only if I>, is low,and

whhing a of isc being lowcrcd.
4. Consider a set of cvcnts L’ c Z. such that no two cbcnts in

x’ arc in the same path crprcssion. ‘Ihcn if all INC. e E z’.
arc raibcd, within a finite time all ACKc , e E 2, will be
raised. 0

Proposition 7: (Scqucnccr protocol): For any scqucnccr SEQj,

1. ‘I’A~ is raised only if ‘rRc is high.
2. 1’~ is lowcrcd only if TR is low.
3. de is stable whiic all TR$ and TA’S in TRc are low. 0

Proposition 8: (Scqucnccr safety and livcncss) : For any scqucnccr

Sl:Qj , assume that at all times,

o nu two ‘IX’S arc high simultaneously,
l ‘IX~ is raised only if I)&-, and all TA’S arc low.

l TH, is lowcrrd only if The is high.

lhcn the following hold :

1. TA is raised wi:hin a finite timr: of TR being raised.
2. ,TA’ is lowered within a linitc rime of$R being lowered.
3. l:o? any scqucnccr SEQ. whcncvcr 211 Ti’s and ‘IR’S arc low,

cxaclly those cvcnts ‘e will have L)IS~ low, for which
S(T(Scq(j))) can bc cxtcndcd by e to give a prefix of some
scqucncc in L . . RI 0

Proposition 9: (Initialization)

1. Scqucncc!s arc initialized with all TA’S low.
2. ‘I’hc synchronilcr rircllit Sli flip-flops arc initialized to

make all CI.R’S high. cl

The following thcorcm states that a synchronizer satisfying

Propositions 5 through 9 is provably safe.

‘Ilrcorcm IO: (Synchronizer Safety) : T(Ext) 6 TrJM) .

proof: See the appendix. 0

As a convetse to thcorcm 10 WC would like to show that our circuit

1QS

can product any valid tract Est. such that ‘l’(Kxt) E ‘I‘r@) for at least

some behavior of the cxtcrn;ll world. Howcvcr for some traces 7 E

‘1‘r.J M), thcrc dots not exist any F.xt such that ‘I’(Ext)=T. SO there is 00

way any circuit can product the required trace Ext. This happens when

T dots not suficicntly constrain the order in which the clcmcnts may

occur so that any actual set of time intervals will have fcwcr concurrent

clcmcnts than ‘I’. Given such a T it is ncccssary to constrain its partial

order relation further, by adding additional (consistent) prcccdcnce

relationships. It is easy to show using dctinition 4 that this will never

rcmovc T from the set Tr$vl). WC shall show that whcncvcr T is

sufticicntly constrained so that it falls in a class of tracts WC call layered,

then for some behavior of the cxtcrnal world T(Ext) for our circuit will

equal this modified T.

Dclinition 11: A trace P = (Q.& is called byered. if Q can be

subdivided into a scqucncc of subsefs. such rhai for any il. i2 E Q,

il prcccdcs i2 iff rhc J&set in which il lies precedes the subsef in

which i2 lies. 0

The trace in Figure 2-l is layered, since its clcmcnts can bc subdivided

into the scqucncc of atbsrrr ~(At).(B1,C1),(A3,(B2,C2),(A3),(B3, C,)}

with the above property. If the size of each subset were enc. then the

trace would bc totally ordered.

In general, any trace P will have a corresponding layered trace T

which prcscrvcs most of the parallelism of P. It is easy to show that for

any trace P.thcre exists a laycrcd uxc ‘f, which differs from P only In

that the partial order relation of P is a rcstricrion of that of T.

Theorem 12: (Synchronizer I.ivcness): Given any layered trace P c

‘I-r,(M). our circuit will produce an event tract Ext. such that

T(Ext) = P for some bchnvior of the cxtcrnal world. Cl

proof: See tbc appendix. D

4. Implementing the Sequencer for a Simple Path

Expression

This sccdon shows how to construct a scqucnccr that meets the

conditions set forth in Propositions 7 and 8. ‘Ihc scqucnccr circuit is

constructed in a syntax-dircctcd fashion based upon the structure of the

sinlplc path Cxprcssion. We show that a compact layout for the

scqucnccr exists, so that circuits of this type can bc implcmcntcd

cconornically in VI.SI.

Since .a simple path expression is a regular cxprcssion. the scqucnccr

for a simple path cxprcssion is similar to a rccognizcr for the regular

cxprcssion. Although schcmcs for recognition of regular languages

have been proposed that avoid broadcast 131, WC will USC a scbcme that

rcquircs broadcast of cvcnts throughout the scqucnccr [4, IO]. Bccausc

our scheme for intcrconnccting sequencers rcquircs broadcast the

broadcast within an individual sequencer carries no additional penalty.

A sequencer for a simple path cxprcssion is built up from primitive

cells. each corresponding to one character in the path. The syntax of

rhc path determines the interconnection of the cells in UIC sequencer.

In this s&on, WC first dcscribc the behavior of a scqucnccf for a simple

path expression. then give a syntax-dircctcd construction method

As noted in Section 3, a synchronlzcr communicates with each of its

scqucnccrs using three lines:

*TRY: a signal to the sequencer that event e Is about to
commcncc in tic external world;

l TA : an acknowlcdgcmcnt from the sequencer that all
acdons started by TR, have Completed;

l DIS : a status lint indicating that action e would violate the
pa& constraints so that TRIshould not be asserted

ntcsc communication lines interact in a complex way. For a single

type of event, lhc signals TRY and TAc follow the four-cycle signaling

convention dcscribcd in Section 3 for RIZQ and ACK. For diffcrcm typea

of events, the synchronizer must guarantee the correct interaction of IR

signals by ensuring that only one TR signal for an cvcnt satisfying the

simple path cxprcssion is asscrtcd IL any time. ‘lhc sgnchronizcr can

USC rhc DlS stafus lines to dctcrminc which requests to send to the

scqucnccr.

The scqucnccr also has a part to play in ensuring the correct

intCraCtiOn of TR. TA and DR. Bcsidcs gcncrating a TA signal hat
f0llOWS the four cycle convention with TR. it must cnsurc that the signal

DIS, is COrrCct as long as no TR or TA signal Is asserted. This guarantee

means that if no TA is asscrtcd. REQ, and REQ, arc both asscrtcd, and
nChhCr DtS,, nor DISC2 is true, then the synchronizer may choose.

arbitrarily bctwccn el and e2, letting cithcr of them through to the

simple path scqucncer. On rccciving a TRe signal. then. the sequencer

must assert TA< adjust its internal state to rcflcct the occurrence of

event e, aSSaT the proper set of DIS lines, and await the negation of TR,

before negating ‘TAG.

NOW that the behavior of a scquenccr has been described, we show

how to construct a sequencer for any path. A scqucnccr has two parts:

a controller and a rccognizcr. The controller is connected directly to

the rest of the synchronizer and generates both the TA signals and some

Control signals for the rccognizcr. The rccognizcr keeps track of which

events in the path have been seen and generates the DIS signals,

Figure 4-1 shows the controller for a simple path P. The controller

accept5 the signals TRc from the sequencer for each event z that appears

in P. It generates the signals TAG along with Startp and Endy. ‘Ite

106

. Start End ,

Figure 4-l: The controller for path P .

meaning of TA, is that all actions caused by IRI have been completed.

In this rcaliration. TA is just a delayed version of ‘t’~. when: tbc delay is

lung enough to let the sequencer stabilize. An upper bound on this

delay can be computed from the layout of the rest of the circuit. It is

possible to use a self-timed version of this circuit in which the delay is

d:ri\cd from the recognizer. It has been omitted in this version of the

paper as it unnecessarily complicates ah understanding of how the

circuits work. Sturt, and End, are control signals that control the

movement of data through the rccognizer for P. Start, is true whenever

at Icast one TR is on and no TA is on, while Endr is true whcncvcr at

least one Th is on and no lit is on.

The rccognizer for a path accepts the ‘IX~ signals and generates the

DIS signals. It is made up of sub-circuits corresponding to

wrbcxprcssions of the path. To construct the recognixcr for a path. we

parse the path using a context-free grammar. Productions that are used

in parsing the path determine the intcrconncctions of sub-circuits to

form the rccognizcr. Non-terminals that are introduced in the parse

correspond to primitive cells used in the circuit.

Recognizers are constructed using the following grammar for simple

path cxprcssions.

S -+ path R end
R --) R;R I (R + R) I (R)* I <evenO.

The terminal symbols in the grammar cormspond to primitive cells;

there is one type of ccl1 for the “+‘I symbol, one for the I**” symbol.

one for the I’;” symbol, and one for each event. The non-terminals

correspond to more complex circuits that arc formed by

intcrconnccting the primitive ccllr Using the method dcscribcd in (21,

semantic rules attached to the productions of the grammar specify how

the circuits on the right of each pmduction arc intcrconncctcd to form

the circuit on the Mt.

To keep track of which cvcnts in the path have occurred and which

arc legal, the sub-circuits of a rccogniacr communicate using the signals

ENR (cnablc) and RI3 (result). ‘Ihc circuit for a subcxprcssion accepts

EM and uses it to dctcrminc when the first event in the subcxprcssion

is legal. It gcncratcs RB when the last event has occurred.

Figure 4-2 shows the ccl1 for event e. Two latches, clocked by the

signals StarQ and Endp. control the now of ENR and RES signals.

Because of the definitions of Start, and End,. the l&most latch is

loaded from ENB whcncvcr at least one 1-R is on and no TA is on, while

the rightmost latch is loaded to update RI3 whcncvcr at least one TA is

on and no TH is on. The two latches are ncvcr loaded at the same time;

in fact, bccausc TR and TA follow the four cycle signalling convention.

t!crc is a non-zero time bctwccn the end of the load signal for one latch

and the start of the load signal for the other. Thus there is no

combinational path through the cell.

From othsr
c44la for 0

ENB

lR a sta:t p

(Somb fR
and no TA)

(Sow TA
MdnoTR)

Figure 4-2: Ccl1 for event c in path P

‘lhc cvcnt ccl1 in Figure 4-2 prop‘tgatcs a 1 from ISIS to KIS only if

cvcnt e uccurs. When this ccl1 is used in a rccognidcr for a path

cxprcssion, the IN input will bc true if and only if cvcnt c is permitted

by the cxprcssion. Thus. if INS IS IIUC it negates DISK for the path, as

shown in the figure. When a rcqucst IK is made, the output of the AND

gate is loaded into the leftmost latch. If this rcqucst is TR,. this output

is I: othcr*Asc it is 0. In cithcr cast the output of the AXD gate is

p;opagatcd to RR through the latch when I’R is lowered.

Figures 4-3 and 4-4 show the cells for the “;” and “+” operators.

Thcsc arc strictly combinational circuits. The circuit for “;I’ feeds the

RIS signal from the circuit at its left into the ENB signal for the circuit to

irs right. The circuit for ‘I+” broadcasts iis ESB signal to its operands

and combines the RES signals from its operands in an OR gate.

Figure 4-5 shows tic ccl1 for the I’*” operator. The cell enables its

operand after rccriving cithcr it ! on either its own ESB or its operand’s

RI??. &cry time rhe operand is enabled the “*” cell also puts out a I on

191

ENB v A RES

End,, ENB RES
Figure 4-3: Cell for I’;”

Figure 4-4: Cell for ‘*+‘I

its ~IW RES. 11 tkrsforc outputs 1 on RF!% after 0 or more rcpctitions of

its operand’s cwprcssion. ‘fbc additionai AUD gate sets the oulput to

zero momcntarii; a!& each cvcnt, thcrcby preventing the formation of

3 kch when two or more “**’ cel!s are used togcthcr or when the REiS

output is connected to the I+iB inpat

When larger circuits arc made frol?i thcsc cells, the RIS and mB

signals retain their meanings. l3ch event cell or sub-circuit formed

from several cck accepts one input END and produces one output RES.

We define L.B and RES to bc correct if they meet the following

conditions

l E!GB is true for a sub-circuit if each sequcncc of crcnts
satisfying the expression for the sub-circuit may bc the next
sequcncc lo occur.

l RES is true for a sub-circuit if some sequcncc of events
satisfying the sub-circuit has just occurred, and E&JR was
uuc bcforc the beginning of that sequence.

The ENB and RES signals thus indicate that a subcircuit may start

recognizing events, or that it has finished. In addition, a sequencer has

a signal INIT, not shown in the ftgurcs. which clears the EN3 inputs to all

internal cells and sets the ENB inputs for the cells corresponding to the

first cvcnts in the path.

Ihc semantic actions for the productionc of the gmmmar dcscribc the

intcrconncctions of the cells in Figures 4-2, 4-3 and 4-4. httribntcs are

attached to the symbols of the grammar to rcprcsent the sets of events

that appear in the path. ‘Ihcse sets dctcrminc which ‘I’K and TA signals

are combined to product Start,, and End,

0 .
Figure 4-5: Cell for I’*”

S[h] --) path R[h] end
Hook the RES output of R to its ENB
input, and connect INIT.

R[A u B] -+ R[A]:R[B]
Connect the RES output for R[A] to the
FNB input of R[B]

R[A u B] + (R[A] + R[BD
Connect the K’s to the operand ports of a
+ cell.

R[A] -) (R[A])* Connect R to the operand port of a l cell.

R[{e)] + event e USC a cell for e as the circuit for R

Figure 4-G shows a recognizer for the path path a;(a+b);c end

constructed using this syntax-directed technique

R, I
r-

i
a

ie

+ C

a b

Figure 4-6: A recognizer for path a:(a+b);c end

All recognizcrs constructed by this procedure perform the conat

function, as required by Propositions 7 and 8. That is, if a recognizer is

initialized and some sequcncc of ‘IX signals is sent to it,‘the recognizcr

will output 1 on IJIS~ for precisely those cvcnts P that arc forbidden by

the path, To prove this WC show that the I:NI~ input of an cvcnt cell in

the recognixcr is 1 if and only if the cvcnt corresponding to this cell is

pcrmittcd by the path. As shown in Figure 4-2. DISC is 1 if and only if

none of the cells for cvcnt e is cnablcd. Thcrcforc. proving that an

event cell has its END signal set if and only if the corresponding cvcnt is

pcrmittcd in the path will show that the recognizcr is functionally

correct. In other words. WC wish to prove that all IXR signals for event

cells arc correct, according to the definition of WB above.

WC shall prove the stronger statcmcnt thal al1 ENR signals in the

rccognizcr arc cofrcct. This proof is based upon the structure of the

rccognizcr. An t!NR signal in a rccognizcr is set by one of four sources:

. The operand port of a “+ ” or “+” cell:

l The left operand port of a “;I’ ~~11;

l The right operand port of a “;” cell;

. The INIT signal and the final RES of the recognizcr;

In the tint and second casts the signal is correct if and only if END for

the operator cell is correct. In the third case the signal comes from the

RB port of a recognizcr for an initial subcxprcssion. Thercforc it is

correct if and only if the RES signal for the subexpression is correct

(asserted only at the end of the subcxprcssion). In the fourth case the

signal is correct at the start of recognition, and is correct thercatkcr if

and only if the tinal RES signal is asscrtcd only at the end of the

expression. Thus. to prove that the circuits arc correct. we need only

prove that if the ENB Signal for a rcfognizer iS correct thCn SO iS IhC REP

signal.

Once again, the proof of correctness is based upon the structure of a

rccognizer. In a correct recognlzcr the RI3 signal is true at time $ if and

only if the END signal is true at some preceding time r,, and the cvcnt.9

bctwecn ft, and rI obey the path. A recognircr that is a single cvcnt cell

is clearly correct. A recognizer for path a;b built by composition of

correct subtecognizcfs for n and b is also correct, since if RESb is true at

time $ then thcrc must hc some time /t when RISS, was trtx, with all

intcrvcning cvcnts satisfying path b. but then there must have been a

time ro when ii~na was true and all cvcnts bctwccn to and I, must satisfy

path a. ISy definition of composition. then, the events bctwcen to and tZ

satisfy a;b. A recognizcr for path (a)* is correct if its subrecognizer is

correct. since it outputs 1 and cnablcs its operand if and only if RNB or

RRa is true. Finally, a rccognizcr for path a + b is correct if both

subrccognizcrs arc COrrCCt, since if R1S is true lhcn One of RFS, or RES,,

must bc true, and if one of WI%, or RNRh is true then F,s:.sB must be true.

Since all methods of constructing rccognixcrs have been shown to lcad

to correct circuits, rccognizers constructed using this procedure are

functionally correct.

Now tha! circuits have been dcsigncd and proved correct, we give

compact layouts for them. The floorplan for a scqucnccr. shown in

Figure 4-7 has the cells that make up the recognizer arranged in a line

with the controhcr to one side. ‘fhc TR signals flow parallel to the line

of rccqnizcr cells to cntcr the controller, and the Start and End signals

FmCrge from the COntrOhr to flow parallel to the line of cells. ‘Ihe RNB

and RR5 signals that are nscd for intcrcell communication also flow

parallel to the line of cells.

77~ layout in Figure 4-7 is fairly small. If the scqucnccr for a path of

TR’S

SINI

End
d

Figure d-7: Illc floorplan for a sequencer

length II that has k types of input events is laid out in this fashion, the

arca of the layout is no more than O(rr(log n + k)). This is due to the

structure of the rccognizcr circuits. All rccognizcr circuits arc trees,

which can bc laid out with all nodes on a lint and cdgcs running

pnrallcl to the lint using no more than O(log II) wiring tracks [7). Thus

the height of the circuit in Figure 4.7 is O(log n + k) while its width is

o(n).

5. Implementation of the Arbiter

In this section we briefly elaborate on the arbiter shown in Figure

3-2 to show that the conditions of Proposition 6 can bc met. The main

function of the arbiter is to select a single cvcnt from a mutually

exclusive set of requests. Furthermore, the arbiter must be fair - any

rcqucst that remains asserted must cvcntually be selected.

The following observation helps to simplify the arbiter: a pair of

cvcnts occurring in any single path expression must bc mutually

exclusive. This is due to the role that each event plays in enforcing

synchronization among a set of multiple path expressions that all

contain the same named event. The arbitration function can thus be

rcprcscnted by a con/licr graph. in which each event is dcnotcd by a

vcncx and the relation betwicn a pair of mutually exclusive events

denoted by an undirected edge Our observation shows that the

resulting conflict graph for a set of path expressions consists of a set of

overlapping cliques, whcrc a clique of k no&s. A,, AZ. . . ., Ap

corresponds to a path expression R. with 6, = { A,. Al. . . ., A, }.

The conflict graph rcprcscnts the static structure of a set of path

expressions. Figure 5-l shows a multiple path expression with its

conflict graph.

B c

%

path (A + B + D) end
A

F
path (B;(C + D);E) end

D E
path (E + F + G) end

G

Figure 5-1: The conflict graph of a path expression

199

Ihc dynamic behavior of the arhitcr dcpcnds on the contlict graph

togcthcr with the set of cvcnts that arc cnablcd at any instant. ‘the

dynamic snucturc of the set of path cxprcssions is rcprcscntcd by the

subgraph of’ the conflict graph induced by the set of vertices

corresponding to the cvcnts, enabled at that instant. l’hc function of the

arbiter is to sclcci an indcpcndcnt set (not ncccssarily maximal) of this

subgraph. thus ensuring that only one of any pair of mutually exclusive

cvcnts is enabled.

Hcncc an arbiter is simply a transducer that takes a set of inputs and

produces a 5~1 of outputs, subject to the constraints outlined earlier.

Morcr?:cr, it is tmplicitly assumed that the arbiter is oblivious of any

static or dynamic structure of the oath cxprcssions other than those

rcprcscntcd by the conflict graph and the set of events cnablcd - in

particular, it has no knowlcdgc of the syntactic structure of the path

cxprcssion, nor dots it know the internal states of the individual

scnucncers. Clearly. one can build non-oblivious arbiters that may

perform better. but this will bc at the expcnsc of conceptual simplicity

and the arca needed for additional logic and global wires.

‘fo motivate our design WC shall hricfly discuss the problems with

some simple schemes. In particular, WC show that any dctcrministic

ohliviors arbiter gives rise to starvation of an cvcnt which is continually

enabled. In similar vain, WC show that a straight-forward cxtcnsion of

Scitz’s schcmc [14: for a two-input arhitcr to a gcncral conflict graph

results in an unfair arbhcr. Finally, we prcscnt a somewhat non-

standard schcmc implcmcnt& in CMOS which rcctifics the problems

with the other schemes.

Ihc difftulty of building a fair dctcrministic arbiter can bc illustrated

by an example. Let X = { At. A? . . . , An } bc a set of events. To try

to build a fair arbiter for P we might assign a priority number from 0

through n - 1 to each event. whcrc the priority corresponds to the

number of times the cvcnt is blockc~f, ie., the number of times the event

is enabled but not sclcctcd by the arbiter. At any instant thu arbiter

sclccts from the set of cnablcd cvcnts with the highest priority number.

When an cnablcd cvcnt is sclcctcd its priority numhcr is rcinitializcd to

the lowot value. On the other hand. ifthc cnablcd cvcnt is not sclcctcd

its priority numhcr is incrcmcntcd by enc. II seems that since an cvcnt

Ai can have at most II- 1 neighbors in the conflict graph, and since each

time it is blocked at Icast one of its ncighhors is sclcctcd with a resulting

incrcmcnt in its own priority. after the I?’ attempt Ai must have the

highest priority amonS all the neighboring cvcnts and hence must be

sclcctcd. Huwcvcr, an cvcnt may ncvcr bc cnablcd cvcn if its rcqucst is

sul! pending bccausc scqucncing conditions imposed by the path

cxprcssion may block the cvcnt. In order to make this observation

concrctc consider the following path cxprcssion:

Assume that the external client always rcqucsts pcnnission to perform

ail three cvcnts A. I3 and C. Let the priorities of all three be o’s initially.

As a result, initially A and L3 arc enabled. Assume that II is selected,

making B’s priority 0 and A’s priority 1. In the next instant, A and B

will again be cnablcd. Dut now A has the higher priority and will be

sclcctcd. so that A’s priority bccomcs 0 and KS becomes 1. Continuing

in this fashion, it is easy to see that the scqucncc chosen will bc B A B A

BA The trouble with this schcmc is that C will never bc cnablcd

even .if its request is pending. This cxamplc can be extcndcd to the

following lemma.

Lenuna 13: Let M be a dctcrministic finite-state transducer

implcmcnting an oblivious arbiter. Then there exists a path

cxprcssion over E = { A. B. C } such that one event, say C, will

bc starved even though its rcqucst is continually pending.

‘Prnofz Let M be a deterministic finite-state transducer whose

alphabet is Z = (A, II, C }. Lc! the states of M be

s = { sl, s2, . . ., sm }. Let the conflict graph, G, for the path

expression be the complctc graph on the vcrticcs A. 13 and C. We

construct a path expression P with the conflict graph G such that

IV causes tbc starvation of the cvcnt C. Notice that because of the

nature ol'thc conflict graph G, if at any insumt A and II arc enabled

then at most one of A and II may bc sclcctcd by M.

Let s, bc an arbitrarily chosen state of A,/. WC conduct an

cxpcrimcnt on M by continuously providing A and B as the

cnablcd inputs, starting with M in the state st. If we present a

stringofinputs{A,B}.{A,B },{A.B)oflcngthmtben

we notice that at the 1’ input { A, B }, the transducer

dctcrministically goes from the state s(l) = st to a state s(2) while

outputting A or B. Let s(l), s(2), , . ., drn + 1) be the sequence of

states and u E { A, B }” bc the output string produced as a result

of the expcrimcnt. As a consequence of the pigcon-hole principle,

some two states in the scqucncc of states will be tbc same . Of all

such pairs, let J(I) and JG) be two such states closest to sY Assume

that i c i and Ict k bc the smallest multiple of (j - r) such that k 2 i.

Without loss of gcncrality assume that A4 outputs D when in state

S(I) with the input (A. B}.

Let P be the path expression

path (A + B)“;(A;C + B); (A + B)“end

It is easy to see that P has G as the conflict graph and’ if the

rcqucsts for A. B and C are continuously pending then the

scqucncc of outputs will be a suing in { A, B }” and C will never

be cnablcd. 0

path (AC) + lk(A + I~)cII~.

200

Rcfore procceding further, let us consider the path expression path A +

B end. when: the contlict graph is G = (V. F1) = ({ A, B }. {[A. RI}).

Seitz [14] has shown how to build an arbiter for such a structure using

an interlack&mcnt, as shown in Figurc S-2.

Circuit operation in Figure 5-2 is most easily visualized startiun with

neither clieut rcqucstin& v1 and vz both near 0 volts, and both outputs

high. If any single input, say At,,, is lowered then v1 is driven high.

high thrrshold

buff,ra

Figure 5.2: Seitx’s lntcrlock Element

resulting in A,t being lowered - Rout remains unaffcctcd. Moreover,

once Aout is towered, and as long as Ain is kept low. the interlock

clcmcnt remains in this stable state irrespective of what happens to Bin.

If A, is now raised high, then the clement returns to its initial condition

it II, is still high; or B,t is lowered if Dir, is lowered in the meantime.

However, the intcrcsting situation occurs when both A, and Bin are

both lowered concurrently or within a very short interval of time. In

this case the cross-coupled NOR gates enter a mctastable state, which is

rcvolvcd after indctcrminate period of time in favor of cithcr A or

B. Since this resolution depends on the thermal noise gcneratcd by the

gates, it is inherently probabilistic. In this cast the outputs of the NOR

gates themselves cannot be used as the outputs. High threshold

invcrtcrs bctwccn the NOR gates and the outputs prevent false outputs

during the mctastable condition.

It would seem natural to extend Scitx’s idea by gcncrahzing it to the

conflict graph for an arbitrary set of path cxprcssions. Roughly

spcakiuS, we may construct a circuit by homomorphically transforming

tbc conflict graph to a circuit by replacing each vcrtcx with a NOR gate

and each edge nith a crosscoupling of NOR gates corresponding to the

pair of vertices on whic.h the cd+ ** is incit!cnt. However, such an

implementation in NMOS has some scvcre problcnis, which will be

clariticd if WC consider the circuit lbr the rcadcrswritcrs path

cxprcssion:

path R, + W end
path R, + W end

whcrc the pair R, and W and the pair R1 and W arc mutuatly cxclusivc.

‘fhc conflict graph and ttrc &curt for this cxprcssion arc shown in

Figure S-3.

W

(a)

0

Rz

Vdd T 1 T

-I I-

Gnd
RI ‘w RZ

lb)

Figure S-3: (a) The Conflict Graph and (h) The Arbiter in NMOS.

Consider the situation when the circuit is in the none-requesting

conditio,r and all thr:c requests, K,. R, and W. arrive concurrently. An

inlinitcsirnally short interval 81 after all three rcqucsts arrive, let us

;~ssumc that U-E volwgcs at the outputs (of the NOR gates) have

incrcascd by an inlinitcsimally small value Av Q: vu,. The pull-down

MOS transistors may bc assumed to bc operating in their linear region.

1 fall pull-ups arc assumed to provide equal active rcsistancc. the output

of the NOR gate corresponding to W will grow less rapidly than those

corresponding IO R, or R, ‘Ihc cumulative cffcct of this imbalance will

result in a low output for W’s NOR gate and high outputs for RI’s and

1~;s. tlcncc if R,. R, and W rcqucst continuously then the rcqucst for

W will ncvcr go through, resulting in W’s starvation.

An easy fix to this problem may bc to incrcasc the ratio of pull-up to

pull-down for W’s NOR gate to twice that of R,‘s and RiS. But if this is

done in a static manner then, when only R, and W arc requesting, W

will have an unfair advantage over R,. Obviously. what is needed is

some means of controlling the ratios such that dcpcnding on the set of

rcqucsts the circuit contigurcs itself dynamically in order to behave in a

balanced fashion.

An arbiter that can configure itself dynamically for the problem with

two rcadcn and one writer is shown in Figure 5-4. To set how this

scheme rcmcdics tbc problem discussed earlier, consider the situation

when the circuit is in non-rcqucsting condition and all three rcqucsts.

R,, R, and W, arrive concurrently. An infinitesimally short interval A,r

201

Figure S-4: The hrbitcr for I-Writer-2-Rcadcrs Problem in CMOS.

after all three rcquccls ;.rrivc. Illc Vl)llil~YS at Illc (~lll~~ilt!i will have

incrcaxd by nn intinitc:;imclly small value Av .z vn,. ‘lhc pull-down

310s transistors arc in their linear region. Howcvcr. ‘since active

rcsistanccs of the pull-up transistors dcpcnd on the neighboring cvcn~s

that arc cnablcd. the pull-up rcsistancc of the gate associated with W is

exactly half of that associarcd with RI or R2. This provides a balance

among pull-up rcsistanccs and results in almost equal rate of growth of

voltages at the outputs. Hcncc the interlock clcmcnts cntcr their

mctastablc swtcs more or less simuluncously; and the mctastablc

condition is rcsolvcd cithcr in favour of R, and K, or in favour of W,

rho choice govcrncd by statistical thermal phenomena.

,\ simi!ar analysis shows that the circuit behaves correctly when onlY

two out of three requests arrive concurrently. Howcvcr, if only one

rcqucst, sty W. arrives while all its ncighbours remain in their non-

rcqucsting condition the circuit bchavcs somewhat diffcrcntly. In this

cnsc the pull-up transistor with input (G) will turn on, thus

al!owing the output of the gate to go high. It is important to obs~~vc

that the pull-up transistors arc conrroltcd dynamically by the rcq:mls

for the ncighbouring c’vcnts - if thcrc is a rcqucst for the ncighbouring

clvcnt then only the pull-up corresponding to the cvcnt turns on: and if

thcrc is no request fur the ncighbourinp events then only the pull-up

corresponding to the event itself turns on. Fo: this to bc implcmcntcd

CGXCIl)’ it iS CSSC:ntial Lhat the PJJhJp cOi7CSpOJldhg LO the CvCJz! itSCir’

hc turned on only after a delay ncccssa:y for the rcqucsts for the

ncighbouring events to propagate IO the gate of the pull-up.

‘I’nc complex statistical nature of thrnnal noise in the circuit in

con.iunction with the ccmplcxity of tbc suuzturc of the conflict graph

makes it hard to analyrc the circuit clcctrically. For instance, the time

const.mts as<rtintcd with each arhhcr output could possibly differ

signilicantly. Under the assumption that. these :ccond order cffccts arc

small, every cnablcd cvsnt will have a positi./c non-zcm probability of

being sclcetcd. Thus. for a rc;lsonablc class of path cxprcssions, the

circuit cnsurcs that a continuously rci,u,sting evefit is Cvcnluall)

sclcctcd. This class includes the path cxprcssions for which the other

two arbiters can not provide a good solution.

6. Conclusion

So far WC have not discussed fairness. Intuitively, the implcmcntation ’

of a path cxprcssion is fair if any continuously rcqucsting cvcnt will be

cvcntually sclcctcd, provided it is possible to do so without violating the

semantics of the path cxprcssion. As pointed out in the previous

section, our implcmcntation is fair for a rcasonablc class of path

cxprcssions. As an example of a path cxprcssion for which our

implcmcntation is not fair consider the following :

path (A + U); C end,
path D; (A + E) end

Suppose that each event takes the same amount of time to execute

externally and that new rcqucsts for each cvcnt arc forthcoming as soon

as allowed by the protocol. Then simultaneous execution of D and B

will alrcrnate with simultaneous execution of C and E without the

arbiter ever having to block any event. Yet. event A will never execute

even if it remains continually ready. If. howcvcr, the first rcqucst for

event B is delayed by the time it takes to cxecutc an evenf then initial

execution of cvcnt D will bc followed by altcrnatc executions of A and

(D,C). Now B and E never execute! Since ncithcr the duration of

external cvcnts nor the occurrcncc of ertcrnal requests is under the

control of the circuit, it is not easy to ensure fairness for such path

expressions. It remains an open question whether a practical solution to

this problem exists.

Since our circuits have the constant separator property. a more

compact O(N) layout is be possible using the teehniqucs of[4].

However, while it is definitely possible to automatically generate the

O(N.log(N)) layout that we propose, it is much more difficult in

practice to gcncratc the O(N) layout of[4]. Furthcrmnrc t!.. O(?Q

layout will occupy less area only for very large N. WC suspect that ease

of generating the layout will win over asymptotic compactness in this

case.

Finally, WC plan to invcstigatc cxtcnsions of our construction to

appropriate tinitc state subsets of CSP [S] and CCS 191. In the cast of

CSP the subset will only permit boolean valued variables and messages

which arc signals. If the number of mcssagc types iS fixed, we

conjccturc that arca bounds comparable to those in section 4 can be

obtained. Arrays of processes in which the connectivity of the

communication graph is low can bc trcatcd specially for a more

compact layout. Such a finite-state subset of CSP may even be more

useful than the path cxprcssion language discussed in the paper for high

level description of various asynchronous CirCUits.

202

References

1. Campbell. R. H. and A. N. Habcrmann. The Specification of
Process Synchronization by Path Expressions. In Lecrure Notes in
Confpurer Science, Yolutne 16, G. Goos and J. Hartmanis, Ed.,Springer-
Vcrlag, 1974. pp. 89-102.

2. Foster, M. J. Specialized Silicon Compilers for Language
Recogni/ion. Ph.D. Th.. CMU, July 1984.

3. Foster. M. J. and Kung, H. T. “Recognize Regular Languages with
Programmable Building-Blocks.” Journal ofDigital Systems VI, 4
(Winter 1982). 323-332.

4. Floyd. R. W. and Ullman. J. D. “The Compilation of Regular
Expressions into lntcgratcd Circuits.” Journal of fhe Association for
Cumpuring Machinery 29,3 (July 1982) 603-622.

5. Hoarc, C. A. R. “Communicating Scqucntial Processes.” Comm
ACM 21.8 (1978).

6. Lauer, P. E and Campbell. R. H. “Formal Semantics of a Class of
High-Lcvcl Primitives for Coordinating Concurrent Proccsscs.” AC&
Infunnarica 5 (June 5 1974). 297-332.

7. Lciscrson, C.E. Area- E/jicien/ VLSI Comjutalion. Ph.D. Th.,
Carncgic-Mellon University, 1981.

8. Li, W. and P. E. Laucr. A VLSI Implcmcntation of Cosy. Tech.
Rept. ASM/lZl, Computing Laboratory, The Univcnity of Newcastle
Upon Tyne. January, 1984.

9. Milncr, Robin. A Calculus of Communicating Systems. Volume 92:
Lecture Notes in Cotnpurer Science. Springer-Vcrlag, Berlin Hcidclbcrg
NY. 1980.

18. Mukhopadhyay, A. “Hardware Algorithms br Nonnumcric
Computation.” li:‘1:‘1:‘ Tnvtsacrions o/t Cbmpu~ers C-2& 6 (June 1979)
3x4-394.

It. Patil, Suhas S. An Asynchronous I.ogic Array. MAC
TECtiNlCAl. MEhlOKANl~UM 62, Massachusetts Institute of
‘fcchnology. May, 1975.

12. Pratt, V. R. On the Composition of Proccsscs. Symposium on
Principles of Programming Languages. ACM, January, 1982.

13. Rem. Martin. I’crrfiully ordered computations; with qplicalions IO
VLSl design. Eindhovcn University of’rcchnology, 1983.

14. Seitz. C. L. “Ideas About Arbiters.” LAnlBDn Firs1 Quarler
(1980). 10-14.

Lemma 15: For each clement i in Int with label e, the

corresponding clcmcnts in Ext and Scq(j) arc subintcrvals of i.

Proof: (rcquircs proof based on the properties of the circuit in fig

3-2). 0

Lemma 16: For any Rj E hl, T(lnt)lzR, is a totally ordcrcd

multiscL

Prool: It is easy to show that T(Int)l v
7lj

= T(Int 1 L ,) . But Intl zRj

consists of ‘internal cvcrrts’ of the path expression
2.

J. dunng each

of’ which the corresponding ACK is high. Hence by proposition 6.

no two such events overlap. and therefore T(Int)l I.j is a totally

ordered multisct. Cl

Lemma 17: For any Rj E M, VW1 zR, = VW1 zRj.

ProoT: For any clcmcnt i of ‘l’(lnt). that is also in.T(lnt)J ZRj the

corresponding clcmcnt of ‘l’(Fxt) will bc in T(Kxt)lx (dcftnition

2) since they must map to the same alphabet e E ZRj. 7 Icncc these

traces have the same number of clcmcnts. Also from lemma 15 it

follows that if il and i2 arc two elcmcnts of T(Int)lzRj satisfying

one or none of “il prcccdcs i2” and “i2 prcccdcs ii”, the

corresponding clcmcnts of T(Ext)l
%j

will satisfy at lcast the same

relationships. In other words the partial order of ‘f(lnt) is a

restriction of that of T((Ext). But by lemma 16 T(Int)lxR1 is a

totally ordered multiset. Hcncc from the above T(Ext)l

have the same partial order relationship and, fhcrefore,
rRj

will

be the

same totally ordered multiset. 0

lxnunn 18: For any Rj E M, ‘I’(Scq(j)) = T(lnt)l zR,.

Proo1: Follows from lemma IS and 16 in the same way as in the

proof of lemma 17. The only difference is that T(Scq(j))lTRj =

-r(scq(j)). 0

Lemma 19: For any sequencer SEQ~ , no two TR’S are high

simultaneously.

Prool: The two m’s would be two ACK’s of events in the same path

cxprcssion Rj, which cannot be high simuhancously by proposition

6. 0 Appendix : Proof details

Refer to section 3:

Lcmmr 14: If the same assumptions as in proposition 8 are

satisfied, then T(Scq(j)) is consistent with R, .

Proof: From proposition 8 it follows that !&q(j) consists of non

concurrent time intervals. The result is thercforc easy to prove by

induction on the number intervals in Scq(i), using the same

proposition. 0

Lemma 20: For any scqucnccr Sl.?Qj , TRI is raised only if DISC is

low and all TA’s arc low.

Proofz By induction on the number of rising transitions ofm’s :

1. (First transition): Let the corresponding cvenf bc e. By
proposition 9 initially all TA’S arc low, and all CLR’S are
high, hence all TN’s arc low initialiy. By proposition 7 all
TA’s will remain low until the first rising transition of TRc
By the same proposition I%~ will not change until the first

203

rising transition of TR . If DIS WC= not IOW, INc would
remain low (see Figurl 3-2). H%ncc by proposition 6, TR,
would remain low, a contradiction.

2. (For a succeeding transition): Let the corresponding cvcnt
be p and that of the previous transition q. While TRI is high

no ‘IA or ‘i‘R other than TA,, or I’R~ can bc high (proposition
6 and icmma 19). Until CIA goes high, ‘TR must remain
high (see Figure 3-2). Once Cfno goes high. a% I:~, with a e
ZRj, will bc low after a short delay (see klgurc 3-2).
Assuming the variation in this delay for diffcrcnt ds is less
than the delay of the arbiter in lowering TRY: all ‘I’R~ with D
t q will continue to remain low until CI.Rq IS lowcrcd (see
Figure 3-2). All .I.A~. with a z q, also continue to remain low
(proposition 7). But CI.R remains high at lcast until TA is
lowcrcd (see Figure 7). lkncc by ~Jx time TR is raiscdgall
TA’s will bc low. Also ‘I’R could not have bcc:raiscd if IN
were low (proposition 6f But if INS was high when TA’
was last lowcrcd then IN would n& bc low (see Figurg
3-2). assuming the main kOR gate plus the 2-input NOR
gate have a lcsscr delay than the Mullcr-C clcmcnt plus the
SR Flip-Flop. Morcovcr, rxSp cannot change bcforc TRp is
raised (proposition 7). Hcncc DISp must bc low when .rRp is
raised.

Cl

knma 21: For any scqucnccr Swj , TRc is lowcrcd only if TAI is

high.

Prook The NOR gate arrangement in front of the arbiter insures

that once TRY is high it remains high until CLRc is raised, and this

can occur only ifTAt is high (see Figure 3-2). Morcovcr once TAI is

high it will remain high until IRK is lowcrcd (proposition 7). 0

Theorem 10

Proof: I.crnmas 19,20,21 satisfy the preconditions of proposition 8.

Hence T(Scq(j)) is consistent with l<j for any Rj c M. By lemma

18 and definition 4, T(lnt) is consistent with Rj for any Rj E M. By

lemma 17 and definition 4, T(Ext) is consistent with Rj for any Rj

6 M. Hence by definition 4, T(Ext) E TrJM). Cl

Lemma 22: If T c TrJM) is laycrcd, then each subset (cf

definition 11) of T has the property that no two elcmcnts in it are

instances of events in LRj for any Rj c M.

Proof: Any two elcmcnts i/j2 (corresponding to cvcnts e/,e2) in

the same subscr of ‘I‘ must bc concurrent (definitions 3.11).

Suppose el.e2 z Xy with l<j E M.Thcn ‘I’lX will include i/,i2

which will bc concurrent (dctinition 2). Hcnct?fI
‘Rj

cannot bc a

total order and thcrcforc ‘1‘ Q Tr.JM) (dctinition 4) -* leading to a

contradiction. Hcncc the result 0

Theorem 12

Proof: The behavior we require of the cxtemal world is that it

simukancously raise REQ for all events in the first subset of T. wait

until all corresponding ACK arc high. then simultaneously lower all

RFQ, wait until all ACK are low. then repeat this cycle for thC next

subset of 1’. and so on. We riced to show that under these

conditions the circuit responds within a finite amount of time in

each cycle, The result then follows directly.

As shown in the proof of lemma 20. all ACK’s are initially low.

Hcncc they are low at tbc beginning of each of the csles

mcntioncd in the previous paragraph. At the beginning of each

such cycle. Ext.lnt and cvcry &q(i) with Rj E M, get redcftncd.

Let Tp dcnotc T rcstrictcd to subsets before the current cycle. It is

easy to show by induction on the number of cycles and definition

4 that at the beginning .of each cycle T(Ext) = Tp and Tp E

‘I’r.#). Hence for any Rj E M, ScrpII:) is a prefix of some

clement in LR). if the next subset containsI% instance iI of event

cl, then for each Rj E M such that el E L,, , SCrpl L) can be

extcndcd by il to give a prefix of some sequence in Lz ; in fact

this extension gives the next value of Tpl (see lemma 22). But

by lemmas l&17, for any Rj c M, T(Se&)

T*l

= ‘Vkt) 1, =

‘XRj’ Hcncc for each Rj E M, such that el E XR,, T(Seq(j)) can

be cxtcndcd by ii to give a prefix of some sequence in LR,. lhua

by proposition 8, the corresponding sequencers SEQr With ef E zru

will have MS, low. This applies to any el in the next subset of T.

Thcrcforc at the beginning of any cycle, when REQ, for any event

ef in the next subset of T is raised, all DIScl inputs to the NOR gate

fur cvcnt el (see Figure 3-2). will bc low. Also within a finite

amount of time all rclcvant .rAe,‘s must go low by proposition 8,

since the corresponding TR~,‘S arc already low. Hence CLRd will

go low. and IN,, will go high for each ef in the next subset of T. It

follows from proposition 6 and lemma 22 that all ACK’S

corresponding to cvcnts in the next subw of’l’ will bc raised within

a tinitc amount of time.

The proof for the second half of the cycle is more straightforward.

By lemma 8 once all RI:@S are lowered. within a finite time all

rclcvant ‘TA’s will be raised, causing the corresponding CLR’S to go

Iligh. As a result all relevant IN’s go low (see figure 3-2) and hence

by proposition 6 all ACK'S go low within a finite time, completing

the cycle. q

204

