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:\ hstrart: Path cxprcssions wcrc originally proposed by Campbell and 
Habcrmann II] as a mechanism Ibr pnscss synchronization at the 
rnonitljr lcvcl in %oftwarc. Not uncxpccrcdly, they also probidc a useful 
notation for specifying the bcbavior of asynchronous circuits. 
Ylotivatcd by this potential application WC invcstigatc how to directly 
translate path cxprcssions into hardware. 

Our implcmcntation is complicated in the cast of multiple path 
cxprcssions by the need for synchronization on cvcnt narncs that arc 
common to more than one path. Morcovcr. since cvcnts arc inherently 
asynchronous in our mudcl. all ofour circuits must bc self-timed. 

Ncvcrthdcss. UK circuits produced by our construction have area 
propordonal to N slog(N) whcrc N is the total length of the multiple 
path crprcssion under consideration. ‘Ibis bound holds regardless of 
rhc number of individual paths or the dcgrec of synchronization 
bctwccn paths. 

1. Introduction 
As the boundary brtwccn software and hardware grows less and less 

distinct. it bccomcs increasingly important to invcstigatc methods of 

diicctly implementing various programming langungc features in 

ha&are. Since many of the problems in interfacing hardware devices 

involve some form of process synchronization. language fcaturcs for 

synchrcmiration dcscrvc considcrablc attention in such investigations. 

In this paper WC consider tbc problem of directly implcmcnting path 
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cxprcssions as self-timed VLSI circuits. Path expressions were 

originally proposed by Campbell and Habermann [l) for restricting 

acccbs by other proccsscs to the procedures of a monitor. For example, 

the timplc rcadcrs and writers problcrn with two rcadcr proccsscs and a 

single writer process is solved by tie following multiple path 

expression: 

path R, + Wend, 
path R, + Wend. 

‘fhc first path cxprcssion prohibits a read operation by the first process 

from occurring at the same time as a write opcralion. The second path 

cxprcssion cnforccs a similar restriction on the behavior of the second 

rc&r process. In a computation under control of the multiple path 

cxprcssion, the two read operations may occur simult:mcously. but a 

read and write operation cnnnot occur at the same time. 

Path cxprcssions arc useful for proccs5 synchronization for two 

reasons: First d~c close relationship between path cxprcssions and 

regular cxprcssions simplifies the task of writing and rcaso:ling about 

programs which use this synchronization mcchnnism. Secondly, the 

synchronization in many concurrent programs is finite state and thus, 

can bc adcquatcly dcscrihcd by regular cxprcssions. For prcciscly the 

same reasons, path cxprcssions arc useful for controlling the behavior 

of complicated asynchronous circuits. The rcadcrs and writers example 

above could equally well dcscribc a simple bus arbitration schcmc. In 

facr. the finite-state assumption may bc cvcn more reasonable at the 

hardware lcvcl than at the monitor level. 

Which brings us to the topic of this paper: What is the best way to 

translate path cxprcssions into circuits? Iauer and Campbell have 

shown how to compile path expressions into Petri nets [cj], and Patil has 

shown how to implcmcnt Petri nets as circuits by using a PLA-like 

dcvicc called an asynchronous logic array 1111. Thus. an obvious 

method for compiling path expressions into circuits would bc to first 

translate the path cxprcssion into a Petri net and then to implcmcnt the 
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Petri net as a circuit using an asynchrouous logic array. However, 

careful examination of Iaucr and Campbell’s schcmc shows that a 

multiple path cxprccsion consisting of M paths each of Icngth K can 

result in a Petri net with K” places. Thus, the naive approach will in 

gcncral be infeasible if the number of individual p&s in a multiple 

path expression is large. 

For the cast of a path expression with a single path their schcmc dots 

rcsulf in Petri net whtch is comparabic in size to tltc path expression. 

However, direct implcmcnmtion of such a ncr using Path’s ideas may 

still result in a circuit wi!h an unacceptably large area. An asynchronous 

logic array for a Petri net with P places and ‘1‘ transitions wi!l have ~1”s 

proportional to P.‘T‘ rcgardlcss of the number of arcs in the net. Since 

the nets obtained from path cxprcssions tend to have sparse cdgc SCLF, 

this quilcir;ltic bch&or stay w:lFtC significant chip arca. 

Pcthaps, the work that is cluscst to ours is due to I .i and Inucr [S] who 

do indeed implcmcnt path cxprcs+ons in VISI. Iiowcvcr. their circuits 

differ significantly from ours: in particular. their circuits are 

synchronous. and synchronization with the cxtcrnnl world (wltich is. of 

cut’r<c. inhcrcntly asynchronous) is not considcrcd. I:urtitcrmorc. their 

circuits use PIA’s that result in an arca complexity of O(N2). Itern [I31 

has invcstigatcd the USC of a hicmrchicnlly structured path exprcssion- 

like language fur specifying CMOS circuits. Although hc does show 

how certain spccilications can be translated into circuits, hc does not 

describe how to handle synchronization or give a general layout 

algorithm that products arca cfticicnt circuits, 

In contrast. the circuits produced by the construction drscribcd in this 

paper have arra proportional to N ‘log(N) where N is the total length of 

the mulriplc path cxprcssion under consideration. Furthcrmorc, this 

bound holds regardless of the number of individual paths or the dcgrcc 

of syn~hrunization bctwccn paths. As in [3] and [4] JJIC basic idea is to 

pcncratc circuits for which the underlying graph structure has a 

constant scparstor theorem [7]. For path cxprcssions with a single path 

the tcchniqucs used by [3] and [4] can bc adapted without great 

difhculty. For multiple paths with common cvcnt names. however, the 

construction is not straightforward, bccausc of the potential need for 

synchronization at many diffcrcnt points on each individual path. 

Morrovcr. the actual circuits that WC USC must bc much more 

complicated than the spnchrouous ones used in ( [3]. 141). Since cvcnts 

dre inhcrcntly asynchrouous in our model, all of our circuits must be 

self-timed. This requires the use of special circuit &sign techniques 

and significantly complicates the proof that this circuit corrcetly 

cal)turec the semantics ofpath expressions. 

Ihe paper is organixcd as follows: A formal semantics for path 

expressions in terms of partially ordcrcd multiscts[!Z] is given in 

s<ctian 2. In srctions 3.4, and 5 WC give a hierarchical description of our 

KhCJilC for i!nplcmcnting path cxprcssions as circuits. In section 3 we 

first describe how the complctc circuit intcrfaccs with the cxtcrnal 

world. WC then show how to build a syrchrwrizcr that coordinates the 

behavior of the circuits for the individual path cxprcssions in a multiple 

path cxprcssion. In section 4 WC dcscribc a circuit for implcmcnting 

single path cxprcssions which WC call a sequencer. In section 5 WC show 

how the arbiter circuit used in scction 3 can bc implcmcntcd. We also 

argue that thcsc circuits arc correct and can bc laid ot11 cflicicntly. The 

paper concludes in section 6 with a discussion of issues such as fairness 

and of open problems such as the possibility of cxtcnding our 

construction to other synchronization mechanisms like the ones used in 

CCS and CSP. 

2. The Semantics of Path Expressions 

In this section WC give a simple but formal semantics for path 

expressions in terms of partially ordered multiscts of events [12]. We 

also relate our semantics to the one in terms of Petri Nets given by 

Lauer and Campbell 161. 

Dcflnition 1: A purhlly ordered m&se/ (pomsct) over Z: is a 

triple (Q, b, F) where (Q, I) is a partially ordered set and F is a 

function which maps Q into Z, 0 

An example of a pomsct is shown in Figure 2-1. We use subscripts to 

distinguish diffcrcnt instances of the same element of X. Note that we 

could have alternatively defined a pomsct as a direetcd acyclic graph in 

which each node is labeled with some element of L. 

Figure 2-1: An example pomset 

If LhC OrdCI’hg relation of a pomsct P over Z is a total order, then we 

Ciltl naturally ilSSOCiiltC a scqucncc of clcmcnts of X with Y; WC will use 

S(P) to dcnotc this scqucncc. In fact. a pomsct should bc rcgardcd as a 

natural gcncrali/,ation of a scqucncc in which ccrtnin clcmcnts are 

pcrmittcd to bc concurrent; this is why the concept is useful in 

modeling systems whcrc several cvcnts may occur simultaneously. 

Definition 2 IfP = (Q. <. l-9 is a pomsct over Z and Z, c Z, then 

the rmricriorl of P to Z, is the pomset P( 
3 

= (Q,, <t. F,) where 

Q, = {d (. Q 1 P(d) e Z, } and 5,. F, arc restrictions of 5. F to 

Q,. rcspcctivcly. q 
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If P is a totally ordcrcd pomset over I: and Z, c L. then S(PI,> is 

just the su6scquence of S(P) obtained by dclcting all of those clcments 

of Z which arc not in 2,. 

A simple purh expression is a regular cxprcssion wit!1 an outermost 

Klccnc star, The only operators pcrmittcd in the regular cxprcssion arc 

(in order of prcccdcnce) “*“, ‘I;“, and “+‘I. The “*” operator is the 

Klccne star, “:” is the scqucncing operator, and “+” rcprescnts 

exclusive choice. Operands are cvcnt names from some set of cvcnts X 

that WC will assume to bc fixed in this paper. The outermost Kleene 

star is usually rcprcscntcd by the delimiting keyword path . . . end. Thus 

(a)’ would be rcprescnted as path a end. 

A multiple path expression is a set of simple path cxprcssionr. As we 

will see shortly. each additional simple path cxprcssion further 

constrains the order in which events can occur. However, we cannot 

simply take as our semantics for multiple path expressions the 

intersection of the languages corresponding to the individual patb 

expressions; two events whose order is not explicitly rcstrictcd by one 

of the simple path expressions may bc concurrent. For example, in the 

multiple path cxprcssion for the rcadcrs and writers problrm discussed 

in the introduction the two mad cvcnts R, and R, $rray occuf 

simultaneously. Ncvcrthcless. WC will stil! have occasion to use 

ordinary regular cxprcssions in giving the semantics for path 

cxprcssions; if R is an ordinary regular cxprcssion over L, rhcn Z, c E 

will bc the set of symbols of Z that actually appear in II and I,, c Zi 

will bc regular language which corresponds to R. 

Definition 3: I.ct Z bc a finite set of cvcnts: a /race over Z is a 

fmitc pomscr ‘I’ = (Q, 5, F) over Z. WC say that i E Q is an 

instance of an cvcnt c E Z if F(i) = c. An instance i, of event cl 

precedes an instance i2 of event c2 if i, prcccdcs i2 in the partial 

order I. An instance it of cvcnt et is concurrent with an instance i, 

of cvcnt cz’ if it is not the cast that il prcccdcs i2 or that i2 prccedcs 

it. 0 

path A; D end, 
path h;C end. 

with Z = {A. I$ C}. It is easy to XC that the trace in Figure 2-1 is 

consistent with rrrch of the simple path expressions in M and hcncc is in 

‘I’rJM). 

3. Synchronizers for Multiple Path Expressions 

‘Ibis section dcscrihcs our implcmcni.ttion of ~ynchrorG.crs for 

multiple p;rth cxprcssions. Frgurc 3-I ilh~strcltcs the ir;tcrfacc bctwccn a 

synchronizer and the cxtcrnal world. lhch event e is asstriatcd with a 

rcqucst lint HI:()~ and acknowlcdgc lint ACK~. The synchronidcr 

coopcrams with the cxtcrnal world to cnsurc that tbcsc rcqucst and 

acknowlcdgc lines follow a 4-cycle protocol: 

1. ‘l’hc cxtcrnal world raises nEoQ, to indicate that it would like 
to proceed with event e. 

2. ‘I’hc synchronizer raises ACK~ to allow the cxtcrnal world to 
proceed with event e. 

3. The cxtcrnal world lowers REQ, signifying completion of 
cvcnt e. 

4. The synchronizer lowers ACK~ signifying the end of the 
cycle and permission to begin a new enc. 

In this implementation, on event will occur during the period between 

cycles 2 and 3 in this protocol, whcrc both REQ and ACK arc high. 

Thus, multiple oecurrcnccs of any event e arc non-overlapping in time. 

since any two occurrcnccs are scparatcd by the lowering of ACK and the 

raising of REQ. 

REQ 

ACK 

REO 

ACK 

REO 

ACK 

7. 

7. 

3 . . . Synchronizer 

Figure 3-1: A synchronizer 
In the example above A1 precedes A2’ but B, and C, are concurrent. 

Dclinition 4: Let R be a simple path cxprcssion with event set L, 

A trace T is consisrenf with R iff TlrR is totally ordered and 

S(TI 
5 

) is a prefix of some scqucnce in L, . If M is a multiple 

path expression, then a trace T is consistent wi/h M iff it is 

consistent with each simple path cxprcssion R in M. Tr,(M) is the 

set of all tracts which arc consistent with M. 0 

Consider, for example, the multiple path expression M: 

An ovcrvicw of a synchronizer circuit is shown in Figure 3-2. We 

dcscribc below some of the bui!ding blocks in the circuit. 

Tbe C gate in Figure 3-2 is a Mullcr C-clcmcnt; the output of a 

C*clcmcnt remains low until all inputs are high and thcrcaftcr remains 

high until all inputs are low again. Its behavior then cycles. For an 

implcmcntation see (141. 

The arbiter in Figure 3-2 cnforccs pairwisc mutual exclusion over the 

outputs corresponding to pairs of cvcnts which occur in the same path 
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Figure 3-2: A synchronizer circuit 

cxprcssion.In addition to enforcing mutual exclusion tic arbiter tries to 

raise any output whose input is high. Most implcmcntations of arbiters 

will have mctastahlc states during which fcwcr signals than possible 

may be high at the output. Dcspitc the mctastablc stltcs. howcvcr. once 

an output signal has been raised, it remains high as long as the 

corresponding input remains high. lhc implcmcntation of such an 

arbiter is discussed in detail in section 5. 

t%ch scqucnccr block in Figure 3-2 cnsurcs th.11 the scqucncc of 

cvcnts wtisfics one of the simptc pall1 cxprcssions that comgrisc the 

multiple path cxprcssion. ‘1%~ synchronizer circuit contains one 

scqucnccr for each simple path cxprcssion. so t!iat each simple path 

cxprcssion is satisfied by an cxccution cvcnt tract. For each cvcnt e 

that appcan in a simple path, the corresponding scqucnccr has three 

connections: a rcqucst TRf, an acknowlcdgc TA,, and a disable DISe. 

Events arc scqucnccd by cxccuting a 4-cycle protocol over one pair of 

the TUTh lines. I’hc IX outputs of the scqucnccr arc only valid 

bctwccn thcsc cycles (when all TR and ‘U arc low), and indicate which 

events would violate the simple path. TIIC synchronizer will not initiate 

a cycle for any cvcnt whose 111s lint is high. ‘lhc irnplcmcntation of the 

scqucnccr is given in seclion 4. 

WC now describe how the components of the circuit are 

intcrconncctcd. Kcfcr to Figure 3-2. I.ct S’:‘Q, dcnotc the set of 

scqucnccrs for simple paths that contain event e. Every scquenccr in 

SEQ, has its DIS, signal connected to a wired-YcoR gate for e, its TA, 

signal conncctcd to a c gate for e, and its mIRF signal conncctcd to ACKe. 

Tl~c output of the latch at the end of the c gate for e, which is lab&d 

CLR~, is conncctcd to each of the NOR gates in front of the arbiter which 

corresponds to cvcnt e or to some event mutually exclusive to e. 

Ihc following is an informal description of how the circuit works. 

The circuit bchavcs as shown in the timing diagram in Figure 3-3. 

When RFQC is raised. event e is not a!lowcd to proceed unfea each 

sequcnccr in S/:‘Q, signals that at least one e type transition is enabled 

by negating t)tSe. Once this happens IN, is raised, provided no mutually 

exclusive event is executing tha second half of its cyc!c (and hence has 

its CIA high). If the arbiter dccidcs in favor of some other pending 

cvcnt mllnially cxclusivc to e, the above process rcpcats until e again 

gets a chance at the arbiter. Othcrwisc I\CIC~ will bc raised and latched 

by the NOR gate arrangcmcnt in front of the arbiter. At this point the 

cxtcrnal world may proceed with cvcnt c. Simultaneously each 

scqucnccr in SEQ, will find l‘RI high and after some time raise TA( 

When all scqucnccrs in S”:‘Q, have raised ‘TAG and the cxtcrnal world 

acknowlcdgcs completion of cvcnt e by loccring Kt:QI. cI.R, will bc 

r&cd. ‘I-his causes ACKc to bc lowcrcd. F’ch scqucnccr in SEQ, wiil 

And ‘I’R, low and after some time lower The. When ail such scqucnccn 

arc done. CI.Rp is !owcrcd, and the cycle is completed. 
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l‘o &)mlally establish the corrcctncss of our circuit . WC must establish 

two things: First, WC must show that the circuit allows only semantically 

correct event tracts; second, that the circuit will allow any semantically 

correct event trace for some behavior of the cxtcrnal world. These 

properties of the circuit arc oticn called s&ness and liveness 

rcspcctivcly. Our proof will make USC of propcrtics of the various 

ciKuit components shown in Figure 3-2. We list the most important of 

thcsc propcrtics as propositions, namely those relating to the sequencer, 

the arbiter, and the cxtcmal world. Propertics of other circuit 

components such as SR Hip-Flops, NOR gates, etc., arc assumed to bc 

well known and arc used without further discussion. The proof also 

makes certain assumptions about the delays of the components: 

1. ‘Ihc delay of the main NOR gate plus the 2-input NOR gate 
is less than that of the main Mullcr-C clcmcnt plus the SR 
Flip-Flop. 

2. ‘fhc maximum variation in delay for Lhc NOR gates in front 
of the arbiter is less th:m the minimum delay of the arbiter. 

WC begin by introducing some notation that will bc nccdcd in t& 

proof. LCI the scqucnccrs bc dcnotcd by SI~Q, .,. sIQp corresponding to 

the path cxprcssions RI .,. Rp c hl. and Ict Z R1 . . . Z,, bc the subsets of 

Z that actually appear in Rl . . . Rp rcspcctivcly. Let 1 bc a set of time 

intervals, which may include semi-infinite intervals cxtcnding from 

some finite instant to infmity. Each clcmcnt in 1 is labcllcd by an 

elcmcnt in 2. Ilcfinc ‘r(I) to be the trace which has an elcmcut for each 

elcmcnt in I and has the obvious partial order defined bctwecn 

elcmcnts whose time intcnials are non-overlapping. Rcfcrring to 

Figure 3-3. let 

l Ent = set of time intervals labcltcd ‘cxtcmal’, 
l lnt = set of time intervals labcllcd ‘internal’. 
l Srq@ = set of time intervals labcllcd ‘scqucnccr’ for 

scquenccr SEQ, 

For every interval in lnt with label e there arc corresponding intervals 

with the same label in Ext and in every Scq(j) such that e Q Lw namely 

those which start at the same thnc. WC assume that the starting points 

of intervals in Int lie within some tinitc time period of interest, and the 

intervals in Ext and Scqu) arc rcsuictcd to intervals corresponding to 

those in Int. 

With this notation in place we state some propositions, or axioms, 

that dcscribc the propertics of the circuit of Figure 3-2. These 

propcrtics will be used to prove that the circuit is safe and live. The 

propositions that arc not self-cvidcnt will bc justiticd in later sections of 

this paper. 

Proposition 5: (External world protocol): For all events e, 

1. REQ is raised only if ACKr is low. 
2. wlip: is lowcrcd only if ACK, is high. 0 

Proposition 6: (Arbiter safety and livcncss): 

1. For any cvcnts el,e2 thl\t are mutually cxclusivc. ACK,, and 

ACK~~~I’C IICVX high simultaneously. 
2. I:or any cvcnt e, hcK,,is raised only if IS~ is r&cd. 
3. For any cvcnt 2 M’Kc is lowcrcd only if I>, is low,and 

whhing a of isc being lowcrcd. 
4. Consider a set of cvcnts L’ c Z. such that no two cbcnts in 

x’ arc in the same path crprcssion. ‘Ihcn if all INC. e E z’. 
arc raibcd, within a finite time all ACKc , e E 2, will be 
raised. 0 

Proposition 7: (Scqucnccr protocol): For any scqucnccr SEQj, 

1. ‘I’A~ is raised only if ‘rRc is high. 
2. 1’~ is lowcrcd only if TR is low. 
3. de is stable whiic all TR$ and TA’S in TRc are low. 0 

Proposition 8: (Scqucnccr safety and livcncss) : For any scqucnccr 

Sl:Qj , assume that at all times, 

o nu two ‘IX’S arc high simultaneously, 
l ‘IX~ is raised only if I)&-, and all TA’S arc low. 

l TH, is lowcrrd only if The is high. 

lhcn the following hold : 

1. TA is raised wi:hin a finite timr: of TR being raised. 
2. ,TA’ is lowered within a linitc rime of$R being lowered. 
3. l:o? any scqucnccr SEQ. whcncvcr 211 Ti’s and ‘IR’S arc low, 

cxaclly those cvcnts ‘e will have L)IS~ low, for which 
S(T(Scq(j))) can bc cxtcndcd by e to give a prefix of some 
scqucncc in L . . RI 0 

Proposition 9: (Initialization) 

1. Scqucncc!s arc initialized with all TA’S low. 
2. ‘I’hc synchronilcr rircllit Sli flip-flops arc initialized to 

make all CI.R’S high. cl 

The following thcorcm states that a synchronizer satisfying 

Propositions 5 through 9 is provably safe. 

‘Ilrcorcm IO: (Synchronizer Safety) : T(Ext) 6 TrJM) . 

proof: See the appendix. 0 

As a convetse to thcorcm 10 WC would like to show that our circuit 
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can product any valid tract Est. such that ‘l’(Kxt) E ‘I‘r@) for at least 

some behavior of the cxtcrn;ll world. Howcvcr for some traces 7 E 

‘1‘r.J M), thcrc dots not exist any F.xt such that ‘I’( Ext)=T. SO there is 00 

way any circuit can product the required trace Ext. This happens when 

T dots not suficicntly constrain the order in which the clcmcnts may 

occur so that any actual set of time intervals will have fcwcr concurrent 

clcmcnts than ‘I’. Given such a T it is ncccssary to constrain its partial 

order relation further, by adding additional (consistent) prcccdcnce 

relationships. It is easy to show using dctinition 4 that this will never 

rcmovc T from the set Tr$vl). WC shall show that whcncvcr T is 

sufticicntly constrained so that it falls in a class of tracts WC call layered, 

then for some behavior of the cxtcrnal world T(Ext) for our circuit will 

equal this modified T. 

Dclinition 11: A trace P = (Q.& is called byered. if Q can be 

subdivided into a scqucncc of subsefs. such rhai for any il. i2 E Q, 

il prcccdcs i2 iff rhc J&set in which il lies precedes the subsef in 

which i2 lies. 0 

The trace in Figure 2-l is layered, since its clcmcnts can bc subdivided 

into the scqucncc of atbsrrr ~(At).(B1,C1),(A3,(B2,C2),(A3),(B3, C,)} 

with the above property. If the size of each subset were enc. then the 

trace would bc totally ordered. 

In general, any trace P will have a corresponding layered trace T 

which prcscrvcs most of the parallelism of P. It is easy to show that for 

any trace P.thcre exists a laycrcd uxc ‘f, which differs from P only In 

that the partial order relation of P is a rcstricrion of that of T. 

Theorem 12: (Synchronizer I.ivcness): Given any layered trace P c 

‘I-r,(M). our circuit will produce an event tract Ext. such that 

T(Ext) = P for some bchnvior of the cxtcrnal world. Cl 

proof: See tbc appendix. D 

4. Implementing the Sequencer for a Simple Path 

Expression 

This sccdon shows how to construct a scqucnccr that meets the 

conditions set forth in Propositions 7 and 8. ‘Ihc scqucnccr circuit is 

constructed in a syntax-dircctcd fashion based upon the structure of the 

sinlplc path Cxprcssion. We show that a compact layout for the 

scqucnccr exists, so that circuits of this type can bc implcmcntcd 

cconornically in VI.SI. 

Since .a simple path expression is a regular cxprcssion. the scqucnccr 

for a simple path cxprcssion is similar to a rccognizcr for the regular 

cxprcssion. Although schcmcs for recognition of regular languages 

have been proposed that avoid broadcast 131, WC will USC a scbcme that 

rcquircs broadcast of cvcnts throughout the scqucnccr [4, IO]. Bccausc 

our scheme for intcrconnccting sequencers rcquircs broadcast the 

broadcast within an individual sequencer carries no additional penalty. 

A sequencer for a simple path cxprcssion is built up from primitive 

cells. each corresponding to one character in the path. The syntax of 

rhc path determines the interconnection of the cells in UIC sequencer. 

In this s&on, WC first dcscribc the behavior of a scqucnccf for a simple 

path expression. then give a syntax-dircctcd construction method 

As noted in Section 3, a synchronlzcr communicates with each of its 

scqucnccrs using three lines: 

*TRY: a signal to the sequencer that event e Is about to 
commcncc in tic external world; 

l TA : an acknowlcdgcmcnt from the sequencer that all 
acdons started by TR, have Completed; 

l DIS : a status lint indicating that action e would violate the 
pa& constraints so that TRIshould not be asserted 

ntcsc communication lines interact in a complex way. For a single 

type of event, lhc signals TRY and TAc follow the four-cycle signaling 

convention dcscribcd in Section 3 for RIZQ and ACK. For diffcrcm typea 

of events, the synchronizer must guarantee the correct interaction of IR 

signals by ensuring that only one TR signal for an cvcnt satisfying the 

simple path cxprcssion is asscrtcd IL any time. ‘lhc sgnchronizcr can 

USC rhc DlS stafus lines to dctcrminc which requests to send to the 

scqucnccr. 

The scqucnccr also has a part to play in ensuring the correct 

intCraCtiOn of TR. TA and DR. Bcsidcs gcncrating a TA signal hat 
f0llOWS the four cycle convention with TR. it must cnsurc that the signal 

DIS, is COrrCct as long as no TR or TA signal Is asserted. This guarantee 

means that if no TA is asscrtcd. REQ, and REQ, arc both asscrtcd, and 
nChhCr DtS,, nor DISC2 is true, then the synchronizer may choose. 

arbitrarily bctwccn el and e2, letting cithcr of them through to the 

simple path scqucncer. On rccciving a TRe signal. then. the sequencer 

must assert TA< adjust its internal state to rcflcct the occurrence of 

event e, aSSaT the proper set of DIS lines, and await the negation of TR, 

before negating ‘TAG. 

NOW that the behavior of a scquenccr has been described, we show 

how to construct a sequencer for any path. A scqucnccr has two parts: 

a controller and a rccognizcr. The controller is connected directly to 

the rest of the synchronizer and generates both the TA signals and some 

Control signals for the rccognizcr. The rccognizcr keeps track of which 

events in the path have been seen and generates the DIS signals, 

Figure 4-1 shows the controller for a simple path P. The controller 

accept5 the signals TRc from the sequencer for each event z that appears 

in P. It generates the signals TAG along with Startp and Endy. ‘Ite 
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. Start End , 

Figure 4-l: The controller for path P . 

meaning of TA, is that all actions caused by IRI have been completed. 

In this rcaliration. TA is just a delayed version of ‘t’~. when: tbc delay is 

lung enough to let the sequencer stabilize. An upper bound on this 

delay can be computed from the layout of the rest of the circuit. It is 

possible to use a self-timed version of this circuit in which the delay is 

d:ri\cd from the recognizer. It has been omitted in this version of the 

paper as it unnecessarily complicates ah understanding of how the 

circuits work. Sturt, and End, are control signals that control the 

movement of data through the rccognizer for P. Start, is true whenever 

at Icast one TR is on and no TA is on, while Endr is true whcncvcr at 

least one Th is on and no lit is on. 

The rccognizer for a path accepts the ‘IX~ signals and generates the 

DIS signals. It is made up of sub-circuits corresponding to 

wrbcxprcssions of the path. To construct the recognixcr for a path. we 

parse the path using a context-free grammar. Productions that are used 

in parsing the path determine the intcrconncctions of sub-circuits to 

form the rccognizcr. Non-terminals that are introduced in the parse 

correspond to primitive cells used in the circuit. 

Recognizers are constructed using the following grammar for simple 

path cxprcssions. 

S -+ path R end 
R --) R;R I (R + R) I (R)* I <evenO. 

The terminal symbols in the grammar cormspond to primitive cells; 

there is one type of ccl1 for the “+‘I symbol, one for the I**” symbol. 

one for the I’;” symbol, and one for each event. The non-terminals 

correspond to more complex circuits that arc formed by 

intcrconnccting the primitive ccllr Using the method dcscribcd in (21, 

semantic rules attached to the productions of the grammar specify how 

the circuits on the right of each pmduction arc intcrconncctcd to form 

the circuit on the Mt. 

To keep track of which cvcnts in the path have occurred and which 

arc legal, the sub-circuits of a rccogniacr communicate using the signals 

ENR (cnablc) and RI3 (result). ‘Ihc circuit for a subcxprcssion accepts 

EM and uses it to dctcrminc when the first event in the subcxprcssion 

is legal. It gcncratcs RB when the last event has occurred. 

Figure 4-2 shows the ccl1 for event e. Two latches, clocked by the 

signals StarQ and Endp. control the now of ENR and RES signals. 

Because of the definitions of Start, and End,. the l&most latch is 

loaded from ENB whcncvcr at least one 1-R is on and no TA is on, while 

the rightmost latch is loaded to update RI3 whcncvcr at least one TA is 

on and no TH is on. The two latches are ncvcr loaded at the same time; 

in fact, bccausc TR and TA follow the four cycle signalling convention. 

t!crc is a non-zero time bctwccn the end of the load signal for one latch 

and the start of the load signal for the other. Thus there is no 

combinational path through the cell. 

From othsr 
c44la for 0 

ENB 

lR a sta:t p 

(Somb fR 
and no TA) 

(Sow TA 
MdnoTR) 

Figure 4-2: Ccl1 for event c in path P 

‘lhc cvcnt ccl1 in Figure 4-2 prop‘tgatcs a 1 from ISIS to KIS only if 

cvcnt e uccurs. When this ccl1 is used in a rccognidcr for a path 

cxprcssion, the IN input will bc true if and only if cvcnt c is permitted 

by the cxprcssion. Thus. if INS IS IIUC it negates DISK for the path, as 

shown in the figure. When a rcqucst IK is made, the output of the AND 

gate is loaded into the leftmost latch. If this rcqucst is TR,. this output 

is I: othcr*Asc it is 0. In cithcr cast the output of the AXD gate is 

p;opagatcd to RR through the latch when I’R is lowered. 

Figures 4-3 and 4-4 show the cells for the “;” and “+” operators. 

Thcsc arc strictly combinational circuits. The circuit for “;I’ feeds the 

RIS signal from the circuit at its left into the ENB signal for the circuit to 

irs right. The circuit for ‘I+” broadcasts iis ESB signal to its operands 

and combines the RES signals from its operands in an OR gate. 

Figure 4-5 shows tic ccl1 for the I’*” operator. The cell enables its 

operand after rccriving cithcr it ! on either its own ESB or its operand’s 

RI??. &cry time rhe operand is enabled the “*” cell also puts out a I on 
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ENB v A RES 

End,, ENB RES 
Figure 4-3: Cell for I’;” 

Figure 4-4: Cell for ‘*+‘I 

its ~IW RES. 11 tkrsforc outputs 1 on RF!% after 0 or more rcpctitions of 

its operand’s cwprcssion. ‘fbc additionai AUD gate sets the oulput to 

zero momcntarii; a!& each cvcnt, thcrcby preventing the formation of 

3 kch when two or more “**’ cel!s are used togcthcr or when the REiS 

output is connected to the I+iB inpat 

When larger circuits arc made frol?i thcsc cells, the RIS and mB 

signals retain their meanings. l3ch event cell or sub-circuit formed 

from several cck accepts one input END and produces one output RES. 

We define L.B and RES to bc correct if they meet the following 

conditions 

l E!GB is true for a sub-circuit if each sequcncc of crcnts 
satisfying the expression for the sub-circuit may bc the next 
sequcncc lo occur. 

l RES is true for a sub-circuit if some sequcncc of events 
satisfying the sub-circuit has just occurred, and E&JR was 
uuc bcforc the beginning of that sequence. 

The ENB and RES signals thus indicate that a subcircuit may start 

recognizing events, or that it has finished. In addition, a sequencer has 

a signal INIT, not shown in the ftgurcs. which clears the EN3 inputs to all 

internal cells and sets the ENB inputs for the cells corresponding to the 

first cvcnts in the path. 

Ihc semantic actions for the productionc of the gmmmar dcscribc the 

intcrconncctions of the cells in Figures 4-2, 4-3 and 4-4. httribntcs are 

attached to the symbols of the grammar to rcprcsent the sets of events 

that appear in the path. ‘Ihcse sets dctcrminc which ‘I’K and TA signals 

are combined to product Start,, and End, 

0 . 
Figure 4-5: Cell for I’*” 

S[h] --) path R[h] end 
Hook the RES output of R to its ENB 
input, and connect INIT. 

R[A u B] -+ R[A]:R[B] 
Connect the RES output for R[A] to the 
FNB input of R[B] 

R[A u B] + (R[A] + R[BD 
Connect the K’s to the operand ports of a 
+ cell. 

R[A] -) (R[A])* Connect R to the operand port of a l cell. 

R[{e)] + event e USC a cell for e as the circuit for R 

Figure 4-G shows a recognizer for the path path a;(a+b);c end 

constructed using this syntax-directed technique 

R, I 
r- 

i 
a 

ie 

+ C 

a b 

Figure 4-6: A recognizer for path a:(a+b);c end 

All recognizcrs constructed by this procedure perform the conat 

function, as required by Propositions 7 and 8. That is, if a recognizer is 

initialized and some sequcncc of ‘IX signals is sent to it,‘the recognizcr 

will output 1 on IJIS~ for precisely those cvcnts P that arc forbidden by 

the path, To prove this WC show that the I:NI~ input of an cvcnt cell in 

the recognixcr is 1 if and only if the cvcnt corresponding to this cell is 

pcrmittcd by the path. As shown in Figure 4-2. DISC is 1 if and only if 

none of the cells for cvcnt e is cnablcd. Thcrcforc. proving that an 

event cell has its END signal set if and only if the corresponding cvcnt is 

pcrmittcd in the path will show that the recognizcr is functionally 

correct. In other words. WC wish to prove that all IXR signals for event 

cells arc correct, according to the definition of WB above. 



WC shall prove the stronger statcmcnt thal al1 ENR signals in the 

rccognizcr arc cofrcct. This proof is based upon the structure of the 

rccognizcr. An t!NR signal in a rccognizcr is set by one of four sources: 

. The operand port of a “+ ” or “+” cell: 

l The left operand port of a “;I’ ~~11; 

l The right operand port of a “;” cell; 

. The INIT signal and the final RES of the recognizcr; 

In the tint and second casts the signal is correct if and only if END for 

the operator cell is correct. In the third case the signal comes from the 

RB port of a recognizcr for an initial subcxprcssion. Thercforc it is 

correct if and only if the RES signal for the subexpression is correct 

(asserted only at the end of the subcxprcssion). In the fourth case the 

signal is correct at the start of recognition, and is correct thercatkcr if 

and only if the tinal RES signal is asscrtcd only at the end of the 

expression. Thus. to prove that the circuits arc correct. we need only 

prove that if the ENB Signal for a rcfognizer iS correct thCn SO iS IhC REP 

signal. 

Once again, the proof of correctness is based upon the structure of a 

rccognizer. In a correct recognlzcr the RI3 signal is true at time $ if and 

only if the END signal is true at some preceding time r,, and the cvcnt.9 

bctwecn ft, and rI obey the path. A recognircr that is a single cvcnt cell 

is clearly correct. A recognizer for path a;b built by composition of 

correct subtecognizcfs for n and b is also correct, since if RESb is true at 

time $ then thcrc must hc some time /t when RISS, was trtx, with all 

intcrvcning cvcnts satisfying path b. but then there must have been a 

time ro when ii~na was true and all cvcnts bctwccn to and I, must satisfy 

path a. ISy definition of composition. then, the events bctwcen to and tZ 

satisfy a;b. A recognizcr for path (a)* is correct if its subrecognizer is 

correct. since it outputs 1 and cnablcs its operand if and only if RNB or 

RRa is true. Finally, a rccognizcr for path a + b is correct if both 

subrccognizcrs arc COrrCCt, since if R1S is true lhcn One of RFS, or RES,, 

must bc true, and if one of WI%, or RNRh is true then F,s:.sB must be true. 

Since all methods of constructing rccognixcrs have been shown to lcad 

to correct circuits, rccognizers constructed using this procedure are 

functionally correct. 

Now tha! circuits have been dcsigncd and proved correct, we give 

compact layouts for them. The floorplan for a scqucnccr. shown in 

Figure 4-7 has the cells that make up the recognizer arranged in a line 

with the controhcr to one side. ‘fhc TR signals flow parallel to the line 

of rccqnizcr cells to cntcr the controller, and the Start and End signals 

FmCrge from the COntrOhr to flow parallel to the line of cells. ‘Ihe RNB 

and RR5 signals that are nscd for intcrcell communication also flow 

parallel to the line of cells. 

77~ layout in Figure 4-7 is fairly small. If the scqucnccr for a path of 

TR’S 

SINI 

End 
d 

Figure d-7: Illc floorplan for a sequencer 

length II that has k types of input events is laid out in this fashion, the 

arca of the layout is no more than O(rr(log n + k)). This is due to the 

structure of the rccognizcr circuits. All rccognizcr circuits arc trees, 

which can bc laid out with all nodes on a lint and cdgcs running 

pnrallcl to the lint using no more than O(log II) wiring tracks [7). Thus 

the height of the circuit in Figure 4.7 is O(log n + k) while its width is 

o(n). 

5. Implementation of the Arbiter 

In this section we briefly elaborate on the arbiter shown in Figure 

3-2 to show that the conditions of Proposition 6 can bc met. The main 

function of the arbiter is to select a single cvcnt from a mutually 

exclusive set of requests. Furthermore, the arbiter must be fair - any 

rcqucst that remains asserted must cvcntually be selected. 

The following observation helps to simplify the arbiter: a pair of 

cvcnts occurring in any single path expression must bc mutually 

exclusive. This is due to the role that each event plays in enforcing 

synchronization among a set of multiple path expressions that all 

contain the same named event. The arbitration function can thus be 

rcprcscnted by a con/licr graph. in which each event is dcnotcd by a 

vcncx and the relation betwicn a pair of mutually exclusive events 

denoted by an undirected edge Our observation shows that the 

resulting conflict graph for a set of path expressions consists of a set of 

overlapping cliques, whcrc a clique of k no&s. A,, AZ. . . ., Ap 

corresponds to a path expression R. with 6, = { A,. Al. . . ., A, }. 

The conflict graph rcprcscnts the static structure of a set of path 

expressions. Figure 5-l shows a multiple path expression with its 

conflict graph. 

B c 

% 

path (A + B + D) end 
A 

F 
path (B;(C + D);E) end 

D E 
path (E + F + G) end 

G 

Figure 5-1: The conflict graph of a path expression 
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Ihc dynamic behavior of the arhitcr dcpcnds on the contlict graph 

togcthcr with the set of cvcnts that arc cnablcd at any instant. ‘the 

dynamic snucturc of the set of path cxprcssions is rcprcscntcd by the 

subgraph of’ the conflict graph induced by the set of vertices 

corresponding to the cvcnts, enabled at that instant. l’hc function of the 

arbiter is to sclcci an indcpcndcnt set (not ncccssarily maximal) of this 

subgraph. thus ensuring that only one of any pair of mutually exclusive 

cvcnts is enabled. 

Hcncc an arbiter is simply a transducer that takes a set of inputs and 

produces a 5~1 of outputs, subject to the constraints outlined earlier. 

Morcr?:cr, it is tmplicitly assumed that the arbiter is oblivious of any 

static or dynamic structure of the oath cxprcssions other than those 

rcprcscntcd by the conflict graph and the set of events cnablcd - in 

particular, it has no knowlcdgc of the syntactic structure of the path 

cxprcssion, nor dots it know the internal states of the individual 

scnucncers. Clearly. one can build non-oblivious arbiters that may 

perform better. but this will bc at the expcnsc of conceptual simplicity 

and the arca needed for additional logic and global wires. 

‘fo motivate our design WC shall hricfly discuss the problems with 

some simple schemes. In particular, WC show that any dctcrministic 

ohliviors arbiter gives rise to starvation of an cvcnt which is continually 

enabled. In similar vain, WC show that a straight-forward cxtcnsion of 

Scitz’s schcmc [14: for a two-input arhitcr to a gcncral conflict graph 

results in an unfair arbhcr. Finally, we prcscnt a somewhat non- 

standard schcmc implcmcnt& in CMOS which rcctifics the problems 

with the other schemes. 

Ihc difftulty of building a fair dctcrministic arbiter can bc illustrated 

by an example. Let X = { At. A? . . . , An } bc a set of events. To try 

to build a fair arbiter for P we might assign a priority number from 0 

through n - 1 to each event. whcrc the priority corresponds to the 

number of times the cvcnt is blockc~f, ie., the number of times the event 

is enabled but not sclcctcd by the arbiter. At any instant thu arbiter 

sclccts from the set of cnablcd cvcnts with the highest priority number. 

When an cnablcd cvcnt is sclcctcd its priority numhcr is rcinitializcd to 

the lowot value. On the other hand. ifthc cnablcd cvcnt is not sclcctcd 

its priority numhcr is incrcmcntcd by enc. II seems that since an cvcnt 

Ai can have at most II- 1 neighbors in the conflict graph, and since each 

time it is blocked at Icast one of its ncighhors is sclcctcd with a resulting 

incrcmcnt in its own priority. after the I?’ attempt Ai must have the 

highest priority amonS all the neighboring cvcnts and hence must be 

sclcctcd. Huwcvcr, an cvcnt may ncvcr bc cnablcd cvcn if its rcqucst is 

sul! pending bccausc scqucncing conditions imposed by the path 

cxprcssion may block the cvcnt. In order to make this observation 

concrctc consider the following path cxprcssion: 

Assume that the external client always rcqucsts pcnnission to perform 

ail three cvcnts A. I3 and C. Let the priorities of all three be o’s initially. 

As a result, initially A and L3 arc enabled. Assume that II is selected, 

making B’s priority 0 and A’s priority 1. In the next instant, A and B 

will again be cnablcd. Dut now A has the higher priority and will be 

sclcctcd. so that A’s priority bccomcs 0 and KS becomes 1. Continuing 

in this fashion, it is easy to see that the scqucncc chosen will bc B A B A 

BA . . . . The trouble with this schcmc is that C will never bc cnablcd 

even .if its request is pending. This cxamplc can be extcndcd to the 

following lemma. 

Lenuna 13: Let M be a dctcrministic finite-state transducer 

implcmcnting an oblivious arbiter. Then there exists a path 

cxprcssion over E = { A. B. C } such that one event, say C, will 

bc starved even though its rcqucst is continually pending. 

‘Prnofz Let M be a deterministic finite-state transducer whose 

alphabet is Z = ( A, II, C }. Lc! the states of M be 

s = { sl, s2, . . ., sm }. Let the conflict graph, G, for the path 

expression be the complctc graph on the vcrticcs A. 13 and C. We 

construct a path expression P with the conflict graph G such that 

IV causes tbc starvation of the cvcnt C. Notice that because of the 

nature ol'thc conflict graph G, if at any insumt A and II arc enabled 

then at most one of A and II may bc sclcctcd by M. 

Let s, bc an arbitrarily chosen state of A,/. WC conduct an 

cxpcrimcnt on M by continuously providing A and B as the 

cnablcd inputs, starting with M in the state st. If we present a 

stringofinputs{A,B}.{A,B }, . . ..{A.B)oflcngthmtben 

we notice that at the 1’ input { A, B }, the transducer 

dctcrministically goes from the state s(l) = st to a state s(2) while 

outputting A or B. Let s(l), s(2), , . ., drn + 1) be the sequence of 

states and u E { A, B }” bc the output string produced as a result 

of the expcrimcnt. As a consequence of the pigcon-hole principle, 

some two states in the scqucncc of states will be tbc same . Of all 

such pairs, let J(I) and JG) be two such states closest to sY Assume 

that i c i and Ict k bc the smallest multiple of (j - r) such that k 2 i. 

Without loss of gcncrality assume that A4 outputs D when in state 

S(I) with the input ( A. B}. 

Let P be the path expression 

path (A + B)“;(A;C + B); (A + B)“end 

It is easy to see that P has G as the conflict graph and’ if the 

rcqucsts for A. B and C are continuously pending then the 

scqucncc of outputs will be a suing in { A, B }” and C will never 

be cnablcd. 0 

path (AC) + lk(A + I~)cII~. 
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Rcfore procceding further, let us consider the path expression path A + 

B end. when: the contlict graph is G = (V. F1) = ({ A, B }. {[A. RI}). 

Seitz [14] has shown how to build an arbiter for such a structure using 

an interlack&mcnt, as shown in Figurc S-2. 

Circuit operation in Figure 5-2 is most easily visualized startiun with 

neither clieut rcqucstin& v1 and vz both near 0 volts, and both outputs 

high. If any single input, say At,,, is lowered then v1 is driven high. 

high thrrshold 

buff,ra 

Figure 5.2: Seitx’s lntcrlock Element 

resulting in A,t being lowered - Rout remains unaffcctcd. Moreover, 

once Aout is towered, and as long as Ain is kept low. the interlock 

clcmcnt remains in this stable state irrespective of what happens to Bin. 

If A, is now raised high, then the clement returns to its initial condition 

it II, is still high; or B,t is lowered if Dir, is lowered in the meantime. 

However, the intcrcsting situation occurs when both A, and Bin are 

both lowered concurrently or within a very short interval of time. In 

this case the cross-coupled NOR gates enter a mctastable state, which is 

rcvolvcd after indctcrminate period of time in favor of cithcr A or 

B. Since this resolution depends on the thermal noise gcneratcd by the 

gates, it is inherently probabilistic. In this cast the outputs of the NOR 

gates themselves cannot be used as the outputs. High threshold 

invcrtcrs bctwccn the NOR gates and the outputs prevent false outputs 

during the mctastable condition. 

It would seem natural to extend Scitx’s idea by gcncrahzing it to the 

conflict graph for an arbitrary set of path cxprcssions. Roughly 

spcakiuS, we may construct a circuit by homomorphically transforming 

tbc conflict graph to a circuit by replacing each vcrtcx with a NOR gate 

and each edge nith a crosscoupling of NOR gates corresponding to the 

pair of vertices on whic.h the cd+ ** is incit!cnt. However, such an 

implementation in NMOS has some scvcre problcnis, which will be 

clariticd if WC consider the circuit lbr the rcadcrswritcrs path 

cxprcssion: 

path R, + W end 
path R, + W end 

whcrc the pair R, and W and the pair R1 and W arc mutuatly cxclusivc. 

‘fhc conflict graph and ttrc &curt for this cxprcssion arc shown in 

Figure S-3. 

W 

(a) 

0 

Rz 

Vdd T 1 T 

-I I- 

Gnd 
RI ‘w RZ 

lb) 

Figure S-3: (a) The Conflict Graph and (h) The Arbiter in NMOS. 

Consider the situation when the circuit is in the none-requesting 

conditio,r and all thr:c requests, K,. R, and W. arrive concurrently. An 

inlinitcsirnally short interval 81 after all three rcqucsts arrive, let us 

;~ssumc that U-E volwgcs at the outputs (of the NOR gates) have 

incrcascd by an inlinitcsimally small value Av Q: vu,. The pull-down 

MOS transistors may bc assumed to bc operating in their linear region. 

1 fall pull-ups arc assumed to provide equal active rcsistancc. the output 

of the NOR gate corresponding to W will grow less rapidly than those 

corresponding IO R, or R, ‘Ihc cumulative cffcct of this imbalance will 

result in a low output for W’s NOR gate and high outputs for RI’s and 

1~;s. tlcncc if R,. R, and W rcqucst continuously then the rcqucst for 

W will ncvcr go through, resulting in W’s starvation. 

An easy fix to this problem may bc to incrcasc the ratio of pull-up to 

pull-down for W’s NOR gate to twice that of R,‘s and RiS. But if this is 

done in a static manner then, when only R, and W arc requesting, W 

will have an unfair advantage over R,. Obviously. what is needed is 

some means of controlling the ratios such that dcpcnding on the set of 

rcqucsts the circuit contigurcs itself dynamically in order to behave in a 

balanced fashion. 

An arbiter that can configure itself dynamically for the problem with 

two rcadcn and one writer is shown in Figure 5-4. To set how this 

scheme rcmcdics tbc problem discussed earlier, consider the situation 

when the circuit is in non-rcqucsting condition and all three rcqucsts. 

R,, R, and W, arrive concurrently. An infinitesimally short interval A,r 
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Figure S-4: The hrbitcr for I-Writer-2-Rcadcrs Problem in CMOS. 

after all three rcquccls ;.rrivc. Illc Vl)llil~YS at Illc (~lll~~ilt!i will have 

incrcaxd by nn intinitc:;imclly small value Av .z vn,. ‘lhc pull-down 

310s transistors arc in their linear region. Howcvcr. ‘since active 

rcsistanccs of the pull-up transistors dcpcnd on the neighboring cvcn~s 

that arc cnablcd. the pull-up rcsistancc of the gate associated with W is 

exactly half of that associarcd with RI or R2. This provides a balance 

among pull-up rcsistanccs and results in almost equal rate of growth of 

voltages at the outputs. Hcncc the interlock clcmcnts cntcr their 

mctastablc swtcs more or less simuluncously; and the mctastablc 

condition is rcsolvcd cithcr in favour of R, and K, or in favour of W, 

rho choice govcrncd by statistical thermal phenomena. 

,\ simi!ar analysis shows that the circuit behaves correctly when onlY 

two out of three requests arrive concurrently. Howcvcr, if only one 

rcqucst, sty W. arrives while all its ncighbours remain in their non- 

rcqucsting condition the circuit bchavcs somewhat diffcrcntly. In this 

cnsc the pull-up transistor with input (G) will turn on, thus 

al!owing the output of the gate to go high. It is important to obs~~vc 

that the pull-up transistors arc conrroltcd dynamically by the rcq:mls 

for the ncighbouring c’vcnts - if thcrc is a rcqucst for the ncighbouring 

clvcnt then only the pull-up corresponding to the cvcnt turns on: and if 

thcrc is no request fur the ncighbourinp events then only the pull-up 

corresponding to the event itself turns on. Fo: this to bc implcmcntcd 

CGXCIl)’ it iS CSSC:ntial Lhat the PJJhJp cOi7CSpOJldhg LO the CvCJz! itSCir’ 

hc turned on only after a delay ncccssa:y for the rcqucsts for the 

ncighbouring events to propagate IO the gate of the pull-up. 

‘I’nc complex statistical nature of thrnnal noise in the circuit in 

con.iunction with the ccmplcxity of tbc suuzturc of the conflict graph 

makes it hard to analyrc the circuit clcctrically. For instance, the time 

const.mts as<rtintcd with each arhhcr output could possibly differ 

signilicantly. Under the assumption that. these :ccond order cffccts arc 

small, every cnablcd cvsnt will have a positi./c non-zcm probability of 

being sclcetcd. Thus. for a rc;lsonablc class of path cxprcssions, the 

circuit cnsurcs that a continuously rci,u,sting evefit is Cvcnluall) 

sclcctcd. This class includes the path cxprcssions for which the other 

two arbiters can not provide a good solution. 

6. Conclusion 

So far WC have not discussed fairness. Intuitively, the implcmcntation ’ 

of a path cxprcssion is fair if any continuously rcqucsting cvcnt will be 

cvcntually sclcctcd, provided it is possible to do so without violating the 

semantics of the path cxprcssion. As pointed out in the previous 

section, our implcmcntation is fair for a rcasonablc class of path 

cxprcssions. As an example of a path cxprcssion for which our 

implcmcntation is not fair consider the following : 

path (A + U); C end, 
path D; (A + E) end 

Suppose that each event takes the same amount of time to execute 

externally and that new rcqucsts for each cvcnt arc forthcoming as soon 

as allowed by the protocol. Then simultaneous execution of D and B 

will alrcrnate with simultaneous execution of C and E without the 

arbiter ever having to block any event. Yet. event A will never execute 

even if it remains continually ready. If. howcvcr, the first rcqucst for 

event B is delayed by the time it takes to cxecutc an evenf then initial 

execution of cvcnt D will bc followed by altcrnatc executions of A and 

(D,C). Now B and E never execute! Since ncithcr the duration of 

external cvcnts nor the occurrcncc of ertcrnal requests is under the 

control of the circuit, it is not easy to ensure fairness for such path 

expressions. It remains an open question whether a practical solution to 

this problem exists. 

Since our circuits have the constant separator property. a more 

compact O(N) layout is be possible using the teehniqucs of[4]. 

However, while it is definitely possible to automatically generate the 

O(N.log(N)) layout that we propose, it is much more difficult in 

practice to gcncratc the O(N) layout of[4]. Furthcrmnrc t!.. O(?Q 

layout will occupy less area only for very large N. WC suspect that ease 

of generating the layout will win over asymptotic compactness in this 

case. 

Finally, WC plan to invcstigatc cxtcnsions of our construction to 

appropriate tinitc state subsets of CSP [S] and CCS 191. In the cast of 

CSP the subset will only permit boolean valued variables and messages 

which arc signals. If the number of mcssagc types iS fixed, we 

conjccturc that arca bounds comparable to those in section 4 can be 

obtained. Arrays of processes in which the connectivity of the 

communication graph is low can bc trcatcd specially for a more 

compact layout. Such a finite-state subset of CSP may even be more 

useful than the path cxprcssion language discussed in the paper for high 

level description of various asynchronous CirCUits. 
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Lemma 15: For each clement i in Int with label e, the 

corresponding clcmcnts in Ext and Scq(j) arc subintcrvals of i. 

Proof: (rcquircs proof based on the properties of the circuit in fig 

3-2). 0 

Lemma 16: For any Rj E hl, T(lnt)lzR, is a totally ordcrcd 

multiscL 

Prool: It is easy to show that T(Int)l v 
7lj 

= T(Int 1 L ,) . But Intl zRj 

consists of ‘internal cvcrrts’ of the path expression 
2. 

J. dunng each 

of’ which the corresponding ACK is high. Hence by proposition 6. 

no two such events overlap. and therefore T(Int)l I.j is a totally 

ordered multisct. Cl 

Lemma 17: For any Rj E M, VW1 zR, = VW1 zRj. 

ProoT: For any clcmcnt i of ‘l’(lnt). that is also in.T(lnt)J ZRj the 

corresponding clcmcnt of ‘l’(Fxt) will bc in T(Kxt)lx (dcftnition 

2) since they must map to the same alphabet e E ZRj. 7 Icncc these 

traces have the same number of clcmcnts. Also from lemma 15 it 

follows that if il and i2 arc two elcmcnts of T(Int)lzRj satisfying 

one or none of “il prcccdcs i2” and “i2 prcccdcs ii”, the 

corresponding clcmcnts of T(Ext)l 
%j 

will satisfy at lcast the same 

relationships. In other words the partial order of ‘f(lnt) is a 

restriction of that of T((Ext). But by lemma 16 T(Int)lxR1 is a 

totally ordered multiset. Hcncc from the above T(Ext)l 

have the same partial order relationship and, fhcrefore, 
rRj 

will 

be the 

same totally ordered multiset. 0 

lxnunn 18: For any Rj E M, ‘I’(Scq(j)) = T(lnt)l zR,. 

Proo1: Follows from lemma IS and 16 in the same way as in the 

proof of lemma 17. The only difference is that T(Scq(j))lTRj = 

-r(scq(j)). 0 

Lemma 19: For any sequencer SEQ~ , no two TR’S are high 

simultaneously. 

Prool: The two m’s would be two ACK’s of events in the same path 

cxprcssion Rj, which cannot be high simuhancously by proposition 

6. 0 Appendix : Proof details 

Refer to section 3: 

Lcmmr 14: If the same assumptions as in proposition 8 are 

satisfied, then T(Scq(j)) is consistent with R, . 

Proof: From proposition 8 it follows that !&q(j) consists of non 

concurrent time intervals. The result is thercforc easy to prove by 

induction on the number intervals in Scq(i), using the same 

proposition. 0 

Lemma 20: For any scqucnccr Sl.?Qj , TRI is raised only if DISC is 

low and all TA’s arc low. 

Proofz By induction on the number of rising transitions ofm’s : 

1. (First transition): Let the corresponding cvenf bc e. By 
proposition 9 initially all TA’S arc low, and all CLR’S are 
high, hence all TN’s arc low initialiy. By proposition 7 all 
TA’s will remain low until the first rising transition of TRc 
By the same proposition I%~ will not change until the first 
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rising transition of TR . If DIS WC= not IOW, INc would 
remain low (see Figurl 3-2). H%ncc by proposition 6, TR, 
would remain low, a contradiction. 

2. (For a succeeding transition): Let the corresponding cvcnt 
be p and that of the previous transition q. While TRI is high 

no ‘IA or ‘i‘R other than TA,, or I’R~ can bc high (proposition 
6 and icmma 19). Until CIA goes high, ‘TR must remain 
high (see Figure 3-2). Once Cfno goes high. a% I:~, with a e 
ZRj, will bc low after a short delay (see klgurc 3-2). 
Assuming the variation in this delay for diffcrcnt ds is less 
than the delay of the arbiter in lowering TRY: all ‘I’R~ with D 
t q will continue to remain low until CI.Rq IS lowcrcd (see 
Figure 3-2). All .I.A~. with a z q, also continue to remain low 
(proposition 7). But CI.R remains high at lcast until TA is 
lowcrcd (see Figure 7). lkncc by ~Jx time TR is raiscdgall 
TA’s will bc low. Also ‘I’R could not have bcc:raiscd if IN 
were low (proposition 6f But if INS was high when TA’ 
was last lowcrcd then IN would n& bc low (see Figurg 
3-2). assuming the main kOR gate plus the 2-input NOR 
gate have a lcsscr delay than the Mullcr-C clcmcnt plus the 
SR Flip-Flop. Morcovcr, rxSp cannot change bcforc TRp is 
raised (proposition 7). Hcncc DISp must bc low when .rRp is 
raised. 

Cl 

knma 21: For any scqucnccr Swj , TRc is lowcrcd only if TAI is 

high. 

Prook The NOR gate arrangement in front of the arbiter insures 

that once TRY is high it remains high until CLRc is raised, and this 

can occur only ifTAt is high (see Figure 3-2). Morcovcr once TAI is 

high it will remain high until IRK is lowcrcd (proposition 7). 0 

Theorem 10 

Proof: I.crnmas 19,20,21 satisfy the preconditions of proposition 8. 

Hence T(Scq(j)) is consistent with l<j for any Rj c M. By lemma 

18 and definition 4, T(lnt) is consistent with Rj for any Rj E M. By 

lemma 17 and definition 4, T(Ext) is consistent with Rj for any Rj 

6 M. Hence by definition 4, T(Ext) E TrJM). Cl 

Lemma 22: If T c TrJM) is laycrcd, then each subset (cf 

definition 11) of T has the property that no two elcmcnts in it are 

instances of events in LRj for any Rj c M. 

Proof: Any two elcmcnts i/j2 (corresponding to cvcnts e/,e2) in 

the same subscr of ‘I‘ must bc concurrent (definitions 3.11). 

Suppose el.e2 z Xy with l<j E M.Thcn ‘I’lX will include i/,i2 

which will bc concurrent (dctinition 2). Hcnct?fI 
‘Rj 

cannot bc a 

total order and thcrcforc ‘1‘ Q Tr.JM) (dctinition 4) -* leading to a 

contradiction. Hcncc the result 0 

Theorem 12 

Proof: The behavior we require of the cxtemal world is that it 

simukancously raise REQ for all events in the first subset of T. wait 

until all corresponding ACK arc high. then simultaneously lower all 

RFQ, wait until all ACK are low. then repeat this cycle for thC next 

subset of 1’. and so on. We riced to show that under these 

conditions the circuit responds within a finite amount of time in 

each cycle, The result then follows directly. 

As shown in the proof of lemma 20. all ACK’s are initially low. 

Hcncc they are low at tbc beginning of each of the csles 

mcntioncd in the previous paragraph. At the beginning of each 

such cycle. Ext.lnt and cvcry &q(i) with Rj E M, get redcftncd. 

Let Tp dcnotc T rcstrictcd to subsets before the current cycle. It is 

easy to show by induction on the number of cycles and definition 

4 that at the beginning .of each cycle T(Ext) = Tp and Tp E 

‘I’r.#). Hence for any Rj E M, ScrpII: ) is a prefix of some 

clement in LR). if the next subset containsI% instance iI of event 

cl, then for each Rj E M such that el E L,, , SCrpl L ) can be 

extcndcd by il to give a prefix of some sequence in Lz ; in fact 

this extension gives the next value of Tpl (see lemma 22). But 

by lemmas l&17, for any Rj c M, T(Se&) 

T*l 

= ‘Vkt) 1, = 

‘XRj’ Hcncc for each Rj E M, such that el E XR,, T(Seq(j)) can 

be cxtcndcd by ii to give a prefix of some sequence in LR,. lhua 

by proposition 8, the corresponding sequencers SEQr With ef E zru 

will have MS, low. This applies to any el in the next subset of T. 

Thcrcforc at the beginning of any cycle, when REQ, for any event 

ef in the next subset of T is raised, all DIScl inputs to the NOR gate 

fur cvcnt el (see Figure 3-2). will bc low. Also within a finite 

amount of time all rclcvant .rAe,‘s must go low by proposition 8, 

since the corresponding TR~,‘S arc already low. Hence CLRd will 

go low. and IN,, will go high for each ef in the next subset of T. It 

follows from proposition 6 and lemma 22 that all ACK’S 

corresponding to cvcnts in the next subw of’l’ will bc raised within 

a tinitc amount of time. 

The proof for the second half of the cycle is more straightforward. 

By lemma 8 once all RI:@S are lowered. within a finite time all 

rclcvant ‘TA’s will be raised, causing the corresponding CLR’S to go 

Iligh. As a result all relevant IN’s go low (see figure 3-2) and hence 

by proposition 6 all ACK'S go low within a finite time, completing 

the cycle. q 
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