Compiling Path Expressions into VLSI Circuits

I S. Anantharaman
E. M. Clarke
M. J. Foster}
B. Mishra

Department of Computer Science,
Carncgic-Mcllon University
Pittsburgh, Pennsylvania 15213

Abstract; Path cxpressions were originally proposed by Campbell and
Habennann 1] as a mechanism for process synchronization at the
monitor fevel in software. Not unexpectedly, they also provide a uscful
notation for specifving the bchavior of asynchronous circuits.
Motivated by this potential application we investigate how to dircctly
translate path expressions into hardware.

Our implementation is complicated in the case of multiple path
expressions by the need for synchronization on cvent names that are
common to more than one path. Morcover, since cvents are inherently
zsynchronous in our model, all of our circuits must be sclf-timed,

Neverthetess, the circuits produced by our construction have area
proportional to Nlog(N) where N is the total length of the multiple
path cxpression under consideration. This bound holds regardless of
the number of individual paths or the degree of synchronization
between paths.,

1. Introduction

As the boundary between software and hardware grows less and less
distinct. it becomes increasingly important to investigaic methods of
ditectly implementing various programming language featurcs in
hardware. Since many of the problenss in interfacing hardware devices
involve some form of process synchronization, language features for
synchronization descrve considerable attention in such investigations.
In this paper we consider the problem of directly implementing path

o - e — e - b o — o ——

Teurrent address: Department of Computer Science, Columbia
University, New York, New York 10027,

This research was pantially supported by NSF Grant MCS-82-16706,
and the Defense Advanced Rescarch Projects Agency (IDOD), ARPA
Order No. 1597, monitored by the Air Force Avionics Laboratory
Under Contract F33615-81-K-1539.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-147-4/85/001/0191 $00.75

191

cxpressions as sclf-timed VLSI circuits. Path expressions were
originally proposed by Campbell and Habermann [1) for restricting
access by other processes to the procedures of a monitor. For example,
the simple readers and writers problem with two reader processes and a
single writer process is solved by the following multiple path

expression:

path R) + Wend,
path R2 + Wend.

‘The first path expression prohibits a rcad operation by the first process
from occurring at the same time as a write opcration. The sccond path
expression enforces a similar restriction on the behavior of the sccond
reader process. In a computation under control of the multiple path
cxpression, the two read operations may occur simultancously, but a

read and write operation cannot occur at the same time.

Path expressions are useful for process synchronization for two
reasons: First, the close relationship between path expressions and
regular expressions simplifics the task of writing and reasoning about
programs which use this synchronization mechanism. Sccondly, the
synchronization in many concurient programs is finite state and thus,
can be adcquately described by regular expressions. For precisely the
samc reasons, path cxpressions arc uscful for controlling the behavior
of complicated asynchronous circuits. The readers and writers example
above could equally well describe a simple bus arbitration scheme. In
fact, the finite-state assumption may be cven more rcasonable at the

hardware lcvel than at the monitor level,

Which brings us to the topic of this paper: What is the best way to
translate path cxpressions into circuits? Lauwer and Campbell have
shown how to compile path expressions into Petri nets [6). and Patil has
shown how to implement Pctri nets as circuits by using a PLA-like
device called an asynchronous logic array {11]. Thus, an obvious
method for compiling path expressions into circuits would be to first

translate the path expression into a Petri nct and then to implement the

Petri net as a circuit using an asynchrouous logic airay. However,
carcful examination of Lauer and Campbell’s scheme shows that a
multiple path expression consisting of M paths each of length K can
result in a Petri net with KM places. Thus, the naive approach will in
general i)e infeasible if the number of individual paths in a multiple

path expression is large.

For the casc of a path cxpression with a single path their scheme does
result in Petri net which is comparabie in size to the path expression.
However, direct implementation of such a net using Patil’s ideas may
still result in a circuit with an unacceptably large arca. An asynchronous
logic array for a Petri net with P places and T transitions will have arza
proportional to P-T regardiess of the number of arcs in the net. Since
the nets obtained from path expressions tend to have sparse cdge sets,

this quadratic behavior nay waste significant chip area.

Peihaps, the work that is closest to ours is duc to 1.i and Lauer [8] who
do indced implement path expressions in VLS However, their circuits
differ significantly from ours; in particular, their circuits are
synchronous, and synchronization with the external world (which is, of
cavrse, inherently asynchronous) is not considered. IFurthermore, their
circuits use PL.A's that result in an arca complexity of O(Nz). Rem [13]
has investigated the use of a hicrarchically structured path expression-
like language for specifying CMOS circuits. Although he does show
how certain specifications can be translated into circuits, he does not
describe how to handle synchronization or give a general layout

algorithm that produces arca cfficient circuits,

In contrast. the circuits produced by the construction described in this
paper have area proportional to N -log(N) where N is the total length of
the multiple path expression under consideration. Furthermore, this
bound holds regardless of the number of individual paths or the degree
of synchronization between paths. As in [3] and [4] the basic idea is to
generate circuits for which the underlying graph structure has a
constant separator theorem [7]. For path expressions with a single path
the techniques used by [3] und [4} can he adapted without great
difficulty. For multiple pathhs with common cvent names, however, the
construction is not straightforward, becausc of the potential need for
synchronization at inany different points on cach individual path.
Moreover. the actual circuits that we use must be much more
complicated than the synchrouous ones used in ([3], {4]). Since events
are inherently asynchrouous in our rnodel, all of our circuits must be
sclf-tined. This requires the use of special circuit design techniques
and significantly complicates the proof that this circuit correctly

captures the semantics of path expressions.

The paper is organized as follows: A formal semantics for path

cxpressions in terms of partially ordered multisets [12] is given in

192

section 2. In sections 3, 4, and 5 we give a hicrarchical description of our
setietiae for implementing path expressions as circuits. In section 3 we
first describe how the complete circuit interfaces with the external
world. Wc then show how to build a synchrunizer that coordinates the
behavior of the circuits for the individual path expressions in a multiple
path cxpression. In section 4 we describe a circuit for implementing
single path cxpressions which we call a sequencer. In scction 5 we show
how the arbiter circuit used in section 3 can be implemented. We also
arguc that these circuits are correct and can be laid out cfficiently. The
paper concludes in section 6 with a discussion of issues such as fairness
and of open problems such as the possibility of extending our

construction to other synchronization mechanisms like the ones used in
CCS and CSP.

2. The Semantics of Path Expressions

In this scction we give a simple but formal scmantics for path
expressions in terms of partially ordered multisets of events[12). We
also relate our semantics to the one in terms of Petri Nets given by
Lauer and Campbetl [6].

Definition 11 A partially ordered multiset (pomsct) over X is a
triple (Q, <. F) where (Q, <) is a partially ordered sct and F is a

function which maps Q into =, O

An example of a pomset is shown in Figure 2-1. We use subscripts to
distinguish different instances of the same element of X. Note that we
could have alternatively defined a pomsct as a directed acyclic graph in
which each node is labeled with some element of 2.

/\/\/
\/\/\

Figure 2-1: An example pomset

If the ordering relation of a pomset P over £ is a total order, then we
can naturally associate a sequence of clements of Z with P; we will use
S(P) to denote this scquence. In fact, a pomset should be regarded as a
natural generalization of a sequence in which certain clements are
permitted to be concurrent; this is why the concept is useful in

modcling systems where several events may occur simultaneously.

Definition 2: IfP = (Q, <
the restriction of P to Z, is the pomset P');

={deQ| F(d)e = }and g
Qr respectively, O

, F) is a pomsct over £ and Z,CZ then
=@ <,
l-'1 arc restrictions of <, F to

l) where

_1-

If P is a totally ordered pomset over £ and Z, ¢ Z, then S(PI):I) is
just the subsequence of S(P) obtained by deleting all of those clements

of Z which arc not in 21.

A simple path expression is a regular expression with an outermost
Kieene star, The only operators permitted in the regular expression are
(in order of precedence) "*", ";", and “+". The "*" operator is the

W

Kleene star, ";" is the scquencing operator, and "+" represcnts
exclusive choice. Operands are event names from some sct of events =
that we will assume to be fixed in this paper. The outcrmost Kleene

oy o

siar is usuaily represenied by the ting keyw ath ... en

RPN A
acimiung KCy

(a)" would be represented as path a end.

A multiple path expression is a sct of simple path expressions. As we
will see shortly, cach additional simple path ecxpression further
constrains the order in which events can occur. However, we cannot
simply take as our scmantics for multiple path expressions the
intersection of the languages corresponding to the individual path
expressions; two events whose order is not explicitly restricted by one
of the simplc path expressions may be concurrent. For example, in the
multiple path expression for the readers and writers problem discussed
in the inuwrcduction the two read cvents R1 and R, nay occur
simultancously, Nevertheless, we will still have occasion to use
ordinary regular cxpressions in giving the semantics for path
expressions; if R is an ordinary regular expression over I, then ER ¢z
will be the set of symbols of Z that actually appear in R and L, ¢ 2;

will be regular language which corresponds to R.

Definition 3; 1.t Z be a finite sct of events; a rrace over Z is a
finitc pomset T = (Q, <, F) over £, We say that i € Q is an
instance of an cvent ¢ € X if F(i) = ¢, An instance i of event ¢,
precedes an instance i, of event ¢, if i) precedes i, in the partial
order <. An instance i, of event e, is concurrent with an instance i2
of event e, if it is not the casc that i, precedes i, or that i, precedes
i- 0

In the example above A, precedes A,, but B, and C, are concurrent.

Definition 4: Let R be a simple path expression with eventset 2.
A trace T is consistent with R iff T T is totally ordercd and
S(Tl za) is a prefix of some sequence in LR . If M is a multiple
path expression, then a trace T is consistent with M iff it is
consistent with cach simple path expression R in M. Trx(M) is the
sct of all traces which arc consistent with M. [0

Consider, for example, the multiple path expression M:

193

path A;B end,
path A;C cnd.

with Z = {A. B, C}. It is casy to sce that the trace in Figure 2-1 is
consistent with cach of the simple path expressions in M and hence is in
'I‘rz(M).

3. Synchronizers for Multiple Path Expressions
This section describes our implemeniation of synchronizers for
multiple path expressions. Figure 3-1 illustrates the titerface between a
synchronizer and the external world. Fach cvent ¢ is associated with a
request line REQ, and acknowledge line ACK . The synchronizer
cooperates with the external world to ensurc that these request and

acknowledge lines follow a 4-cycle protocol:

1. The external world raises RFQ,, to indicate that it would like
to proceed with cvent e.

2. T'he synchronizer raises ACK, 10 allow the external world to
proceed with event e,

3. The external world lowers REQ,, signifying completion of
cvente.

4.'The synchronizer lowers ACK , signifying the end of the
cycle and permission to begin a new one,
In this implementation, an event will occur during the period between
cycles 2 and 3 in this protocol, where both REQ and ACK arc high.
Thus, multiple occurrences of any event e are non-overlapping in time,
since any two occurrences are scparated by the lowering of ACK and the
raising of REQ,

Synchronizer

Figure 3-1: A synchronizer

An overview of a synchronizer circuit is shown in Figure 3-2. We
describe below some of the building blocks in the circuit.

‘The C gate in Figurc 3-2 is a Muller C-clement; the output of a
C-clement remains low until all inputs are high and thercafter remains
high until all inputs are low again. Its behavior then cycles. For an
implementation sec {14].

The arbiter in Figure 3-2 cnforces pairwise mutual exclusion over the

outputs corresponding to pairs of events which occur in the same path

SEQ

]

DISe TRe TA,

ACK, N
L]
L]
ACK, <
— | o {wor] 4
REQ, _"9{ Wired NOR gate for z T r
b
CLR z i
Y
N - NOR e
REQ e 1 Wired NOR gate for e r
S
l Muller Cfor z D
R Q -
CLR P
l Muller Cfor e D— S
R Q
Figure 3-2: A synchronizer circuit

cxpression.In addition to enforcing mutual exclusion the arbitcr trics to
raisc any output whose input is high. Most implementations of arbiters
will have metastable states during which fewer signals than possible
inay be high at the output. Despite the metastable states, however, once
an output signal has been raised, it remains high as long as the
corresponding input remains high. The implementation of such an
arbiter is discusscd in detail in section 5.

Each scquencer block in Figure 3-2 ensures that the sequence of
events satisfies one of the simple path expressions that comprise the
multiple path expression. ‘The synchronizer circuit contains one
sequencer for cach simple path expression, so that cach simple path
expression is satisfied by an exccution cvent trace. For cach cvent e
that appears in a simplc path, the corresponding sequencer has three
conncctions: a request TR , an acknowledge TA, and a disable nIS,,
Events are sequenced by cxccuting a 4-cycle protocol over ong pair of
the TR/TA lincs. The DIS outputs of the scquencer are only valid
between these cycles (when all TR and TA are low), and indicate which
events would violate the simple path. The synchronizer will not initiate
a cycle for any cvent whose IS line is high. The implementation of the

sequencer is given in section 4,

We now describe how the components of the circuit are

interconnected. Refer to Figure 3-2. lLet S£Q, denote the set of

194

sequencers for simple paths that contain event e. Evcry sequencer in
SEQ, has its DIS, signal connccted to a wired-NOR gate for e, its TA,
signal connccted to a C gate for e, and its TR, signal connccted to ACK .
The output of the laich at the end of the C gate for e, which is labeled
CLR,, is connected to cach of the NOR gates in front of the arbiter which

corresponds to cvent e or to some event mutually exclusive to e,

The following is an informal description of how the circuit works.
The circuit behaves as shown in the timing diagram in Figure 3-3.
When REQ, is raised, event e is not allowed to procced unless each
sequencer in SEQ signals that at lcast one e type transition is enabled
by ncgating IS, Once this happens IN, is raised, provided no mutualty
exclusive event is exceuting the second half of its cycle (and hence has
its CLR high). If the arbiter decides in favor of some other pending
event mutually exclusive to e, the above process repeats until e again
gets a chance at the arbiter. Otherwise ACK P will be raised and latched
by the NOR gate arrangement in front of the arbiter. At this point the
external world may procced with event e Simultancously each

seguencer in SEQ, will find TR high and after some time raisc TA,

When all sequencers in $1Q, have raised TA, and the cxternal world
acknowledges completion of event e by Jowering REQ,, CIR, will be
raised. This causes ACK,, to be Jowered. Fach sequencer in SEQ, will
find TR, low and afier some time lower TA . When all such sequencers

are done, (1R, is lowered, and the cyclc is completed.

REQ

ACK

I
Sequencer | <->| |

Internal | <

Extarnal (———r——-)

Figure ¥3: Synchronizer iming

To formally establish the correctness of our circuit , we must establish
two things: First, we must show that the circuit allows only scmantically
correct ¢vent traces; second, that the circuit will allow any semantically
corrcct event trace for some behavior of the external world. These
properties of the circuit are often called sqfeness and liveness
respectively. Qur proof will make use of propertics of the various
circuit components shown in Figure 3-2, We list the most important of
thesc propertics as propositions, namely those relating to the sequencer,
the arbiter, and the external world, Propertics of other circuit
components such as SR Flip-Flops, NOR gates, ctc., are assumed to be
well known and are used without further discussion. The proof also
makes certain assumptions about the delays of the components:

1. "The delay of the main NOR gate plus the 2-input NOR gate

is less than that of the main Muller-C clement plus the SR
Flip-Flop.

2. The maximum variation in delay for the NOR gatcs in front
of the arbiter is less than the minimum delay of the arbiter.

We begin by introducing some notation that will be nceded in the
proof. Let the sequencers be denoted by SLQ, ... SI’.Qp corrcsponding to
the path cxpressions R1 ... Rp € M, and let Zm ER p be the subsets of
Z that actually appear in R1 ... Rp respectively. Let I be a set of time
intervals, which may include semi-infinitc intervals extending from
some finitc instant to infinity, Each clement in | is labelled by an
element in Z. Define T(I) to be the trace which has an clemeut for each
¢lement in | and has the obvious partial order defined between
ciements whose time intervals are non-overlapping. Referring to
Figure 3-3, let

o Fxt = sct of time intervals labelled *external’,
* Int = sct of time intervals labelied *internal’,

*Scq(j) = sct of time intervals labelled ’scquencer” for
sequencer SEQy.

For every interval in Int with label e there are corresponding intervals
with the same label in Ext and in every Seq(j) such that e ¢ le' namely
those which start at the same time. We assume that the starting points
of intervals in Int lie within some finite time period of interest, and the
intervals in Ext and Seq(j) arc restricted to intervals corresponding to
those in Int.

185

With this notation in place we state some propositions, or axioms,
that describe the propertics of the circuit of Figure 3-2. These
propertics will be used to prove that the circuit is safe and live. The
propositions that are not sclf-evident will be justified in later sections of

this paper.

Proposition 5: (External world protocol): For all events e,

L REQ, is raised only if ACK, is low.
2. REQ, is lowered only if ACK, is high. O

Proposition 6; (Arbiter safety and liveness):

1. For any events e, e2 that are mutually exclusive, ACK , and

ACK ,, are never high simultancously.

2. Yor any cvent e, ACK is raised only if 1N _is raised.

3. For any cvent e, ACK is lowercd only if IN, is low,and
withing a of iN being lowered.

4. Consider a sct of cvents £ ¢ 2, such that no two cvents in
£ arc in the same path cxpression. Then if all l.\f Lee X,
arc raised, within a finite time all ACK, , ¢ € Z, will be
raiscd. O

Proposition 7: (Scquencer protocol): For any sequencer SEQj .

1. 1A, is raised only if TR is high.
2.1 '\ is lowered only if TRE is low,
3 ms is stablc whilc all TR's and TA's in TR are low.

Proposition 8: (Scquencer safety and liveness) : For any sequencer
sr.oj , assume that at all times,
e no two TR's are high simultancously,

o IR, is raised only if DIS . and all TA's are low,
& TR, is lowered only if TA,is high.

Then the following hold :

1. TA, is raised within a finite time of TR being raised.

2.7A, 18 lowered within a finite time of ™ . being lowered.

3. F or any sequencer StQ, whenever all TA 's and TR's are low,
exactly those events ‘e will have pIS low, for which
SCF(Sey(j))) can be extended by e to give a prefix of some
sequence in ij.

Proposition 9; (Initialization)

1. Sequencers are initialized with all TA’s low.
2.°The synchronizer circnit SR flip-flops are initialized to
make all CLR's high. 0O

The following theorem states that a synchronizer satisfying

Propositions 5 through 9 is provably safe.

Theorem 10 (Synchronizer Safety) : T(Ext) ¢ Trz(M) .

proof: Sce the appendix. O

As a converse to theorem 10 we would like to show that our circuit

can produce any valid trace Ext, such that T(¥xt) € Tr (M) for at least

3
some behavior of the external world. However for some traces T €
Try(M), there does not exist any Fxt such that T(Ext)=T. so there is no
way any circuit can producc the required trace Ext. This happens when
T does not sufficiently constrain the order in which the ¢lements may
occur so that any actual sct of time intervals will have fewer concurrent
clements than T. Given such a T it is nocessary to constrain its partial
order relation further, by adding additional (consistent) precedence
rclationships. It is casy to show using dcfinition 4 that this will never
remove T from the set Try(M). We shall show that whenever T is
sufficicntly constrained so that it falls in a class of traces we call layered,
then for some behavior of the external world T(Ext) for our circuit will
cqual this modified T.

Definition 11: A trace P = (Q,g,L.) is called layered, if Q can be
subdivided into a sequence of subsefs, such that for any il, i2 € Q,
il precedes 2 iff the subset in which il lics precedes the subset in
which i2lies. O

The trace in Figure 2-1 is layercd, since its clements can be subdivided
into the scquence of subscty {(A1)'(Bl-Cl)-(Az)-(Bz'Cz)'(AJ)'(Br C3)}
with the above property. If the size of cach subset were one, then the
trace would be totally ordered.

In general, any trace P wiil have a corresponding layered trace T
which preserves most of the parallclism of P, It is casy to show that for
any trace P,there exists a layered trace T, which differs from P only in
that the partial order relation of P is a restriction of that of T.

Theorem 12: (Synchronizer [iveness): Given any layered trace P e
Tre(M), our circuit will produce an event trace Ext, such that

T(Ext) = P for some behavior of the external world. 0O

proof: Sec the appendix. 0O

4. Implementing the Sequencer for a Simple Path
Expression
This section shows how to construct a sequencer that meets the
conditions set forth in Propositions 7 and 8. 'The sequencer circuit is
constructed in a syntax-directed fashion based upon the structure of the
simple path cxpression. We show that a compact layout for the
sequencer exists, so that circuits of this type can be implemented

cconoinically in VLSI,

Since a simple path expression is a regular expression, the sequencer
for a simple path cxpression is similar to a recognizer for the regular
expression. Although schemes for recognition of regular languages
have been proposed that avoid broadcast [3], we will use a scheme that
requires broadcast of cvents throughout the sequencer [4, 10). Because

196

our scheme for intcrconnecting scquencers requires broadcast, the
broadcast within an individual sequencer carries no additional penalty.
A sequencer for a simple path expression is built up from primitive
cells, cach corresponding to one character in the path. The syntax of
the path determincs the interconnection of the cells in the sequencer.
In this secuion, we first describe the behavior of a sequencer for a simple
path expression, then give a syntax-directed construction method.

As noted in Section 3, a synchronizer communicates with cach of its
sequencers using three lines:

e TR, a signal to the scquencer that event e is about to
commencc in the external world;

o TA : an acknowledgement from the sequencer that ali
actions started by TR have completed;

& DIS : a status linc indicating that action e would violate the
patfl constraints so that TR, should not be asserted.,

These communication lines interact in a complex way. For a single
type of event, the signals TR . and TA . follow the four-cycle signaling
convention described in Section 3 for REQ and ACK. For different types
of events, the synchronizer must guarantee the correct interaction of TR
signals by ensuring that only one TR signal for an cvent satisfying the
simple path cxpression js asserted at any time. ‘The synchronizer can
use the IS status lincs to determine which requests to send to the
sequencer,

The scquencer also has a part to play in ensuring the correct
interaction of TR, TA and DIS. Besides gencrating a TA signal that
follows the four cycle convention with TR, it must ensure that the signal
nis, is correct as long as no TR or TA signal is asserted. This guarantee
means that if no TA is asscrted, REQ o1 3nd REQ,, are both asserted, and
neither DIS,, nor DIS,, is truc, then the synchronizer may chooses
arbitrarily between el and e2, letting cither of them through to the
simple path sequencer. On receiving a TR, signal, then, the sequencer
must assert TA, adjust its internal state to reflect the occurrence of
event e, assert the proper set of DIS lincs, and await the negation of TR .
before negating TA "

Now that the behavior of a sequencer has been described, we show
how to construct a sequencer for any path. A scquencer has two parts:
a controller and a recognizer. The controller is connected directly to
the rest of the synchronizer and generates both the TA signal$ and some
control signals for the recognizer. The recognizer keeps track of which
cvents in the path have been scen and generates the DIS signals,

Figure 4-1 shows the controller for a simple path P. The controller
accepts the signals TR , from the sequencer for cach event ¢ that appears
in P.It generates the signals TA . along with Start, and End,. The

| Start End |
‘i J
>LAS
g
>LA]
.
1 T

R, M, *** TR, TA,* " " TA,TA,

Figure 4-1: The controller for path P

mcaning of TA . is that all actions caused by TR . have been completed.
In this realization, TA is just a delayed version of TR, where the delay is
long enough to let the sequencer stabilize. An upper bound on this
delay can be computed from the layout of the rest of the circuit. It is
possible to use a sclf-timed version of this circuit in which the delay is
derived from the recognizer. It has been omitted in this version of the
paper as it unnccessarily complicates an understanding of how the
circuits work. Slartl, and EndP are control signals that control the
movement of data through the recognizer for P, Stau'tP is truc whenever
at least one TR is on and no TA is on, while End,, is true whenever at
fcast one TA is on and no TR is on,

The recognizer for a path accepts the TR, signals and generates the
DIS signals. It is made up of sub-circuits corresponding to
subexpressions of the path. To construct the recognizer for a path, we
parse the path using a context-free grammar. Productions that are uscd
in parsing the path determine the interconnections of sub-circuits to
form the recognizer. Non-terminals that are introduced in the parse

correspond to primitive cells used in the circuit.

Recognizers are constructed using the following grammar for simple
path expressions,

S — path R end
R —+ R;R[(R + R)| (R)* | <evenv,

The terminal symbols in the grammar correspond to primitive cells;
there is one type of cell for the “+* symbol, one for the “** symbol,

won

onc for the ;" symbol, and one for each event. The non-terminals

correspond to more complex circuits that arc formed by
interconnecting the primitive cells. Using the mcthod described in [2),
scmantic rulcs attached to the productions of the grammar specify how
the circuits on the right of cach production arc interconnected to form

the circuit on the left.

187

To kecp track of which events in the path have occurred and which
are legal, the sub-circuits of a recognizer communicate using the signals
ENB (cnablc) and RES (result). ‘The circuit for a subexpression accepts
ENB and uscs it to determine when the first event in the subexpression
is legal. It gencrates RES when the last event has occurred.

Figure 4-2 shows the ccll for cvent e. Two latches, clocked by the
signals StartP and Endp. control the Row of ENB and RES signals.
Because of the definitions of Start, and Endy, the Icfimost latch is
loaded from ENB whengver at least one TR is on and no TA is on, while
the rightmost latch is loaded to update RES whenever at least one TA s
on and no TR is on. The two latches are never loaded at the same time;
in fact, because TR and TA follow the four cycle signalling convention,
there is a non-zero time between the end of the load signal for one latch
and the start of the load signal for the other. Thus there is no

combinational path through the cell,

From other
celisfor e
— DIS °
ENB O lateh Dlateh L5 e
TR
e Startp End,,
{Some TR (Some TA
and no TA) and no TR)

Figure 4-2: Ccll for event ein path P

The cvent cell in Figure 4-2 propagates a 1 from ENB to RES only if
cvent e occurs. When this coll is used in a recognizer for a path
expression, the 8D input will be true if and only if event e is permitted
by the expression. Thus. if ENB is true it ncgates nis, for the path, as
shown in the figurc. When a request TR is made, the output of the AND
gate is loaded tnto the lefimost latch. If this request is TR, this output
is I; otherwise it is 0. In cither case the output of the AND gate is
propagated to RFS through the latch when IR is lowered,

Figurces 4-3 and 4-4 show the cells for the “;” and “+" operators,
These are strictly combinational circuits. The circuit for ;" feeds the
RiS signal from the circuit at its left into the ENB signal for the circuit to
its right. "The circuit for “+" broadcasts its ENB signal to its operands
and combincs the RES signals from its opcrands in an OR gate,

e

Figure 4-5 shows the ccll for the operator, The cell enables its

opcrand after receiving cither a 1 on cither its own ENB or its operand's

togn

RES. Every time the operand is enabled the cell also putsoutal on

eneY 1 rEs
|
]
\ y
Figure 4-3: Cell for ;"
eneY 4 res
|
? *
1
¥ 7

Figured-4: Cell for*+"

its own RES. Tt Lwrefore outputs 1 on RES after 0 of more repetitions of
fts operand’s cxpression. The additonal AND gate scts the output to
£ero momentariiy after each event, thereby preventing the formation of

a laich when two or more **” cells are used together or when the RES
output is connected o the ENB input.

When larger circuits arc made from these cells, the RIS and ENB
signals retain their meanings. Each event ccll or sub-circuit formed
from several cells accepts one input ENB and produces one output RES.

We define ENB and RES to be correct if they meet the following
conditions.

& ENB is true for a sub-circuit if cach sequence of events
satisfying the expression for the sub-circuit may be the next
sequence (o occur.

® RES is true for a sub-circuit if some sequence of events
satisfying the sub-circuit has just occurred, and ENB was
true before the beginning of that sequence.
The ENB and RES signals thus indicate that a subcircuit may start
recognizing events, or that it has finished. In addition, a scquencer has
a signal INIT, not shown in the figures. which clears the ENB inputs to all

internal cclls and sets the ENB inputs for the cells corresponding to the
first cvents in the path,

The semantic actions for the productions of the grimmar describe the
interconnections of the cells in Figures 4-2, 4-3 and 4-4, Attributcs are
attached to the symbols of the grammar to represent the sets of events
that appear in the path. Thesc scts detcrmine which TR and TA signals
arc combined to produce Slm‘tP and Emll,.

193

D

/ v
End, ENB RES

Figure 4-5: Cell for “*”

S[A] — path R[A] end
Hook the RES output of R to its ENB
input, and connect INIT.

R[A U B] — R[A}R[B]
Connect the RES output for R[A] to the
ENB input of R[B]

R[A U B) = (R[A] + R[B})
Connect the R’s to the operand ports of a
+ cell,

R[A} = (R[A])* Conncct R to the operand port of a * cell.

R[{e}] — event e Use acell for e as the circuit for R

Figure 4-6 shows a recognizer for the path path a;(a+b)ic end
constructed using this syntax-directed technique.

.
]

r__I

-

+

™~ "
a b

Figure 4-6: A recognizer for path a;(a+b);c end

All recognizers constructed by this procedure perform the correct
function, as required by Propositions 7 and 8. That is, if a recognizer is
initialized and some sequence of TR signals is sent to it, "the recognizer
will output 1 on Dis , for preciscly thosc cvents e that arc forbidden by
the path, To prove this we show that the NS input of an cvent ceit in
the recognizer is 1 if and only if the event corresponding to this ccll is
permitted by the path, As shown in Figure 4-2, Dis_is 1 if and only if
none of the cells for cvent e is enabled. Thercfore, proving that an
event cell has its ENB signal set if and only if the corresponding event is
permitted in the path will show that the recognizer is functionatly
correct. In other words, we wish to prove that all ENB signals for event
cells are correct, according to the definition of ENB above,

We shall prove the stronger statement that all ENB signals in the
recognizer arce correct. This proof is based upon the structure of the

recognizer. An INB signal in a recognizer is set by onc of four sources:

¢ The operand port of a “+™ or **” cell;

o The left operand port of a *;” cell;

o The right operand port of a ;" cell;

o The INIT signal and the final RES of the recognizer;

In the first and second cases the signal is correct if and only if ENB for
the operator cell is correct. In the third case the signal comes from the
RES port of a recognizer for an initial subexpression. Thercfore it is
correct if and only if the RES signal for the subexpression is correct
{asserted only at the end of the subexpression). In the fourth case the
signal is correct at the start of recognition, and is correct thercafter if
and only if the final RES signal is asscried only at the end of the
expression, Thus, to prove that the circuits arce correct, we nced only
prove that if the ENB signal for a recognizer is correct then so is the RES

signal.

Once again, the proof of correctness is based upon the structure of a
recognizer. In acorrect recognizer the RES signal is true at time ¢, if and
only if the ENB signal is true at some preceding time #, and the cvents
between £, and 1, obey the path. A recognizer that is a single cvent cell
is clearly correct. A recognizer for path ash built by composition of

correct subrecognizers for a and b is also correct, since if RESy is trye at
time f then there must he some time f; when RIS, was truc, with all

intervening cvents satisfying path b, But then there must have been a
time £, when ENB, was truc and all events between f and ¢, must satisfy
path a. By definition of composition. then, the events between f and 1,
satisfy a;h. A recognizer for path (a)* is correct if its subrecognizer is
correct, since it outputs 1 and cnables its operand if and only if ENB or
RFS, is truc. Finally, a rccognizer for path a + b is correct if both
subrecognizers are correct. since if RIS is true then onc of RES_ or RES,
must be true, and if one of ENB, or ENBy is true then ENB must be true.
Since all mcthods of constructing recognizers have been shown to lead
to correct circuits, recognizers constructed using this procedure are
functionally correct,

Now that circuits have been designed and proved correct, we give
compact layouts for them. The floorplan for a scquencer, shown in
Figure 4-7 has the cells that make up the recognizer arranged in a line
with the controller to onc side. The TR signals flow parallel to the line
of recognizer cells to enter the controller, and the Start and End signals
cmerge from the controller to flow parallel to the line of cells. The ENB
and RES signals that are used for intercell communication also flow
parallel to the line of cells.

The laycut in Figure 4-7 is fairly small. If the sequencer for a path of

199

RES and
(=11 ll_l ENS
ree Celis
TR's
Controller
Start
End

Figure 4-7: 'The floorplan for a sequencer

length n that has k types of input cvents is laid out in this fashion, the
arca of the layout is no more than O(n(log n + £)). This is duc to the
structure of the recognizer circuits. ANl recognizer circuits are trecs,
which can be laid out with all nodes on a line and edges running
paraliel to the line using no more than O(log n) wiring tracks {7]. Thus
the height of the circuit in Figure 4-7 is O{log n + k) while its width is
O(n).

§. Implementation of the Arbiter

In this scction we briefly elaborate on the arbiter shown in Figure
3-2 10 show that the conditions of Proposition 6 can be met. The main
function of the arbiter is to sclect a single event from a mutually
exclusive set of requests. Furthermore, the arbiter must be fair — any
request that remains asserted must cventually be selected,

The following observation helps to simplify the arbiter: a pair of
events occurring in any single path expression must be mutually
exclusive. This is due to the role that cach event plays in enforcing
synchronization among a sct of multiple path expressions that alt
contain the same named event. The arbitration function can thus be
represented by a conflict graph, in which each event is denoted by a
vertex and the relation betwéen a pair of mutually exclusive events
denoted by an undirected edge. Our observation shows that the
resulting conflict graph for a sct of path expressions consists of a set of
overlapping cliques, where a clique of k nodcs, AL Ay L A
corresponds to a path cxpression R, with £, = { A}, Ay .. A)
‘The conflict graph represeats the static structure of a set of path

expressions. Figure 5-1 shows a multiple path expression with its

conflict graph.
B Cc
path (A +B + D) end
A F path (B;(C + D);E) end
o £ path (E+F+ G)end

G
Figure 5-1: The conflict graph of a path expression

The dynamic behavior of the arhiter depends on the conflict graph
together with the set of cvents that arc cnabled at any instant. The
dynamic structure of the sct of path cxpressions is represented by the
suhgraph of the conflict graph induced by the set of vertices
corresponding to the cvents, cnabled at that instant. The function of the
arbiter is to sclect an independent sct (not necessarily maximat) of this
subgraph, thus cnsuring that only onc of any pair of mutually exclusive
events is enabled.

Hence an arbiter is simply a transducer that takes a sct of inputs and
produces a sct of outputs, subject to the constraints outlined carlier.
Morenser, it is implicitly assumed that the arbiter is oblivious of any
static or dynamic structure of the path cxpressions other than those
represented by the conflict graph and the set of events enabled — in
particular, it has no knowlcdge of the syntactic structure of the path
expression, nor docs it know the internal states of the individual
scquencers, Clearly, onc can build non-oblivious arbiters that may
perform better. but this will be at the expense of conceptual simplicity
and the arca nceded for additional logic and global wires.

To motivate our design we shall briefly discuss the problems with
some simple schemes. In particular, we show that any deterministic
oblivious arbiter gives rise to starvation of an event which is continually
cnabled. In similar vain, we show that a straight-forward extension of
Scitz’s scheme [14] for a two-input arbiter to a gencral conflict graph
results in an unfair arbiter. Finally, we present a somewhat non-
standard scheme implemented in CMOS which rectifics the problems
with the other schemes.

The difficulty of building a fair dcterministic arbiter can be illustrated
by an example. Let 2 = { A, Az- s AL } be a set of events. To try
to build a fair arbiter for £ we might assign a priority number from 0
through n - 1 to cach event, where the priority corresponds to the
number of times the event is blocked, i e., tie number of times the event
is enabled but not selected by the arbiter, At any instant the arbiter
sclects from the set of enabled events with the highest priority number,

When an enabled cvent is sclected its priority number is reinitialized to
the lowest value. On the other hand, if the enabled cvent is not sclected
its priority number is incremented by one. It scems that since an cvent
A, can have at inost 1 - 1 neighbors in the con flict graph, and since cach
time it is blocked at least onc of its neighbors is selected with a resulting
increment in its own priority, after the nh attempt A, must have the
highest priority among all the neighboring events and hence must be
sclected. However, an event may never be cnabled cven if its request is
stil! pending because scquencing conditions imposed by the path
cxpression may block the event. In order to make this observation

concrete consider the following path expression:

path (A:C) + Bi(A + B)end.

Assume that the external client always requests permission to perform
all three events A, B and C. Let the priorities of all three be 0's initially.
As a resulg, initially A and B arc enabled. Assumic that B is selected,
making B's priority 0 and A’s priority 1. In the next instant, A and B
will again be cnabled. But now A has the higher priority and will be
sclected, so that A's priority becomes 0 and B's becomes 1. Continuing
in this fashion, it is casy to sce that the sequence chosen willbe BAB A
B A The trouble with this scheme is that C will never be enabled
even if its request is pending. This cxample can be extended to the
following lemma.

Lemma 13: Let M be a deterministic finite-state transducer
implementing an oblivious arbiter. Then there exists a path
expression over £ = { A, B, C } such that onc event, say C, will
be starved cven though its request is continually pending.

‘Proof: Let M be a deterministic finite-state transducer whose

alphabet is £ = { A, B, C }. Let the states of M be
§={ L R }. Let the conflict graph, G, for the path
expression be the complete graph on the vertices A, B and C. We
construct a path expression P with the conflict graph G such that
M causcs the starvation of the cvent C. Notice that because of the
naturc of the conflict graph @, if at any instant A and B3 arc cnabled

then at most onc of A and B may be selected by M,

Let 5 be an arbitrarily chosen state of M. We conduct an
experiment on M by continuously providing A and B as the
cnabled inpu&, starting with M in the state s,. If we present a
string of inputs { A, B}, { A,B },{ A, B} oflength m then
we notice that at the 1% input { A, B}, the transducer
deterministically goes from the state (1) = s, to a state 5(2) while
outputting A or B, Let s(1), 52), ..., s(m + 1) be the sequence of
states and ¢ € { A, B }™ be the output string produced as a result
of the experiment. As a consequence of the pigeon-hole principle,
some two states in the sequence of states will be the same . Of all
such pairs, let () and () be two such states closest to 5;. Assume
that { < j and let & be the smallest multiple of (j - #) such that k > i.
Without loss of gencrality assume that M outputs B when in state
7 with the input { A, B }.

Let P be the path expression

path (A + B)'(A;C + B); (A + B)*?end

It is casy to see that P has G as the conflict graph and if the
requests for A, B and C are continuously pending then the
sequence of oﬁtputs will be astring in { A, B }* and C will never
be cnabled. O

200

Before procceding further, et us consider the path expression path A +
B end. where the conflict graph is G = (V, E) = ({ A, B}, {[A, B]}).
Seitz [14] has shown how to build an arbiter for such a structure using
an interlock-clement, as shown in Figure 5-2,

Circuit operation in Figure 5-2 is most casily visualized starting with
neither client requesting, v, and v, both near 0 volts, and both outputs
high. If any single input, say A, , is lowered then v, is driven high,

AOU'.

high threshold
buffers

Bout

Figure 5-2: Seitz's Interlock Element

resulting in A out being lowered — B_ remuains unaffected. Moreover,
once A is towered, and as long as A is kept low, the interlock
clement remains in this stable state irrespective of what happens to B, .
If Am is now raised high, then the clement returns to its initial condition

it B, is still high; or B, is lowered if B, is lowered in the mcantime.

However, the interesting situation occurs when both A, and B, are
both lowered concurrently or within a very short interval of time. In
this case the cross-coupled NOR gates cnter a mctastable state, which is
resolved after indeterminate period of time in favor of either A or
B. Since this resolution depends on the thermal noise generated by the
gates, it is inhercntly probabilistic. In this case the outputs of the NOR
gatcs themselves cannot be used as the outputs. High threshold
inverters between the NOR gates and the outputs prevent false outputs
during the metastable condition.

1t would secm natural to extend Scitz's idea by generalizing it to the
conflict graph for an arbitrary sct of path cxpressions. Roughly
speuking, we may construct a circuit by homomorphically transforming
the conflict graph to a circuit by replacing each vertex with a NOR gate
and cach edge with a cress-coupling of NOR gates corresponding to the
pair of vertices on which the edge is incident. However, such an
implementation in NMOS has scre severe probienss, which will be
clarificd if we consider the circuit for the readers-writers path

expression:

path R, + W end
path R, + W end

where the pair R, and W and the pair R, and W are mu tuatly exclusive.

201

The conflict graph and the circuit for this expression are shown in

Figure 5-3.
o- o 0
R 1 W R 2
(a)
Vaq E‘[J I:I
bl—l VoM
Gnd e P
I Ry I W Ra2

Figure 5-3: (a) The Conflict Graph and (b) The Arbiter in NMOS,

Consider the situation when the circuit is in the none-requesting
condition and all three requests, R, R2 and W, arrive concurrently, An
infinitcsimally short interval A afier all threc requests arrive, let us
assume that the voltages at the outputs (of the NOR gates) have
increascd by an infinitesimatly small value Av « Vi The puli-down
MOS transistors may be assumed to be operating in their lincar region.
if all pull-ups arc assumed to provide cqual active resistance, the output
of the NOR gate corresponding to W will grow less rapidly than those
corresponding to R, or Rz' ‘The cumulative effect of this imbalance will
result in a low output for W's NOR gate and high outputs for Rl's and
Ry’s. Hence if R}, R, and W request continuously then the request for
W will never go through, resulting in W's starvation.

An casy fix to this problem may be to increase the ratio of pull-up to
pull-down for W's NOR gate to twice that of R 's and R,’s. But if this is
done in a static manner then, when only R and W are requesting, W
will have an unfair advantage over R,. Obviously. what is needed is
some means of controlling the ratios such that depending on the set of

requests the circuit configures itsclf dynamically in order to behave in a
balanced fashion,

An arbiter that can configure itsclf dynamically for the problem with
two readers and one writer is shown in Figure 5-4. To see how this
scheme remedics the problem discussed carlier, consider the situation
when the circuit is in non-requesting condition and all three requests,
R,. R, and W, arrive concurrently. An infinitcsimally short interval At

(W RLRz)
®w, v om ‘ Y [Rew
Salrily

; X{}
NiakTak
nd'Rx lw le

Figure 5-4: The Arbiter for 1-Writer-2-Readers Problem in CMOS.

after all three requests wrrive. the valtages at the outpats will have

increased by an infinitcsimally small value Av e v, .

th
However. “since active

The pull-down
MOS ransistors are in their lincar region.
resistances of the pull-up transistors depend on the neighboring events
that arc enabled, the pull-up resistance of the gate associated with W is
cxactly half of that associated with R1 or R,. ‘This provides a balance
among pull-up resistances and results in almost cqual rate of growth of
voliages at the outputs. Hence the interlock clements enter their
metastable states more or less simultancously; and the metastable
condition is resclved cither in favour of R, and R, or in favour of W,

the choice governcd by statistical thermal phenomena.

A similar analysis shows that the circuit behaves correctly when only
two out of three requests arrive concurrently. However, if only one
request, sey W, arrives while all its neighbouts remain in their non-
requesting condition the circuit behaves somewhat differently. In this
case the pull-up transistor with input (w R:'Rz) will turn on, thus
aHowing the output of the gate to go high. It is important to obscerve
that the pull-up transistors are controlied dynamically by the requests
for the neighbouring cvents — if there is a request for the neighbouring
cvent then only the pull-up corresponding to the cvent turns on; and if
there is no request fur the neighbouring cvents then only the pull-up
corresponding to the event itself turns on. For this to be implemented
correctly it is essential that the pull-up coiresponding Lo the evernt itseif
be wrned on only afier a delay necessary for the requests for the

neigh:bouring events to propagate to the gate of the pull-up.

Tne complex statistical nature of thermal noisc in the circuit in
conjunction with the cemplexity of the structure of the conflict graph
makes it hard o analyzc the circuit clectrically. For instance, the time
cunstants associated with cach arbiter output could possibly differ
significantly, Under the assumption that these second order effects are
small, every cnabled event will have a positive non-zero probability of
being selected. Thus. for a reasonable class of puth expressions, the

circuit ensures that a continuously rcguesting eveat is eventually

202

selected, This class inctudes the path expressions for which the other
two arbiters can not provide a good solution,

6. Conclusion

So far we have not discussed fairness. Intuitively, the implementation
of a path expression is fzir if any continuously requesting cvent will be
cventually sclected, provided it is possible to do so without violating the
scmantics of the path cxpression. As pointed outl in the previous
scction, our implementation is fair for a rcasonable class of path
expressions. As an example of a path cxpression for which our

implementation is not fair consider the following :

path (A + B); Cend,
path D; (A + E) end

Suppose that cach cvent takes the same amount of time to exocute
externally and that new requests for each cvent are forthcoming as soon
as allowed by the protocol. Then simultancous execution of D and B
will alicrnate with simultaneous execution of C and E without the
arbiter cver having to block any event. Yet, cvent A will never execute
even if it remains continually ready. If, however, the first request for
event B is delayed by the time it takes to execute an event, then initial
execution of cvent D will be followed by alternate executions of A and
(D,C). Now B and E never exccute! Since ncither the duration of
external cvents nor the occurrence of external requests is under the
control of the circuit, it is not easy to ensurc fairness for such path
expressions. It remains an open question whether a practical solution to
this problem exists,

Since our circuits have the constant scparator property, a more
compact O(N) layout is be possible using the techniques of[4].
However, while it is definitely possible to automatically gencrate the
O(N -log(N)) layout that we propose, it is much more difficult in
practice to generate the O(N) layout of [4). Furthcrmere, .. O(N)
layout will occupy less arca only for very large N. We suspect that case
of generating the layout will win over asymptotic compactness in this

case,

Finally, we plan to investigate cxtensions of our construction to
appropriate finite state subscts of CSP [5] and CCS (9. In the casc of
CSP the subset will only permit boolean valued variables and messages
which are signals. If the number of mcssage types is fixed, we
conjecture that area bounds comparable to those in scction 4 can be
obtained. Arrays of processes in which the connectivity of the
communication graph is low can be treated specially for a more
compact layout. Such a finite-state subset of CSP may even be more
useful than the path expression language discussed in the paper for high
level description of various asynchronous circuits.

References

1. Campbell, R. H. and A. N. Habermann, The Specification of
Process Synchronization by Path Expressions. In Lecture Notes in
Compuier Science. Volume 16, G. Goos and J. Hartmanis, Ed.,Springer-
Verlag, 1974, pp. 89-102.

2. Foster, M. J. Specialized Silicon Compilers for Language
Recognition, Ph.D. Th., CMU, July 1984.

3. Foster, M. J. and Kung, H. T. "Recognize Regular Languages with
Programmablec Building-Blocks.” Journal of Digital Systems VI, 4
(Winter 1982), 323-332.

4. Floyd, R. W. and Ullman, J. D. "The Compilation of Regular
Expressions into Integrated Circuits.” Journal of the Association for
Computing Machinery 29, 3 (July 1982), 603-622.

5, Hoare, C. A. R. "Communicating Scquential Processes." Comm.

ACM 21,8 (1978),

6. Lauer, P. E. and Campbell, R. H. "Formal Semantics of a Class of
High-Level Primitives for Coordinating Concurrent Processes.” Acta
Informatica 5 (Junc 5 1974), 297-332,

7. Leiserson, C.E. Arca-Efficient VLSI Computation. Ph.D, Th,,
Carncgic-Mellon University, 1981,

8. Li, W.and P. E. Lauer. A VLSI Implementation of Cosy. Tech,
Rept. ASM/121, Computing Laboratory, The University of Newcastle
Upon Tyne, January, 1984,

9. Milner, Robin. A Calculus of Communicating Systems, Volume 92:
Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg
NY. 1980.

10. Mukhopadhyay, A. “Hardwarc Algorithms for Nonnumcric
Computation.” [ELE Transactions on Computers C-28, 6 (June 1979),
384-394.

11. Patil, Suhas S. An Asynchronous Logic Array. MAC
TECHNICAL. MEMORANDUM 62, Massachusetts Institute of
‘Technology, May, 1975,

12. Pratt, V. R. On the Composition of Processes. Symposium on
Principles of Programming Languages. ACM, January, 1982

13. Rem, Martin, Partially ordered computations, with applications lo
VLS design, Eindhoven University of Technology, 1983,

14. Seitz, C. L. "Ideas About Arbiters.” LAMBDA First Quarter
(1980), 10-14.

Appendix : Proof details

Refer to section 3;
Lemma 14: If the same assumptions as in proposition 8 are
satisfied, then T(Seq(j)) is consistent with Rj .
Prool: From preposition 8 it follows that Seq(j) consists of non
concurrent time intervals, The result is thercfore easy to prove by
induction on the number intervals in Seq(j), using the same

proposition. I

203

Lemma 15: For cach clement { in Int with label ¢ the
corresponding ¢lements in Ext and Seq(j) are subintervals of i,
Proof: (requires proof based on the properties of the circuit in fig

2. 0O

Lemma 16. For any Rj ¢ M,» T(lnt)l Iy is a totally ordercd
multiset.

Proofl: It is easy to show that’](lnt)lv = T(lntlz). But Intl).
consists of "internal events’ of the path expression [ij, during cach
of which the corresponding ACK is high. Hence by proposition 6,
no two such events overlap, and therefore 'I'(lnt)l2Rj is a totally
ordered multiset. O

Lemnma 17: Forany Rj e M, 'I'(Int)lER = T(En)izm
)

Proof: For any clement i of T(Int), that is also in 'I'(Int)l)_ , the
corresponding clement of T(kxt) will be in "I'(K. xt)|2_ (dcﬁ‘gmon
2) since they must map to the same alphabet ¢ € E tlcnce these
traces have the same number of clements. Also from lemma 15 it
follows that if i/ and i2 are two elements of 'l'(lnt)l2 _ satisfying
onc or nonc of "il precedes 2" and "i2 prcccdcjs il", the
corresponding clements of l(l:xt)l)_R will satisfy at Icast the same
relationships. In other words the pamal order of 'I(int) is a
restriction of that of T(Ext). But by lemma 16 T(lnt)l2 isa
totally ordercd multiset. Hence from the above T(Ext)|): will
have the same partial order relationship and, therefore, be the

same totally ordered multiset. O

Lemma 18: For any Rj ¢ M, T(Seq()) = T(Int)| 5

Proof: Follows from lemma 15 and 16 in the same way as in the
proof of lemma 17. The only difference is that T(ch(j))lz
T(Seq(). O

Lemma 19: For any sequencer SEQj , ho two TR’s are high
simultancously.
Proof: The two TR’s would be two ACK's of events in the same path

expression Rj, which cannot be high simultancously by praposition
6. O

Lemma 20: For any sequencer SF.Qj » TR, is raised only if Dis, is
low and all TA's are low.

Proof: By induction on the number of rising transitions of TR’s ;

1. (First transition): Let the corresponding cvent be e By
proposition 9 initially all TA’s arc low, and all CLR’s are
high, hence all TR's are low initally. By proposition.7 all
TA’s will remain Jow until the first rising transition of TR
By the same proposition DIs, will not change until the first

rising transition of TR ¢ If DIS. were not low, IN . would
remain low (sce Figure 3-2). Pfcncc by proposition 6, TR,
would remain low, a contradiction.

. (For a succceding transition): Let the corresponding cvent
be p and that of the previous transition g. While TR e is high

[

no TA or IR other than TA_ or TR can be high (proposition
6 and lemma 19). Until Ci.R gocs high, TR must remain
high (sce Figurc 3-2). Once CI'R _ gocs high, a1| N, witha e
ER.. will be low after a short delay (sec Figure 3-2).
Assuming the variation in this dclay for different a's is less
than the delay of the arbiter in lowering TR |, all ®, with a
= g will continuc to remain low until CLR 'is lowered (sce
Figure 3-2). All TA . with a = g, also continuc to rcmain low
(proposition 7). But CLR remains high at least until TA_is
lowered (see Figure 7). Hence by the time TR is raised all
TA’s will be low. Also TR _could not have bccnpraiscd ifIN

were low (proposition Gf But if IS was high when a°
was last lowered then IN would now be low (sce Figure
3-2). assuming the main ﬁOR gate plus the 2-input NOR
gate have a lesser delay than the Muller-C clement plus the
SR Flip-Flop. Morcover, DIS_ cannot change before TR is
raised (proposition 7). Hence l)lsp must be low when TR » is
raised.

O

Lemma 21: For any scquencer SEQj , TR, is lowered only if TA c is
high,

Proof: The NOR gate arrangement in front of the arbiter insures
that once TR . is high it remains high until CLR . is raiscd, and this
can occur only if TA s high (sce Figure 3-2). Morcover once TA . is
high it will remain high until TR, is lowered (proposition 7). O

Theorem 10

Proof: I.einmas 19,20,21 satisfy the preconditions of proposition 8,
Hence T(Seq(j)) is consistent with Rj for any Rj ¢ M. By lemma
18 and definition 4, T(Int) is consistent with Rj for any Rj ¢ M. By
lemma 17 and definition 4, T(Ext) is consistent with Rj for any Rj
¢ M. Hence by definition 4, T(Ext) € Try(M). O

Lemma 22: If T ¢ Trz(M) is layered, then cach subser (cf
definition 11) of T has the property that no two elements in it are
instanccs of events in Ekj forany Rje M.

Proof: Any two elements i/,i2 (corresponding to events el,e2) in
the same subser of 'I' must be concurrent (definitions 3,11).

Suppusc el.e2 € sz with Rj € M. Then 'l’lxk. will include il.,i2
which will be concurrent (definition 2). Hence lfl)_‘ _cannot be a
total order and therefore 'I' ¢ 'I'rz(M) (dcfinition 4) - leading to a
contradiction. Hence the result. O

204

Theorem 12

Proof: The bchavior we require of the cxternal world is that it
simultancously raise REQ for all events in the first subser of T, wait
until all corresponding ACK are high, then simultaneously lower all
REQ, wait until all ACK are low, then repeat this cycle for the next
subset of T, and so on. We nced to show that under these
conditions the circuit responds within a finite amount of time in
each cycle. The result then follows directly.

As shown in the proof of lemma 20, all ACK’s are initially low.
Hence they are low at the beginning of each of the cycles
mentioncd in the previous paragraph. At the beginning of each
such cycle, ExtInt and every Seq(j) with Rj € M, get redefined.
Let Tp denote T restricted to subsets before the current cycle. It is
casy to show by induction on the number of cycles and definition
4 that at the beginning -of cach cycle T(Ext) = Tp and Tp ¢
Trg(M). Hence for any Rj e M, S('l‘p|2) is a prefix of some
clement in I_Rj. If the next subset contains an instance i/ of event
el, then for cach Rj € M such that e/ ¢ sz R S(Tp|z) can be
extended by i/ to give a prefix of some sequence in LRi ; in fact
this extension zives the next value of 'I‘p|z (see lemma 22). But
by leminas 18,17, for any Rj € M, T(Seq(j)) = T(Ext) I}: =
Tp!xa' . Hence for each Rj ¢ M, such that el ¢):Rj, T(Seq(j)) can
be extended by i/ to give a prefix of some sequence in LR! Thus
by propaosition 8, the corresponding sequencers SEQj. with el ¢ }:m,

will have msj low. This applies to any e/ in the next subset of T.

Thercfore at the beginning of any cycle, when REQ,, for any event
el in the next subset of T is raised, all DIS,, inputs to the NOR gate
for event el (sce Figure 3-2), will be low. Also within a finite
amount of time all relevant TA d‘s must go low by proposition 8,
since the corresponding TR d’s are already low. Hence CLR, will
golow. and IN_, will go high for cach el in the next subset of T. It
follows from proposition 6 and lemma 22 that all ACK’s
corresponding to events in the next subser of T will be raised within

a finitc amount of time.

The proof for the second half of the cycle is more straightforward.
By lemma 8 once all REQ's are lowered, within a finite time all
relevant Ta's will be raised, causing the corresponding CLR's to go
high. As a result all relevant IN's go low (scc figure 3-2) and hence
by proposition 6 all ACK's go low within a finite time, completing
thecycle. O

