
Int J Softw Tools Technol Transfer (2005) 7: 174–183 / Digital Object Identifier (DOI) 10.1007/s10009-004-0182-5

Computational challenges in boundedmodel checking∗

Edmund Clarke1, Daniel Kroening2, Joël Ouaknine3, Ofer Strichman4

1Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: emc@cs.cmu.edu
2Department of Computer Science, ETH Zürich, Switzerland
e-mail: daniel.kroening@inf.ethz.ch
3Oxford University Computing Laboratory, Oxford, UK
e-mail: joel@comlab.ox.ac.uk
4 Information Systems Engineering, Faculty of Industrial Engineering, Technion, Israel
e-mail: ofers@ie.technion.ac.il

Published online: 15 February 2005 – Springer-Verlag 2005

Abstract. We describe several observations regarding
the completeness and the complexity of bounded model
checking and propose techniques to solve some of the as-
sociated computational challenges. We begin by defining
the completeness threshold (CT) problem: for every finite
model M and an LTL property ϕ, there exists a num-
ber CT such that if there is no counterexample to ϕ in
M of length CT or less, then M |= ϕ. Finding this num-
ber, if it is sufficiently small, offers a practical method
for making bounded model checking complete. We de-
scribe how to compute an overapproximation to CT for
a general LTL property using Büchi automata, following
the Vardi–Wolper LTL model checking framework. This
computation is based on finding the initialized diameter
and initialized recurrence-diameter (the longest loop-free
path from an initial state) of the product automaton. We
show a method for finding a recurrence diameter with
a formula of size O(k log k) (or O(k(log k)2) in practice),
where k is the attempted depth, which is an improve-
ment compared to the previously known method that re-
quires a formula of size in O(k2). Based on the value of
CT , we prove that the complexity of standard SAT-based
BMC is doubly exponential and that, consequently, there
is a complexity gap of an exponent between this proced-
ure and standard LTL model checking. We discuss ways
to bridge this gap.

Keywords: Bonded-Model-checking – Complexity –
Completeness-Threshold

∗ This article merges and extends two previously published
conference proceeding articles [9, 16]. It was supported by the
Semiconductor Research Corporation (SRC) under contract no.
99-TJ-684, the National Science Foundation (NSF) under grant
nos. CCR-9803774 and CCR-0121547, the Office of Naval Research
(ONR) and the Naval Research Laboratory (NRL) under contract
no. N00014-01-1-0796, and the Army Research Office (ARO) under
contract no. DAAD19-01-1-0485.

1 Introduction

Bounded model checking (BMC) [5, 6] is a method
for finding logical errors, or proving their absence, in
finite-state transition systems. It is widely regarded as
a complementary technique to symbolic BDD-based
model checking (see [6] for a survey of experiments
with BMC conducted in industry). Given a finite
transition system M , an LTL formula ϕ, and a natural
number k, a BMC procedure decides whether there
exists a computation in M of length k or less that
violates ϕ. SAT-based BMC is performed by generating
a propositional formula, which is satisfiable if and only
if such a path exists. BMC is conducted in an iterative
process, where k is incremented until (i) an error is
found, (ii) the problem becomes intractable due to the
complexity of solving the corresponding SAT instance,
or (iii) k reaches some precomputed threshold, which
indicates that M satisfies ϕ. We call this threshold the
completeness threshold and denote it by CT . CT is any
natural number that satisfies

M |=
CT
ϕ→M |= ϕ ,

where M |=CT ϕ denotes that no computation of M of
length CT or less violates ϕ. Clearly, if M |= ϕ, then the
smallest CT is equal to 0, and otherwise it is equal to the
length of the shortest counterexample. This implies that
finding the smallest CT is at least as hard as checking
whether M |= ϕ. Consequently, we concentrate on com-
puting an overapproximation to the smallest CT based
on some graph-theoretic properties of M (such as the
diameter of the graph representing it), disregarding the
labeling of the states, and an automaton representation of
¬ϕ. In particular, we consider as one abstract model all
models for which these properties are the same as M ’s.
Thus, this computation corresponds to finding the length

E. Clarke et al.: Computational challenges in bounded model checking 175

of the longest shortest counterexample to ϕ in any one of
these models, assuming at least one of them violates ϕ.1

Thus, when we say the value of CT in the rest of the paper,
we refer to the value corresponding to this abstraction.
The value of CT depends on the model M , the prop-

erty ϕ (both the structure of ϕ and the propositional
atoms it refers to), and the exact scheme used for trans-
lating the model and property into a propositional for-
mula. The original translation scheme of [5], which we will
soon describe, is based on a k-steps syntactic expansion
of the formula. With this translation, the value of CT was
until now known only for unnested properties such asGp
formulas [5] andFp formulas [16]. Computing CT for gen-
eral LTL formulas has so far been an open problem.
In order to solve this problem we suggest to use in-

stead a semantic translation scheme, based on Büchi
automata, as was suggested in [10].2 The translation
is straightforward because it follows very naturally the
Vardi–Wolper LTL model checking algorithm, i.e., check-
ing for emptiness of the product of the modelM and the
Büchi automaton B¬ϕ representing the negation of the
property φ. Nonemptiness ofM ×B¬ϕ, i.e., the existence
of a counterexample, is proven by exhibiting a path from
an initial state to a fair loop. We will describe in more
detail this algorithm in Sect. 3.1. Deriving from this prod-
uct a propositional formula Ωϕ(k) that is satisfiable if
and only if there exists such a path of length k or less
is easy: one simply needs to conjoin the k-unwinding of
the product automaton with a condition for detecting
a fair loop. We will give more details about this alter-
native BMC translation in Sect. 3.2. For now let us just
mention that due to the fact that Ωϕ(k) has the same
structure regardless of the property ϕ, it is easy to com-
pute CT based on simple graph-theoretic properties of the
productM×B¬ϕ. Furthermore, the semantic translation
leads to smaller CNF formulas compared to the syntactic
translation. There are two reasons for this:

1. The semantic translation benefits from the existing al-
gorithms for constructing compact representations of
LTL formulas as Büchi automata. Such optimizations
are hard to achieve with the syntactic translation. For
example, the syntactic translation for FFp results in
a larger propositional formula compared to the for-
mula generated for Fp, although these are two equiva-
lent formulas. Existing algorithms [23] generate in this
case a Büchi automaton that corresponds to the sec-
ond formula in both cases.

2. The number of variables in the formula resulting from
the semantic translation is linear in k, compared to
a quadratic ratio in the syntactic translation.

1 If this assumption does not hold, e.g., when ϕ is a tautology,
the smallest threshold is of course 0.
2 The authors of [10] suggested this translation in the context of
bounded model checking of infinite systems, without examining the
implications of this translation on completeness and complexity as
we do here.

Other than the technique for efficient computation of re-
currence diameter in Sect. 4, this paper is mainly an ex-
position of observations about bounded model checking3

rather than a presentation of new techniques. In particu-
lar, we show how to compute CT based on the semantic
translation; prove the advantages of this translation with
respect to the size of the resulting formula as mentioned
above, both theoretically and through experiments; and,
finally, we discuss the question of the complexity of BMC.
In Sect. 5 we show that, due to the fact that CT can be
exponential in the number of state variables, solving the
corresponding SAT instance is a doubly exponential pro-
cedure in the number of state variables and the size of the
formula. This implies that there is a complexity gap of
an exponent between the standard BMC technique and
LTL model checking. We suggest a SAT-based proced-
ure that closes this gap while sacrificing some of the main
advantages of SAT. So far our experiments show that
our procedure is not better in practice than the standard
SAT-based BMC.
Computing CT is of course not the only way to make

BMC complete. Other techniques exist, although always
by performing additional steps. Sheeran et al. suggest
in [22] to check for convergence by testing if the prop-
erty is k-inductive (an extension of the traditional induc-
tion, which checks if the fact that the property holds in
k steps implies that it holds in the k+1 step). Although
this method can prove correctness for a larger set of cases
compared to standard induction, in the worst case k can
be as long as CT . Further, it only works for properties that
can be reduced to an invariant (a Gp property). McMil-
lan suggested several methods for fixpoint detection in
BMC, including a method based on interpolants [18] and
a method based on computing the whole set of reach-
able states [17]. In all of these techniques in the worst
case convergence is achieved only when reaching CT , but
with additional work for detecting convergence. In these
cases simply running BMC up to the bound CT is eas-
ier. McMillan observed, however, that in all the examples
he experimented with convergence was reached earlier
than CT . We leave to future work the question of whether
knowing the value of CT can help in practice compared
to the above-mentioned alternatives. Here we focus only
on the general computational problem from a theoretical
perspective.

2 A translation scheme
and its completeness threshold

2.1 Preliminaries

A Kripke structure M is a quadruple M = (S, I, T, L)
such that (i) S is the set of states, where states are de-
fined by valuations to a set of Boolean variables (atomic

3 Some of these observations can be considered as folk theorems
in the BMC community, although none of them, to the best of our
knowledge, has been published before.

176 E. Clarke et al.: Computational challenges in bounded model checking

propositions) At; (ii) I ⊆ S is the set of initial states; (iii)
T ⊆ S×S is the transition relation; and (iv) L : S→ 2(At)

is the labeling function. Labeling is a way to attach ob-
servations to the system: for a state s ∈ S the set L(s)
contains exactly those atomic propositions that hold in
s. We write p(s) to denote p ∈ L(s). The initial state I
and the transition relation T are given as functions in
terms ofAt. This kind of representation, frequently called
functional form, can be exponentially more succinct com-
pared to an explicit representation of the states. This fact
is important for establishing the complexity of the seman-
tic translation, as we do in Sect. 3.2.
Propositional linear temporal logic (LTL) formulas are

defined recursively: Boolean variables are in LTL; then, if
ϕ1, ϕ2 ∈ LTL, so are Fϕ1 (Future),Gϕ1 (Globally),Xϕ1
(neXt), ϕ1Uϕ2 (ϕ1 Until ϕ2), ϕ1Wϕ2 (ϕ1 Waiting-for
ϕ2), ϕ1∨ϕ2, and ¬ϕ1.

2.2 Bounded model checking of LTL properties

Given an LTL property ϕ, a Kripke structure M , and
a bound k, BMC is performed by generating and solving
a propositional formula Ωϕ(k): [[M]]k ∧ [[¬ϕ]]k, where
[[M]]k represents the reachable states up to step k and
[[¬ϕ]]k specifies which paths of length k violate ϕ. The
satisfiability of this conjunction implies the existence of
a counterexample to ϕ. For example, for simple invariant
properties of the formGp the BMC formula is

Ωϕ(k)
.
= I(s0)∧

k−1∧
i=0

T (si, si+1)∧
k∨
i=0

¬p(si) ,

where the left two conjuncts represent [[M]]k and the
right conjunct represents [[¬ϕ]]k.
There are several known methods for generating

[[¬ϕ]]k [5, 12]. In the rest of this section we consider the
original BMC translation scheme of Biere et al. [5] given
below. This translation distinguishes between finite and
infinite paths (for the latter it formulates a path ending
with a loop). For a given property, it generates both
translations and concatenates them with a disjunction.
Here is the translation for several temporal operators:

l[[P]]
i
k := P (Si) , (1)

l[[Fϕ]]
i
k :=

k∨
j=min(i,l)

l[[ϕ]]
j
k , (2)

l[[Gϕ]]
i
k :=

k∧
j=min(i,l)

l[[ϕ]]
j
k , (3)

l[[ϕ1Uϕ2]]
i
k :=

k∨
j=i

(
l[[ϕ2]]

j
k ∧

j−1∧
n=i

l[[ϕ1]]
n
k

)
∨ , (4)

i−1∨
j=l

(
l[[ϕ2]]

j
k ∧

k∧
n=i

l[[ϕ1]]
n
k ∧

j−1∧
n=l

l[[ϕ1]]
n
k

)
.

Each of the expressions of the form l[[·]]
i
k is a variable

in the translation. This translation results in a proposi-
tional formula with one variable for each subformula of ϕ,
in each position up to k, for each connection point of the
loop up to k. This implies that the number of variables in
the resulting formula is quadratic in k, as we will prove
in Proposition 1. Figure 1 illustrates the idea behind this
translation for the U operator that appears in Eq. (4). It
shows the two possibilities for pUq to hold in step i, for
a given loop to step l.
Constructing a propositional formula that captures fi-

nite paths is simpler and requires only a linear number of
variables, as there is no loop to consider: each subformula
at each location is represented by a new variable.
Finally, in order to capture all possible loops, we gen-

erate
∨k
l=0(lLk∧ l[[ϕ]]

0
k), where lLk

.
= (sl = sk), i.e., an

expression that is true if and only if there exists a back
loop from state sk to state sl. As mentioned above, the
total number of variables introduced by this translation is
quadratic in k. More accurately:

Proposition 1. The syntactic translation results in
a propositional formula with O(k · |v|+(k+1)2 · |ϕ|)
variables, where v is the set of variables defining the states
ofM and |ϕ| is the length of ϕ.

Proof. Recall the structure of the formula Ωϕ(k):
[[M]]k ∧ [[¬ϕ]]k. The subformula [[M]]k adds O(k · |v|)
variables. The subformula [[¬ϕ]]k adds, according to the
recursive translation scheme, not more than (k+1)2 · |ϕ|
variables, because each expression of the form l[[ϕ]]

i
k is

a new variable, and both indices i and l range over 0 . . . k.
Further, each subformula is unfolded separately, hence
leading to the result stated above. �

Note that this result refers to an arbitrary Boolean for-
mula, hence additional variables are needed for trans-
forming it to CNF.
We now investigate the size of the resulting formula.

Let C(M) denote the size of a circuit definingM . [[M]]k
is represented with a formula of size k ·C(M). The sub-
formula [[¬ϕ]]k is represented by a constraint that can
be quadratic in k (in the case of the Until operator) for
each of the (k+1)2 · |ϕ| variables (see Proposition 1), as
observed by Biere (A. Biere A, 2004, private communica-
tion). Thus we can claim:

Fig. 1. Demonstrating the two cases in which the Until
operator can hold in a path ending with a loop starting
from step i. The two cases are captured by the top

and bottom parts of Eq. (4), respectively

E. Clarke et al.: Computational challenges in bounded model checking 177

Proposition 2. The syntactic translation results in
a propositional formula of size O(k ·C(M)+ k4 · |ϕ|). If
sharing is applied to the formulas of the Until operator, the
formula size can be reduced to cubic instead of O(k4) (A.
Biere, 2004, private communication).

2.3 A completeness threshold for simple properties

There are two known results regarding the value of CT ,
one for Gp and one for Fp formulas. Their exposition re-
quires the following definitions.

Definition 1. The diameter of a finite transition sys-
temM , denoted by d(M), is the longest shortest path (de-
fined by the number of its edges) between any two reachable
states ofM .

The diameter problem can be reduced to the “all pair
shortest path” problem, and therefore be solved in time
polynomial in the size of the graph. In our case, how-
ever, the graph itself is exponential in the number of vari-
ables. Alternatively, one may use the formulation of this
problem as satisfiability of a quantified Boolean formula
(QBF), as suggested in [5], and later optimized in [3, 19].

Definition 2. The recurrence diameter of a finite tran-
sition system M , denoted by rd(M), is the longest loop-
free path inM between any two reachable states.

Finding the longest loop-free path between two states is
NP-complete in the size of the graph. One way to solve it
with SAT was suggested in [5]. The number of variables
required by their method is quadratic in the length of the
longest loop-free path. Hence, the SAT instance may have
an exponential number of variables, and finding a solution
to this instance is doubly exponential. In Sect. 4 we of-
fer an alternative translation that requires onlyO(k log k)
variables.
We denote by dI(M) and rdI(M) the initialized diam-

eter and recurrence diameter, respectively, i.e., the length
of the corresponding paths when they are required to
start from an initial state.
For formulas of the form Fp (i.e., counterexamples to

G¬p formulas), Biere et al. suggested in [5] that CT is less
than or equal to d(M) (it was later observed by several re-
searchers independently that in fact dI(M) is sufficient).
For formulas of the form Gp formulas (counterexamples
to F¬p formulas), it was shown in [16] that CT is equal to
rdI(M). Computing CT for general LTL formulas, as was
mentioned in the introduction, has so far been an open
problem.
These results can be further improved if we take into

account the propositions themselves in the property and
not just the temporal template of the formula. For ex-
ample, CT for Fp is not the initialized diameter of M ;
rather it is the initialized diameter of the portion of M
that satisfies ¬p. This is known as the predicated diam-
eter [21]. We leave the question of how to further tighten

the bounds by considering the propositions for future
work.

3 The semantic translation

The semantic translation that we present in this section
is based on Vardi–Wolper’s framework for model check-
ing of LTL properties. We briefly describe this method
in Sect. 3.1. In Sect. 3.2 we will show how to adapt it
for computing [[¬ϕ]]k from LTL formulas. In Sects 3.3
and 3.4 we will show that this new translation is both
more efficient (in terms of the size of the resulting for-
mula) and solves the question of computing the value of
CT for arbitrary LTL formulas as defined earlier.

3.1 LTL model checking with Büchi automata

Vardi and Wolper offered in [24] an automata-theoretic
view of LTL model checking that we now briefly describe.
A labeled Büchi automaton M = 〈S, S0, δ, L, F 〉 is a 5-
tuple where S is the set of states, S0 ⊆ S is a set of initial
states, δ ⊆ (S×S) is the transition relation, L is a label-
ing function mapping each state to a Boolean combina-
tion of the atomic propositions, and F ⊆ S is the set of
accepting states. The structure of M is similar to that
of a finite-state automaton, but M is used for deciding
acceptance of infinite words. Given an infinite word w,
w ∈L(M) if and only if the execution ofw onM passes an
infinite number of times through at least one of the states
in F . In other words, if we denote by inf (w) the set of
states that appear infinitely often in the path of w onM ,
then inf (w)∩F
= ∅.
Every LTL formula ϕ can be translated into a Büchi

automaton Bϕ such that Bϕ accepts exactly the words
(paths) that satisfy ϕ. There are several known tech-
niques to translate ϕ to Bϕ [13].4 We do not repeat the
details of this construction; rather we present several ex-
amples in Fig. 2 of such translations.
LTL model checking can be done as follows: Given an

LTL formula ϕ, construct B¬ϕ, a Büchi automaton that
accepts exactly those paths that violate ϕ. Then, check
whether Ψ

.
=M ×B¬ϕ is empty. It is straightforward to

see that M |= ϕ if and only if Ψ is empty. Thus, LTL
model checking is reduced to the question of Büchi au-
tomaton emptiness, i.e., proving that no word is accepted
by the product automaton Ψ. In order to prove empti-
ness, one has to show that no computation of Ψ passes
through an accepting state an infinite number of times.
Consequently, finding a reachable loop in Ψ that contains
an accepting state is necessary and sufficient for proving

4 Most published techniques for this translation construct a gen-
eralized Büchi automaton, while in this article we use a standard
Büchi automaton (the only difference being that the former allows
multiple accepting sets). The translation from generalized to stan-
dard Büchi automaton multiplies the size of the automaton by up
to a factor of |ϕ|. See [11, Sect. 9.2.2].

178 E. Clarke et al.: Computational challenges in bounded model checking

Fig. 2. Several LTL formulas and their corresponding Büchi
automata. Accepting states are marked by double circles

that the relationM
|= ϕ holds. Such loops are called fair
loops.

3.2 A semantic translation method

The fact that emptiness of Ψ is proven by finding a path
to a fair loop gives us a straightforward adaptation of the
LTLmodel checking procedure to a SAT-based BMC pro-
cedure. This can be done by searching for a witness to
the property ϕ′

.
=G(true) under the fairness constraint∨

Fi∈F
Fi [8] (that is,

∨
Fi∈F

Fi should be true infinitely
often in this path). Thus, given Ψ and k, we can use
the standard BMC translation for deriving ΩΨ(k), a SAT
instance that represents all the paths of length k that sat-
isfy ϕ′. Finding such a witness of length k or less is done
in BMC by solving the propositional formula:

ΩΨ(k)
.
= I(s0)∧

k−1∧
i=0

T (si, si+1)

∧
k−1∨
l=0

(sl = sk)∧ k∨

j=l

∨
Fi∈F

Fi(sj)

 . (5)

The rightmost conjunct in Eq. (5) constrains one of the
states in F to be true in at least one of the states of the
loop. In our case the fairness constraints refer to accept-
ing states in the Büchi automaton. It can be worthwhile
to represent the set of accepting states symbolically, as
a predicate P , in which case we can replace the last dis-
junct with P .
Since the Büchi automaton used in this translation

captures the semantics of the property rather than its
syntactic structure, we call this method a semantic trans-
lation for BMC.
We continue by proving the two advantages of this

translation: the efficiency of the translation and the ease
of computing CT .

3.3 The semantic translation is more efficient

The semantic translation has a clear advantage in terms
of the number of variables in the resulting formula,

as stated in the following proposition (compare to
Proposition 1).

Proposition 3. The semantic translation results in
a propositional formula with O(k · (|v|+ |p|)) variables,
where v and p are the sets of variables of M and ϕ,
respectively.

Proof. The transition relation of the Büchi automaton
constructed from ϕ is defined by p variables. The propo-
sitional formula is constructed by unfolding k times the
product ψ, hence it uses O(k · (|v|+ |p|)) variables. It also
includes constraints for identifying a loop with a fair
state, but these constraints only add clauses, not new
variables. �

Not only does the semantic translation require less
variables, it also results in a smaller formula, as we now
prove. Let C(ψ) be the size of a circuit representing ψ,
and letC(F) denote a size of a predicate, or a circuit, that
represents all the accepting states in B¬ϕ. We now claim:

Proposition 4. The semantic translation results in
a propositional formula of size O(k · (C(ψ)+ |v|+ |p|+k ·
C(F))).

Proof. Unrolling the circuit k times results in a formula
with size O(k ·C(ψ)). It remains to consider the con-
straints that we add for detecting fair loops (Eq. (5)).
This requires a comparison of states for each l in the
range 1 . . . k, and for each such comparison a constraint
of size (k− l) ·C(F) for forcing the loop to be fair. Each
comparison requires O(|v|+ |p|) bitwise comparisons. So
altogether the formula is of sizeO(k · (C(ψ)+ |v|+ |p|+k ·
C(F))). �

The result in Proposition 4 can be further improved by
sharing fairness constraints, as in [6], resulting in a trans-
lation linear in k.
As before, the analysis here refers to an arbitrary

propositional formula, and transforming it to CNF re-
quires the addition of auxiliary variables.
We conducted some experiments in order to check

the difference between the translations. We conducted
this experiment with NuSMV 2.1, which includes both
an optimized syntactic translation [7] and a tool called
ltl2smv that translates LTL formulas to SMV files by
describing the transition relation of the corresponding
Büchi automata. Since generating the BMC formula re-
quires also a model, and since we only wanted to compare
the effect of the translation of the property, we gener-
ated a trivial model consisting of a single variable. Given
the SMV model representing the Büchi automaton, we
checked the property F(false) under possible fairness
constraints, as prescribed by the accepting states of the
Büchi automaton.
We experimented with large LTL formulas taken from

the wring benchmark suite [23]. Since some of the for-
mulas are too large to fit in this paper, in Table 1 we only

E. Clarke et al.: Computational challenges in bounded model checking 179

Table 1. Number of temporal operators
for each of the benchmark

formulas

Formula G X U F

1 1 5 1
2 8 9
3 5 9
4 1 6 8
5 1 4 7 1
6 7 1 2 2
7 8 1 4
8 70 54
9 4 66 100 3
10 500 500

show the number of temporal operators in each one of
them.
The results for these formulas appear in Table 2. We

checked formula 10 with two different bounds, which
appear as Test 10 and Test 11 in the table. Timeout
was set to 36000 s. Run times shorter than a second
were taken as 0.5 s for calculating the averages. Although
we disregard the instances where the syntactic transla-
tion cannot generate formulas for when computing the
average, it is rather safe to assume that it would take

Table 2. Comparing results for the Semantic and syntactic translations. Run time is given
in seconds. The main bottleneck in the syntactic translation is the generation of the
formulas, which are orders of magnitude larger in both the number of variables

and clauses in comparison to the semantic translation

Test # Method K # Variables # Clauses Formula Formula
Generation Solving (Zchaff)

1 Syn 100 375972 1126666 601 < 1
Sem 100 13237 37416 < 1 < 1

2 Syn 50 400177 1199772 1821 1.08
Sem 50 3676 10269 < 1 < 1

3 Syn 70 431787 1294322 25200 1.79
Sem 70 25959 74901 < 1 < 1

4 Syn 25 65995 197281 10800 0.21
Sem 25 9697 27620 < 1 < 1

5 Syn 65 586649 1758839 21620 2.2
Sem 65 18582 53109 < 1 < 1

6 Syn 80 237500 711321 28802 1.74
Sem 80 23012 65998 < 1 1.92

7 Syn 80 – – timeout –
Sem 80 21583 61373 < 1 < 1

8 Syn 25 128095 383876 606 < 1
Sem 25 42702 122800 < 1 < 1

9 Syn 40 – – timeout –
Sem 40 161822 476036 < 1 < 1

10 Syn 25 – – timeout –
Sem 25 359057 1053870 < 1 < 1

11 Syn 5 – – timeout –
Sem 5 72577 210230 < 1 < 1

Avg Syn > 318025 > 953153 > 21222 > 1.14
Sem 68354 199420 0.5 0.62

more time to solve them in comparison with the other
instances.
As shown in the table, there are very large differences

in the size of the resulting formulas, and hence also in
the time it takes NuSMV to generate them. There is not
a large difference in the time it takes zchaff to solve
the resulting CNF formulas, probably because they are all
trivially satisfied when checked against the artificial one-
variable model we generated. We do not present results of
a real model here, first, because this would skew the com-
parison, as the differences in the translation are only in
the LTL formula, not the model, and second, because all
publicly available benchmark models that we are aware of
have very short properties (typically not more than two or
three nesting levels), unlike what is used in industry.

3.4 Computing CT for general LTL formulas

A major benefit of the semantic translation is that it im-
plies directly an overapproximation of the value of CT :

Theorem 1. A completeness threshold for any LTL
property ϕ when using Eq. (5) is min(rdI(Ψ)+1, dI(Ψ)+
d(Ψ)).

Proof. (a) We first prove that CT is bounded by dI(Ψ)+
d(Ψ). If M
|= ϕ, then Ψ is not empty. The shortest wit-

180 E. Clarke et al.: Computational challenges in bounded model checking

ness for the nonemptiness of Ψ is a path s0, . . . , sf , . . . sk,
where s0 is an initial state, sf is an accepting state, and
sk = sl for some l ≤ f . The shortest path from s0 to sf is
not longer than dI(Ψ), and the shortest path from sf back
to itself is not longer than d(Ψ). (b) We now prove that
CT is also bounded by rdI(Ψ)+1 (the addition of 1 to the
longest loop-free path is needed in order to detect a loop).
Falsely assume thatM
|= ϕ but all witnesses are of length
longer than rdI(Ψ)+1. Let W : s0, . . . , sf , . . . sk be the
shortest such witness. By definition of rdI(Ψ), there exist
at least two states, say, si and sj , in this path that are
equal (other than the states closing the loop, i.e., si
= sk).
If i, j < f or i, j > f , then this path can be shortened by
taking the transition from si to sj+1 (assuming, without
loss of generality, that i < j), which contradicts our as-
sumption thatW is the shortest witness. If i < f < j, then
the path W ′ : s0, . . . , sf , . . . , sj is also a loop witnessing
M
|= ϕ, but shorter thanW , which again contradicts our
assumption. �

The left-hand side drawing below demonstrates
a case in which dI(Ψ) + d(Ψ) > rdI(Ψ) + 1
(dI(Ψ) = d(Ψ) = rdI(Ψ) = 3), while the right-hand
side drawing demonstrates the opposite case (in this
case, dI(Ψ) = d(Ψ) = 1, rdI(Ψ)+1 = 5). These examples
justify taking the minimum between the two values.

An interesting special case is invariant properties
(Gp). The Büchi automaton for the negation of this
property (F¬p) has a special structure (see third drawing
in Fig. 2): for allM , any state satisfying ¬p in the product
machine Ψ leads to a fair loop. Thus, to prove emptiness,
it is sufficient to search for a reachable state satisfying
¬p. A path to such a state cannot be longer than dI(Ψ).
More formally:

Theorem 2. A completeness threshold for Fp formulas,
where p is nontemporal, is dI(Ψ).

Recall that we refer to witnesses; hence the theorem refers
to counterexamples toG¬p formulas.

4 Computing the recurrence diameter
with sorting networks

Computing the recurrence diameter efficiently is essential
for applying Theorem 1. The currently used technique [5]
for computing the recurrence diameter compares all pairs
of states. The size of the resulting formula is therefore
quadratic in the length of the path k.
We propose the following alternative: first, generate

an equation that represents the same set of states but
in a sorted order; second, compare the neighbors in the
sorted sequence. Since we have to generate the equa-
tion without any actual knowledge of the states, the se-
quence of comparisons performed must be the same for

all possible states. This is known as the Bose–Nelson sort-
ing problem. A circuit that solves this problem is called
a sorting network (see Knuth [15] for a survey).
Ajtai et al. [1] show that sorting networks for n inputs

can be built with size O(n log n). However, there is a very
high constant (several thousands) hidden in this complex-
ity result that makes it impractical for our purpose. We
therefore use a variant of a bitonic sorting network as
described by Batcher [2], which has an asymptotic size
of O(n(log n)2). Bitonic sorting networks have a recur-
sive structure (Fig. 3). The inputs are split into two parts
that are sorted independently and then merged. Figure 4
shows a simple sorting network for three input states.
Let s0 . . . sn−1 denote the n states of the path. Using

the sorting network, we obtain an ordered permutation
of these states s′0 ≥ s

′
1 . . .≥ s

′
n−1. It is obvious that a se-

quence of states contains two equal states if and only if its
corresponding sorted sequence contains two equal neigh-
boring states, or, formally:

∃i : s′i = s
′
i+1 ⇐⇒ ∃l, j : l
= j∧sl = sj . (6)

Thus, we now only have to compare all neighbors in this
sequence. This can be done with n−1 comparisons.

4.1 Ordering and swapping

All sorting networks require a compare and swap opera-
tion. Two elements a and b are compared and, if a > b,
swapped. We implement the ordering operator by com-
puting the last carry bit of the sum a+(−b). Let a denote
a bit vector of length β, and let ai, 0≤ i < β denote the
ith component of a. Let b denote the inverted vector b.

Fig. 3. Block diagram of a bitonic sorting
network with n inputs and l= �log2 n�. If n
is not a power of two, the smallest element

(denoted by 0) is used for merging

Fig. 4. Sorting network for three inputs. i0 . . . i2
are the input unsorted states, and i′0 . . . i

′
2

are the output sorted states

E. Clarke et al.: Computational challenges in bounded model checking 181

Since b+1 is equal to −b, we can compute a+(−b) by
computing a+ b+1. The first carry bit c0 of this sum is:

c0 := a0∨ b0. (7)

The ith carry bit of this sum with i≥ 1 is:

ci := (ai∧ bi)∨ (ai∧ ci−1)∨ (bi∧ ci−1). (8)

The value of the last carry bit cβ−1 determines whether
we swap a and b. Let b′ denote the new value (after swap-
ping) of b. The equation for a′ follows the same pattern:

b′i = ai∧ cβ−1∨ bi∧ cβ−1. (9)

Equation (7) is transformed into CNF using 1 new literal
and 3 clauses, Eq. (8) requires 1 new literal and 6 clauses,
and Eq. (9) requires 1 new literal and 4 clauses. The swap-
ping has to be done for both a and b. Thus, the total cost
of one compare/swap operation with β bits is 3β literals
and 14β−3 clauses.
In Fig. 5 we show graphs that present the number

of clauses and variables as a function of k, in a for-
mula representing loop-free paths of depth k. The asymp-
totic advantage of sorting networks is clear from these
graphs. The performance of SAT solvers on a particu-
lar instance is often not directly related to the size of
the CNF. We therefore evaluate the performance of the
sorting network and the quadratic encoding on an artifi-
cial benchmark with adjustable recurrence diameter. The
results are summarized in Table 3. For increasing recur-
rence diameters k, we show the results for a satisfiable

Fig. 5. Comparison of the CNF size (number of literals and
clauses) with pairwise comparison and with sorting network

Table 3. Comparison of run time of recurrence
diameter test with a sorting network and
quadratic encoding. The run time

is given in seconds

quadratic sorting network
k SAT UNSAT SAT UNSAT

10 0.07 0.07 0.11 0.11
20 0.21 0.20 0.29 0.28
30 0.39 0.39 0.51 0.49
40 0.67 0.64 0.81 0.73
50 1.02 0.97 1.07 1.00
60 1.38 1.34 1.31 1.22
70 1.83 1.74 1.79 1.68
80 2.41 2.30 2.16 1.98
90 3.01 2.86 2.41 2.24
100 3.65 4.25 2.78 2.78
Avg. 1.464 1.476 1.324 1.251

instance (bound k) and an unsatisfiable instance (bound
k+1) for both methods. The experiments were performed
with Limmat [4], but we obtained results that are compa-
rable with those of zChaff [20].
For smaller diameters, the quadratic method is faster,

while for the larger diameters (> 60), the sorting network
is faster. This holds for both satisfiable and unsatisfiable
instances. Note that the circuit used is not necessarily
representative of circuits used in industry. We were not
able to obtain an industrial circuit with a diameter that
is both deep enough to make the sorting network efficient
and shallow enough to make BMC feasible. We hope that
the rapid advancements in SAT solving will eventually
make thismethodmore applicable to large circuits aswell.

5 The complexity of BMC

According to Theorem 1, the value of CT can be exponen-
tial in the number of state variables. This implies that the
SAT instance (as generated in both the syntactic and se-
mantic translations) can have an exponential number of
variables, and hence solving it can be doubly exponen-
tial. All known SAT-based BMC techniques, including
the one presented in this article, have this complexity.
Since there exists a singly exponential LTL model check-
ing algorithm in the number of state variables, it is clear
that there is a complexity gap of an exponent between
the two methods. Why, then, use BMC for attempting
to prove thatM |= ϕ holds? There are several answers to
this question:

1. Indeed, BMC is normally used for detecting bugs, not
for proving their absence. The number of variables in
the SAT formula is polynomial in k. If the property
does not hold, k depends on the location of the shal-
lowest error. If this number is relatively small, solv-
ing the corresponding SAT instance can still be easier
than competing methods.

182 E. Clarke et al.: Computational challenges in bounded model checking

2. In many cases the values of rdI(Ψ) and dI(Ψ) are not
exponential in the number of state variables and can
even be rather small. In hardware circuits, the leading
cause of exponentially long loop-free paths is counters,
and hence designs without counters are much easier
to solve. For example, about 25% of the components
examined in [3] have a diameter smaller than 20. The
authors used a structural analysis of circuits to iden-
tify these components and compute their diameters
while ignoring the rest of the circuit. This ability to
decompose the circuit has led to impressive results
in verifying, rather than only falsifying, properties of
circuits.

3. For various technical reasons, SAT is not very sensi-
tive to the number of variables in a formula, although
theoretically it is exponential in the number of vari-
ables. Comparing it to other methods solely based on
their corresponding complexity classes is not a very
good indicator for their relative success in practice.

We argue that the reason for the complexity gap between
SAT-based BMC and LTL model checking (as described
in Sect. 3.1) is the following: SAT-based BMC does not
keep track of visited states, and therefore it possibly vis-
its the same state an exponential number of times. Unlike
explicit model checking it does not explore a state graph,
and unlike BDD-based symbolic model checking, it does
not memorize the set of visited states. For this reason, it
is possible that all paths between two states are explored,
andhence a single state canbe visited an exponential num-
ber of times. For example, an explicit model checking al-
gorithm, such as the double DFS algorithm [14], will visit
each state in the graph below not more than twice. SAT-
based BMC, on the other hand, will consider in the worst
case all 2n possible paths between s and t, where n is the
number of “diamonds” in the graph. In practice no mod-
ern SAT solvers would actually be so inefficient because of
their ability to prune large parts of the state space, but on
the other hand they will not be able to guarantee less than
exponential time on this particular example.

A natural question is whether this complexity gap can
be closed, i.e., is it possible to change the SAT-based
BMC algorithm so it becomes a singly exponential rather
than a doubly exponential algorithm. Figure 6 presents
a possible singly exponential BMC algorithm for Gp for-
mulas (i.e., reachability) based on an altered SAT al-
gorithm that can be implemented by slightly changing
a standard SAT solver. The algorithm forces the SAT
solver to follow a particular variable ordering, and hence
the main power of SAT (guidance of the search process
with splitting heuristics) is lost. Further, it adds con-
straints for each visited state, forbidding the search pro-

1. Force a static order, following a forward traversal.
2. Each time a state i is fully evaluated (assigned):
– Prevent the search from revisiting it through deeper
paths, e.g., If (xi,¬yi) is a visited state, then for
i < j ≤ CT add the following blocking state clause:
(¬xj ∨yj).
– When backtracking from state i, prevent the search
from revisiting it in step i by adding the clause (¬xi∨
yi).
– If ¬pi holds, stop and return ‘Counterexample
found’.

Fig. 6. A singly exponential SAT-based BMC algorithm
for Gp properties

cess from revisiting it through longer or equally long
paths. This potentially adds an exponential number of
clauses to the formula.
So far our experiments show that this procedure is

worse in practice than the standard BMC.5 We observed
that the SAT solver reaches cycle k quickly and then takes
a very long time before it backtracks beyond one or more
cycles. Each time it is in cycle k, it simply tries all in-
put combinations, which explains this behavior. Whether
it is possible to find a singly exponential SAT-based al-
gorithm that works better in practice than the standard
algorithm, is still an open question with a very signifi-
cant practical importance. The work on SAT instances
with bounded cutwidth [25] seems to offer a direction for
coping with this problem, because when ordering the vari-
ables forward as suggested above the cutwidth does not
depend on k.

6 Conclusions

We discussed the advantages of the semantic translation
for BMC. We showed that it is in general more efficient,
as it results in smaller CNF formulas, and it potentially
eliminates redundancies in the property of interest. We
also showed how it allows one to compute the complete-
ness threshold CT for all LTL formulas. This computa-
tion is based on computing the recurrence diameter of an
automaton. We showed an algorithm for computing the
recurrence diameter based on sorting networks, which re-
sults in a smaller formula as compared with previously
known methods, although we could not locate real exam-
ples in which this reduction in the formula size indeed
shortens the solving time.
The ability to compute CT for general LTL enabled us

to prove that all existing SAT-based BMC algorithms are
doubly exponential in the number of variables. Since LTL
model checking is only singly exponential in the number

5 Biere implemented a similar algorithm in 2001 and reached the
same conclusion. For this reason he did not publish this algorithm.
Similar algorithms were also used in the past in the context of
Automatic Test Pattern Generation (ATPG).

E. Clarke et al.: Computational challenges in bounded model checking 183

of variables, there is a complexity gap between the two ap-
proaches. To close this gap, we suggested a revised BMC
algorithm that is only singly exponential but in practice
so far has not proved to be better than the original SAT-
based BMC.

Acknowledgements. We thank Armin Biere for his suggestions to
improve this article, and in particular for helping us get right the
results on the size of formulas resulting from the syntactic and
semantic translations.

References

1. Ajtai M, Komlós J, Szemerédi S (1983) An O(N logN) sort-
ing network. In: Proceedings of the 25th ACM symposium on
theory of computing, pp 1–9

2. Batcher KE (1968) Sorting networks and their applications.
In: Proceedings of the AFIPS spring joint computer confer-
ence, 32:307–314

3. Baumgartner J, Kuehlmann A, Abraham J (2002) Prop-
erty checking via structural analysis. In: Brinksma E, Larsen
KG (eds) Proceedings of the 14th international conference
on computer aided verification (CAV’02), Copenhagen, Den-
mark, July 2002. Lecture notes in computer science, vol 2404.
Springer, Berlin Heidelberg New York

4. Biere A (2004) The evolution from limmat to nanosat. Techni-
cal report, ETH Zürich

5. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model
checking without BDDs. In: Proceedings of the workshop on
tools and algorithms for the construction and analysis of sys-
tems (TACAS’99). Lecture notes in computer science, vol .
Springer, Berlin Heidelberg New York, pp 193–207

6. Biere A, Cimatti A, Clarke EM, Strichman O, Zue Y (2003)
Bounded model checking. In: Advances in computers, vol 58.
Academic, New York

7. Cimatti A, Pistore M, Roveri M, Sebastiani R (2002) Improv-
ing the encoding of LTL model checking into SAT. In: 3rd
international conference on verification, model checking and
abstract interpretation (VMCAI), pp 196–207

8. Clarke EM, Grumberg O, Hamaguchi K (1994) Another look
at ltl model checking. In: Dill DL (ed) Proceedings of the
6th international conference on computer aided verification.
Lecture notes in computer science, vol 818. Springer, Berlin
Heidelberg New York, pp 415–427

9. Clarke EM, Kroening D, Ouaknine J, Strichman O (2004)
Completeness and complexity of bounded model checking. In:
Proceedings of the 5th international conference on verification,
model checking and abstract interpretation (VMCAI’04),
Venice, Italy, January 2004. Lecture notes in computer science,
vol 2937. Springer, Berlin Heidelberg NewYork, pp 85–96

10. de Moura L, Rueß H, Sorea M (2002) Lazy theorem proving
for bounded model checking over infinite domains. In: Pro-
ceedings of the 18th international conference on automated
deduction (CADE’02), Copenhagen, July 2002

11. Clarke EM, Grumberg O, Peled D (1999) Model checking.
MIT Press, Cambridge, MA

12. Frisch A, Sheridan D, Walsh T (2002) A fixpoint based encod-
ing for bounded model checking. In: International conference
on formal methods in computer-aided design (FMCAD 2002),
Portland, OR, November, pp 238–255

13. Gerth R, Peled D, Vardi M, Wolper P (1995) Simple on-the-
fly automatic verification of linear temporal logic. In: Protocol
specification testing and verification. Chapman & Hall, Lon-
don, pp 3–18

14. Holzmann GJ, Peled D, Yannakakis M (1996) On nested
depth first search. In: 2nd SPIN workshop, AMS, pp 23–32

15. Knuth DE (1973) The art of computer programming, vol 3:
Sorting and searching. Addison-Wesley, Reading, MA

16. Kroening D, Strichman O (2003) Efficient computation of re-
currence diameters. In: Proceedings of the 4th international
conference on verification, model checking, and abstract in-
terpretation (VMCAI’03), New York, January 2003. Lecture
notes in computer science, vol 2575. Springer, Berlin Heidel-
berg New York, pp 298–309

17. McMillan KL (2002) Applying SAT methods in unbounded
symbolic model checking. In: Brinksma E, Larsen K (eds)
Proceedings of the 14th international conference on computer
aided verification (CAV’02), Copenhagen, July 2002. Lecture
notes in computer science, vol 2404. Springer, Berlin Heidel-
berg New York, pp 250–264

18. McMillan KL (2003) Interpolation and sat-based model check-
ing. In: Hunt WA Jr, Somenzi F (eds) Proceedings of the inter-
national conference on computer aided verification (CAV’03),
July 2003. Lecture notes in computer science, vol . Springer,
Berlin Heidelberg New York

19. Mneimneh M, Sakallah K (2002) SAT-based sequential depth
computation. In: Workshop on constraints in formal verifica-
tion, Ithaca, New York, September

20. Moskewicz M, Madigan C, Zhao Y, Zhang L, Malik S (2001)
Chaff: engineering an efficient SAT solver. In: Proceedings of
the conference on design automation (DAC’01)

21. Schuppan V, Biere A (2004) Efficient reduction of finite state
model checking to reachability analysis. Int J Softw Tools
Technol Transfer

22. Sheeran M, Singh S, Stalmarck G (2000) Checking safety
properties using induction and a sat-solver. In: Hunt, Johnson
(eds) Proceedings of the international conference on formal
methods in computer-aided design (FMCAD 2000)

23. Somenzi F, Bloem R (2000) Efficient Büchi automata
from LTL formulae. In: Emerson EA, Sistla AP (eds)
12th international conference on computer aided verification
(CAV’00), Berlin, July. Springer, Berlin Heidelberg New York,
pp 248–263

24. Vardi MY, Wolper P (1986) An automata-theoretic approach
to automatic program verification. In: Proceedings of the 1st
IEEE symposium on logic in computer science, pp 332–344

25. Wang D, Clarke EM, Zhu Y, Kukula J (2001) Using cutwidth
to improve symbolic simulation and boolean satisfiability. In:
IEEE International workshop on high level design validation
and test (HLDVT 2001), November, p 6

