Form Methods Syst Des (2010) 36: 97-113
DOI 10.1007/s10703-009-0076-y

On simulation-based probabilistic model checking
of mixed-analog circuits

Edmund Clarke - Alexandre Donzé - Axel Legay

Published online: 8 July 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper, we consider verifying properties of mixed-signal circuits, i.e., cir-
cuits for which there is an interaction between analog (continuous) and digital (discrete)
values. We use a simulation-based approach that consists of evaluating the property on a
representative subset of behaviors and answering the question of whether the circuit satisfies
the property with a probability greater than or equal to some threshold. We propose a logic
adapted to the specification of properties of mixed-signal circuits in the temporal domain
as well as in the frequency domain. We also demonstrate the applicability of the method on
different models of A—X modulators for which previous formal verification attempts were

too conservative and required excessive computation time.

Keywords Probabilistic model-checking - Simulation-based techniques - Mixed-signals
circuits verification - Delta-sigma modulators

This research was sponsored by the GSRC (University of California) under contract no. SA423679952,
National Science Foundation under contracts no. CCF0429120, no. CNS0411152, and

no. CCF0541245, Semiconductor Research Corporation under contract no. 2005TJ1366, Air Force
(University of Vanderbilt) under contract no. 18727S3, International Collaboration for Advanced
Security Technology of the National Science Council, Taiwan, under contract no. 1010717, and a grant
from the Belgian American Educational Foundation.

Two preliminary versions of this paper appear in the Proceedings of the 4th Haifa Verification
Conference and in the Proceedings of the 2nd Workshop on Formal Verification of Analog Circuits,
respectively.

E. Clarke
Carnegie Mellon University, Computer Science Department, Pittsburgh, USA

A. Donzé (X))
VERIMAG Laboratory, 2, Avenue de Vignates, 38610 Gieres, France
e-mail: alexandre.donze @imag.fr

A. Legay
INRIA Rennes, Computer Science Department, Rennes, France

@ Springer

mailto:alexandre.donze@imag.fr

98 Form Methods Syst Des (2010) 36: 97-113

1 Introduction

Given a property ¢, the Probabilistic Model Checking Problem consists of checking whether
a stochastic system satisfies ¢ with a probability greater than or equal to a certain threshold
6. This problem is generally solved with a numerical approach that consists of computing
the exact probability for the system to satisfy ¢ and by comparing the result to 8. The way
the probability is computed depends on the nature of the system as well as on the property
that is considered. Successful results (see e.g. [2, 5, 6]) and tools (see e.g. [4, 11]) exist
for various classes of systems, including (continuous time) Markov Chains and Markov
Decision Processes. The numerical approaches computes the probability of the property by
considering all executions of the system. This is one of the drawbacks of these approaches
as it may not scale for systems of large size. Another way to solve the probabilistic Model
Checking problem is to use a simulation-based approach. The key idea is to infer whether
or not the system satisfies the property by observing some of its executions. Of course, in
contrast to a numerical approach, a simulation-based solution does not guarantee a correct
result. However, it is possible to bound the probability of making an error. Simulation-based
methods are known to be far less memory and time-intensive than numerical ones, and are
sometimes the only option [25].

In this paper, we consider applying the simulation-based procedure proposed by Younes
[26, 27,29, 30] to verify properties of mixed-signal circuits, i.e., circuits for which there is an
interaction between analog (continuous) and digital (discrete) values. Our first contribution
is to propose a version of stochastic discrete-time event systems that fits into the framework
introduced by Younes with the additional advantage that it explicitly handles analog and
digital signals. We also introduce probabilistic signal linear temporal logic, a logic adapted
to the specification of properties for mixed-signal circuits in the temporal domain and in the
frequency domain.

Our second contribution is the analysis of a class of A—X modulators. A A—X modulator
is an efficient Analog-to-Digital Converter circuit, i.e., a device that converts analog signals
into digital signals. A common critical issue in this domain is the analysis of the stability
of the internal state variables of the circuit. The concern is that the values that are stored by
these variables can grow out of control until they reach a maximum value, at which point we
say that the circuit saturates. Saturation is commonly assumed to compromise the quality
of the analog-to-digital conversion. In [7] and [10], reachability techniques developed in the
area of hybrid systems are used to analyze the stability of a third-order modulator. Their
idea is to use such techniques to guarantee that for every input signal in a given range, the
states of the system remain stable. While this reachability-based approach is sound, it has
important drawbacks such as (1) signals with long duration cannot be practically analyzed,
and (2) properties that are commonly specified in the frequency domain rather than in the
time domain cannot be checked. Our results show that a simulation-based approach makes
it possible to handle properties and signals that are beyond the scope of the reachability-
based approach. In our experiments, we analyze discrete-time signals with 24000 sampling
points in seconds, while the approach in [7] takes hours to analyze signals with up to 31
sampling points. We are also able to provide insight into a question left open in [7] by
observing that saturation does not always imply an improper signal conversion. This can be
done by comparing the Fourier transform of each of the input analog signals with the Fourier
transform of its corresponding digital signal. Such a property can easily be expressed in our
logic and Model Checked with our simulation-based approach. We are unaware of other
formal verification techniques that can solve this problem.

Structure of the paper. In Sect. 2, we recap some basic knowledge about signal theory.
Section 3 introduces Younes’ approach of verification using hypothesis testing. Our model

@ Springer

Form Methods Syst Des (2010) 36: 97-113 99

and logic are introduced in Sect. 4. Issues related to A—X modulators and their verification
are discussed in Sect. 5. Section 6 presents the experiments we conducted. Finally, Sect. 7
concludes the paper.

2 Signal definitions

We use N, R, and C to denote the sets of natural, real, and complex numbers, respectively.
Let the time set 7 be a finite set of non-negative real numbers {t, t,...,fy_1}, where
N e N. To simplify the presentation, we assume that #; ;| —¢t; = ét, where 8¢ € R.. A digital
set is a set with 2” elements, i.e., an element of the set can be encoded by b bits. A frequency
set is a subset of R. An analog signal is a mapping &€ : 7 — R. A digital signal is a mapping
& :7 — D, where D is a digital set. A frequency-domain signal is a mapping é :F—C,
where F is a frequency set. The value at time ¢ € 7 of a signal & is denoted by &[¢]. Let
t,t" € T, the restriction of a signal £ to [t, '], denoted by §,.,» 1s a signal such that:

&L=l ifrelr '],
Sl [71= [0 else.

The restriction of a frequency-domain signal to an interval of frequencies is defined simi-
larly.

The Fourier transform (see [20]) is a functional F that maps a time-domain signal & :
T — R to a frequency-domain signal é = F (). The inverse Fourier transform is used to
“reconstruct” & from £, i.e., & = F1(&). Formally, for all v in F and for all ¢ in 7 we have

F@D]= f E[tle ™™ dt and F'(E)[1=£[1]= f E[vle™™ dv.
7 F

An efficient algorithm known as the Fast Fourier Transform algorithm (see, e.g., [9]) is used
to compute a discrete approximation of the Fourier transform.

Remark 1 There are many operations that are easier to perform in the frequency domain
than in the time domain, e.g., convolution and differentiation. For these operations, it is
convenient to compute Fourier transforms, perform the desired operation in the frequency
domain and use the inverse Fourier transform to get the desired result. The Fourier transform
is also useful when dealing with signals that are easier to analyze in the frequency domain
than in the time domain (e.g., sound as shown in Fig. 1).

1500

0 500 1000 1500

frequency (Hz)

Fig. 1 Example of a Fourier transform. The signal was obtained by recording a human voice. Its Fourier
transform lies in the interval [0 Hz, 1500 Hz] (its value is O outside this interval)

@ Springer

100 Form Methods Syst Des (2010) 36: 97-113

3 Solving the probabilistic model checking problem with a simulation-based
approach

3.1 The probabilistic model checking problem

We use Pr(E) to denote the probability of event E. We consider a stochastic system S
which has a unique initial state and a linear property ¢. The executions of S are finite,
observable, and can be generated “on demand”. We also assume that one can decide in finite
time whether an execution of S satisfies ¢.

The Probabilistic Model Checking Problem consists of deciding whether S will satisfy
¢ with a probability greater than or equal to a given threshold 6. The latter is denoted by
S = Prs¢(¢). The probability for S to satisfy ¢ is denoted Pr(S = ¢), or Pr(¢) when S is
clear from the context.

The Probabilistic Model Checking Problem is well-defined if and only if one can assign
a probability to the set of executions of S that satisfy ¢. One way to solve the problem is
to use a numerical approach that consists of computing the exact probability for the system
to satisfy ¢ and comparing the result to 6. The way the probability is computed depends
on the nature of the system as well as on the property. Successful results (see e.g. [2, 5, 6])
and tools (see e.g. [4, 11]) exist for various classes of systems, including (continuous time)
Markov Chains and Markov Decision Processes.

The main drawback of numerical approaches to probabilistic verification is that it has
to compute the probability of satisfying the formula with respect to all the executions of
the system. In contrast, simulation-based methods generate a finite number of executions
from the model to determine whether or not it satisfies a given property. Simulation-based
methods can estimate the probability that a property holds to an arbitrarily high degree of
confidence, although the number of required executions increases with the desired confi-
dence. In comparison to numerical methods, simulation-based methods are usually more
efficient and scale to larger systems because they are not exhaustive in nature [25]. Another
advantage is that the ability to reason on one execution at a time makes it possible to decide
a larger class of temporal properties.

3.2 The statistical model checking approach

Recently, a simulation-based approach to the Probabilistic Model Checking Problem has
been been introduced by Younes and Simmons [26, 27, 29, 30]. This approach is based on
hypothesis testing. The idea is to check the property ¢ on a sample set of simulations and to
decide whether the system satisfies Pr>4(¢) based on the number of executions for which ¢
holds compared to the total number of executions in the sample set. With such an approach,
we do not need to consider all the executions of the system. Let p = Pr(¢), to determine
whether p > 6, we can test the hypothesis H : p > 0 against K : p < 6. A simulation-based
solution does not guarantee a correct result but it is possible to bound the probability of
making an error. The strength («, B) of a test is determined by two parameters, o and S,
such that the probability of accepting K (respectively, H) when H (respectively, K) holds,
called a Type-I error (respectively, a Type-II error) is less or equal to « (respectively, B).

A test has ideal performance if the probability of the Type-I error (respectively, Type-II
error) is exactly « (respectively, §). However, these requirements make it impossible to
ensure a low probability for both types of errors simultaneously (see [27] for details). A so-
lution to this problem is to relax the test by working with an indifference region (py, po) with
Po > p1 (po — p1 is the size of the region). In this context, we test the hypothesis Hy : p > pg

@ Springer

Form Methods Syst Des (2010) 36: 97-113 101

against H, : p < p, instead of H against K. If the value of p is between p; and py (the
indifference region), then we say that the probability is sufficiently close to 6 so that we are
indifferent with respect to which of the two hypotheses K or H is accepted. The thresh-
olds pg and p; are generally defined in term of the single threshold 0, e.g., py =0 — § and
po =06 + 6. We now need to provide a test procedure that satisfies the requirements above.
In the next two subsections, we recall two solutions proposed by Younes in [27, 31].

3.2.1 Single sampling plan

Let B; be a discrete random variable with a Bernoulli distribution of parameter p. Such a
variable can only takes two values 0 and 1 with Pr[B; = 1] = p and Pr[B; =0]=1— p. In
our context, each variable B; is associated with one simulation of the system. The outcome
for B;, denoted b;, is 1 if the simulation satisfies ¢ and O otherwise. To test hypothesis
H, against hypothesis H,, we specify a constant c. If) ._, b; is larger than c, then Hy is
accepted, else H, is accepted. The difficult part in this approach is to find values for the pair
(n, c¢), called a single sampling plan, such that the two error bounds « and g are respected. In
practice, one tries to work with the smallest value of n possible so as to minimize the number
of simulations performed. This results in an optimization problem, which generally does not
have a closed-form solution except for a few special cases (see [27] for a discussion). In his
thesis [27], Younes proposes a binary search based algorithm (Algorithm 2.1, page 21) that,
given py, pi1, @, B, computes an approximation of the minimal value for ¢ and n.

3.2.2 Sequential probability ratio test

The sample size for a single sampling plan is fixed in advance and independent of the ob-
servations that are made. However, taking those observations into account can increase the
performance of the test. As an example, if we use a single plan (n, ¢) and the m > c first
simulations satisfy the property, then we could (depending on the error bounds) accept H
without observing the n — m other simulations. To overcome this problem, Younes proposed
a procedure to test Hy : p > po against H, : p < p; that is based on the sequential probability
ratio test proposed by Wald [24]. The approach is briefly described below.

In the sequential probability ratio test, one has to choose two values A and B, with
A > B. These two values should be chosen to ensure that the strength of the test is respected.
Let m be the number of observations that have been made so far. The test is based on the
following quotient:
Pim ﬁ Pr(Bi =bi | p=p) _ pi"(1—p)" ™

Pr(Bi=b;i | p=po) pi"(1— poyn—dn’

ey

Pom

i=1

where d,, =Y -, b;. The idea behind the test is to accept Hy if

An algorithm for sequential ratio testing consists of computing for successive values of
m until either Hy or H; is satisfied. This has the advantage ofp %inimizing the number of
simulations. In each step i, the algorithm has to check the property on a single execution of
the system, which is handled with a new Bernoulli variable B; whose realization is b;. In his
thesis [27], Younes proposed a logarithmic based algorithm (Algorithm 2.3 page 27) SPRT
that given pg, p1, ¢ and B8 implements the sequential ratio testing procedure. Computing
ideal values A;; and B;; for A and B in order to make sure that we are working with a test
of strength («, B) is a laborious procedure (see Sect. 3.4 of [24]). In his seminal paper [24],
‘Wald showed that if one defines A;y>A = (1%’3) and B;jy < B = af%«)’ then we obtain a new
test whose strength is (¢’, 8’), but such that o’ + 8’ < o + B, meaning that either ¢’ < & or
B’ < B. In practice, we often find that both inequalities hold.

Pim > A and H, if 2= < B.
p’gm Pom
Lm

@ Springer

102 Form Methods Syst Des (2010) 36: 97-113

3.2.3 Additional information on Younes’ work

We briefly mention other contributions by Younes on Statistical Model Checking.

1. Nested operators. Younes’ algorithm has been extended to handle formulas where ¢ can
also contain probabilistic operators. We will not use this extension in the paper.

2. Black-box systems. Sequential testing is not always appropriated. Indeed, there are some
systems, called black-box systems, that cannot be controlled to generate executions on
demand (which means that they are not totally observable) and for which we are only
given a set of trajectories generated during actual execution of the system. In such a
case, one may prefer to use a non-sequential approach, such as an extension of the single
sampling plan introduced above. This has been investigated by Younes in [26] and by
Sen et al. in [22, 23].

3. Distributed implementation. SPRT can be implemented in a distributed manner. This has
been investigated by Younes in [28]. To ensure the independence of the simulations,
Younes used the scheme proposed in [13].

4. Complexity. Younes showed that the complexity of SPRT depends on the number of sim-
ulations needed to reach a decision, the time needed to check whether a given execution
satisfies ¢ and the time needed to generate a simulation.

4 Model and logic
4.1 Stochastic signal discrete-time event systems

Our main motivation is to verify properties of mixed-signal circuits. For this purpose, we
define stochastic signal discrete-time event systems, which extend the classical stochastic
discrete-time event systems with information about signals. During an execution, these sys-
tems have to remain in the same state between the occurrence of two events. The signals
associated with each execution are thus piecewise-constant.

Definition 1 Stochastic signal discrete-time event system (SSDES) is a tuple S = (7, S, so,
—, 7,4, T4, B, L) where

— 7 is afinite set of non-negative real numbers {fy, t;, ..., y_1}, with t;,4y —t; =8t > O;

— § is the set of states, defined as S = A; x Dy, where A, C R"™ and D, C D", n, and ny
being the number of analog and digital values which define the state of the system;

— o € S is the initial state;

— The relation —: § x S is the transition relation of the system. We assume that for every
state s, the relation — induces a probability distribution, i.e.,

Vs e S, /Pr(s—>s/|s/edS)dS=1;
s

-7, S x {1,...,n,} > A is a projection operator such that for all s = (sj, AN
shoosiyand 1< j <ng, 7w4(s, j) = s4;

— 7y is defined in a similar manner as 7,;

— B is a finite set of Boolean propositions;

— L is a mapping from S to 25, which assigns to each state the elements in B that are true
in that state. If b € L(s), then we say that s satisfies b.

@ Springer

Form Methods Syst Des (2010) 36: 97-113 103

Given y > 0, we use S~ to denote the set of all sequences of y states. Let w =s¢.. .5k
be a finite sequence of k states of S. Given 0 <i <k — 1, we use w (i) and @' to denote the
i-th state of w and the i-th suffix s; . . . s, respectively. The i-th prefix of w, denoted w; is the
sequence Sy . .. S;—1. The length of w, denoted |w|, is the number of states in w. An execution
of an SSDES § = (7, S, 5o, >, m,, w4, L) is a sequence of N states o = sos ...Sy—1 such
that sy is the initial state of the system and foreachi € 0... N —1,s; € S and s; — s;41. Our
model is assumed to have the Markovian property, i.e., the probability of a transition from a
state s; to a state s;; in the execution depends on s; and nothing else. An SSDES is thus an
infinite-state Markov chain equipped with information and operations on analog and digital
signals.

Relation between executions and signals: To each execution o of S, we associate n,
analog signals denoted by E,:al (0),...,&}(0) and n, digital signals denoted by 5; (0),...,

9 (0). At each time instant f;, each of these signals takes the analog or digital value which
is the corresponding component of the state o (k). For example, if o = sps; ...sy—; then we
have

Elo)Nto] = ma(s0, D, ENM]=ma(s1, 1), ooy ENO)tn—1]=ma(sn_1, 1).
4.2 Probabilistic signal linear temporal logic

We introduce the probabilistic signal linear temporal logic (SLTL) to reason about the set of
executions of an SSDES S = (7, S, Sy, —, 7., w4, B, L). We first introduce the definition
of a y-sequence predicate.

Definition 2 Given y € [1, N — 1], a y-sequence predicate for S is a predicate on a sequence
of y states, i.e., on S”.

In the rest of the paper, we use P, to denote a set of y-sequence predicates, with I <y <
N — 1. Observe that a predicate defined on the entire execution must belong to Py, such a
predicate is referred to as an execution predicate.

Example 1 Consider an execution predicate p that decides whether the mean value of the
first analog signal associated with an execution o of an SSDES is greater than 0. Such
predicate can be defined as

. 1 N—1
plo)=T iff ﬁ;s;(a)[tk]zo.

This example shows that the definition of sequence predicate makes it easy to define
properties on entire executions that are not so simple to define with temporal operators. In
Sect. 6, we consider several other examples of sequence and execution predicates.

We now introduce the syntax and the semantics for a version of the linear temporal logic
(LTL) of Pnueli [17] whose atoms are either Boolean propositions or y-sequence predicates.
The syntax of LTL is given by the following grammar:

¢ ==TIF|beBl¢V ¢2ld1 Ads|=¢1 O b1l | il |
py€Pyandye[l, N —1].

@ Springer

104 Form Methods Syst Des (2010) 36: 97-113

‘We now present the semantics of LTL, which here is defined with respect to finite sequences
of states of S. Since we define the semantic of LTL properties on finite sequences, we
can only specify bounded LTL properties.'. As in [27], we thus stay in the class of safety
properties. The fact that a finite sequence of states w of S satisfies the LTL property ¢ is
denoted by w = ¢. We have the following:

-~ wkETand w EF;

— wEbwith b e Bif and only if b € L(w(0));

— wE® V¢ if and only if w = ¢ or w = ¢

— wkE ¢ A, if and only if w = ¢y and o = ¢s;

— w = —¢ if and only if w (= ¢;

— o= Q¢ if and only if |o| > 1 and o' |= ¢;

o |= ¢1Ue, if and only if there exists 0 <i < |w| — 1 such that o' = ¢,, and for each

0§j<iij ':¢1;

- wkE ¢IZ/~{¢2 if and only if for each 0 <i < |w| — 1 such that ' & ¢, there exists 0 < j < i
such that o/ = ¢;

— w = p, if and only if |w|>y and p, is true for w,.

k times

We denote TUy by O, denote Fﬁlﬂ by O, and for k>0, denote O ... ¢ by Ofp.
Observe that, using this semantic, it is easy to decide whether a finite execution satisfies an
LTL formula.

We can now define probabilistic signal linear temporal logic.

Definition 3 (SLTL formula) An SLTL formula is a formula of the form ¢ = Pr>4(¢),
where ¢ is an LTL formula and 6 € [0, 1].

We say that S satisfies ¥, denoted by S |= v if and only if the probability for an exe-
cution of S to satisfy ¢ is greater than or equal to 6. The problem is well-defined since we
can prove that one can always assign a unique probability measure to the set of executions
that satisfy an LTL formula with sequence predicates. Before presenting this result, we first
introduce the definition of witness expansion for a Markov chain.

Definition 4 Consider the Markov chain S = (S, 59, —, L); its witness expansion is the
Markov chain &' = (§', sy, =, L"), where

— Each state in S’ is a prefix of one of the executions of S;

- Sé =505

— The transition relation —’ is defined as follows: (s,, s,) belongs to —’ if and only if
Sy =950...5, 8y =8p...58", and (s,5") € —. The probability distribution from s, is the
probability distribution from s;

— Given a state s = sgs;...5; in S’, L'(s) = L(s;).

‘We now prove our result.

Theorem 1 Let S be an SSDES and ¢ be an LTL property with sequence predicates. One
can always associate a unique probability measure with the set of executions of S that

satisfy ¢.

A bounded LTL property (see [3] for details) is an LTL property with a bound on the scope of its temporal
operators U and U. To simplify the presentation, we implicitly introduce this bound directly in the semantics.

@ Springer

Form Methods Syst Des (2010) 36: 97-113 105

Proof An SSDES is an infinite-state Markov chain. Each execution of a SSDES can be
viewed as infinite execution by considering its last state to be an absorbing state, i.e., a
state in which the system stays forever. In [27], it is shown that one can assign a unique
probability measure to sets of infinite executions of such a Markov chain using a probability
space and the classical notion of basic cylinder. In [27], it is also shown that this probability
distribution is sufficient to assign a probability to the set of executions that satisfy an LTL
formula without sequence predicates. We are now left with the case where ¢ can refer to y-
sequence predicates. In this case, we first derive from S its corresponding witness expansion
S'. Ttis easy to see that there is a one-to-one correspondence between the executions of S and
those of S’. We then introduce a new Boolean variable p; for each y-sequence predicate P;.
Given a state s of S, we have p; € L(ss/) if and only if (1) s is the prefix of an execution
of § (2) |Ss/| > y and (3) the sequence formed by the y last states of Ss satisfies P;. Let ¢’
be the formula ¢ where each y-execution predicate has been replaced by the LTL formula
(O*~'p, where p is the Boolean variable associated with the predicate. The formula ¢’ is
an LTL formula. Observe that an execution of S satisfies ¢ if and only if its corresponding
execution in S’ satisfies ¢’. Since ¢’ is an LTL formula, one can always assign a probability
to the set of executions of S’ that satisfy it. By construction, we know that this probability
is also the one assigned to the set of executions of S that satisty ¢. a

4.3 Solving the probabilistic model checking for SSDES and SLTL

As we already observed, an SSDES is a Markov chain. If we assume that the executions
of the SSDES can be generated on demand and that one can always decide whether an
execution satisfies an LTL formula, then one can use Younes’ or Peyronnet’s techniques
to decide whether the SSDES satisfies the property up to some confidence. We use this
approach in the paper.

5 A class of mixed-signal circuits: A-¥ modulators

This section is a brief introduction to the principles of A—X modulation and the related de-
sign issues. The reader can consult [15, 21] for more details on this topic in Signal Process-
ing.

5.1 Analog to digital conversion via A—X modulation

A A-X¥ modulator is an Analog-to-Digital Converter circuit, i.e., a circuit that takes an
analog value u# € R as input and encodes it into a digital value v € D. Since digital signal
processing is more widely used than analog signal processing, such converters are found in
many electrical devices, which motivates their study. The challenge with Analog-to-Digital
conversion is to represent the uncountable set of analog values using a finite set of dig-
ital values D. The direct approach, which is called quantization, consists in mapping u
to the digital value v that minimizes the quantization error defined as § = u — v, i.e., it
chooses v = argmin, ., |§]. Obviously, one way to decrease the remaining quantization er-
ror is to increase the number of bits used to encode D and thus the number of possible
digital values. Another approach, which is implemented by A—X modulation, is to measure
and compensate for the accumulation of quantization errors during time. As an example,
consider the following simple instance of a discrete time A—X modulator. Let u(k), v(k),
& (k) = u(k) —v(k) be the analog input, the digital output, and the quantization error at step k,

@ Springer

106 Form Methods Syst Des (2010) 36: 97-113

1500 T y T T T

0 500 1000 1500 2000 2500 3000
v

1500 T T T x .

_.{b) Fourier .?*.énﬁ_form__@f_tihe digital signal (output) |

0 500 1000 1500 2000 2500 3000

v

Fig. 2 A sample behavior of the A—X modulator. The Fourier transform of the output signal (b) matches the
Fourier transform of the input signal (a) on the interval [0, 1500 Hz]. The quantization error is pushed toward
frequencies higher than 1500 Hz

respectively. The modulator uses an integrator to store the accumulation of errors in a vari-
able x (k) = Zl(() 8(k), so that x (k + 1) = x (k) + §(k), and determines the next digital output
v(k+1) based on the signof x(k+1),i.e., D={—1,1}andv(k+1) =1if x(k+1) > 0and
v(k+ 1) = —1 otherwise. A A—X modulator thus basically consists of a feedback loop con-
trolling the quantization error. To improve the performance, more complex feedback loops
can be designed involving more than one integrator. The order of a modulator is given by
the number of integrators used. Note that A—X modulators can achieve good performance
using a limited number of bits.

5.2 Conversion interpretation in the frequency domain

The benefit of the A—X modulation approach is clearly apparent in the frequency domain.
Indeed, the Fourier transform of the digital signal is the Fourier transform of the analog
signal composed with some error due to quantization. The feedback loop in the A—-X mod-
ulator is designed to “push” this error towards high frequencies, where it can be isolated
and removed, e.g. by using a low-pass filter. The original signal can then be retrieved by
using the inverse Fourier transform. The process assumes that the input signal has a limited
bandwidth (e.g. in Fig. 2, the Fourier transform of the input signal is zero for frequencies
higher than 1500 Hz). Usually, a low-pass filter is placed between the analog signal and the
A-X modulator to ensure that the input signal always satisfies this requirement.

Example 2 An illustration of A—X modulator principle is given in Fig. 2. The plots show
the Fourier transform of the digital output of a A—X modulator for the signal of Fig. 1.

5.3 Verification issues and reachability-based verification

Modulators with more than two integrators are known to exhibit better performance but also
introduce a stability problem [1]. During an execution, an integrator remembers each input

@ Springer

Form Methods Syst Des (2010) 36: 97-113 107

Time Domain Frequency Domain

e P

0 SO0 TO00 1800
(a) (b)

1000
a00

Digital

100

5 1 = z 5 E

(c) (d)

Fig. 3 An example where the A—X fails. We observe that the Fourier transform of the digital signal (d) is
clearly different from the Fourier transform of the analog signal (b)

and adds it to the sum of all the previously read inputs. Consequently, an important issue
is whether the integrators are stable, i.e., whether or not the values stored in the integrators
can grow indefinitely. Because integrators have limited capacity, the values of these states
would then reach a saturation level. Saturation can compromise the quality of the analog-
to-digital conversion. In Fig. 3, a behavior for which the conversion failed is presented. The
stability analysis of the feedback loop is made difficult by the nonlinearity (in this case, a
discontinuity) induced by quantization. This invalidates the direct application of classical
linear stability theory which makes the stability analysis of A—X modulators a challenging
problem (see [19]).

State of the art (brief overview). In [7] and [10], the authors use reachability techniques
developed in the area of hybrid systems to guarantee that for every input signal in a given
range, the integrator state will never saturate. However, the technique developed in [7] is not
powerful enough to analyze signals with long durations. Moreover, the approach is restricted
to saturation and cannot be applied to more complex properties such as those related to the
“quality” of the conversion. In the next section, we investigate these issues using an SSDES
representation and the techniques introduced in Sect. 3.

6 Experimental results

We have implemented a prototype of a statistical Model Checker in the MATLAB environ-
ment. Our procedure takes as input a MATLAB routine that returns an execution of a given
SSDES model and a routine that can decide whether an execution satisfy an LTL property
¢ or not. It implements a simple bisection procedure, called BI-SPRT, that makes several
iterations of the SPRT algorithm to quickly find values of 6 for which the system satisfies

@ Springer

108 Form Methods Syst Des (2010) 36: 97-113

the formula Pr-¢ (S = ¢). In this section, we discuss the results we obtained when applying
our prototype to different A—X modulators. We used the delsig toolbox [18] to generate
models of order 3, 5 and 7. It provides a simulation routine such that given an input signal
and a model returns a digital signal.

6.1 On representing A—X modulators and properties with SSDES

An SSDES is a stochastic system whereas a A—X modulator is a nondeterministic system
due to the input signal. To represent a A—X modulator with an SSDES, we thus need to
resolve this nondeterminism by providing a stochastic generator for the input signals. We
first describe the SSDES and then discuss the definition of the stochastic input generator.

6.1.1 SSDES representation

We define an SSDES model S = (7, S, sg, —, 74, 7q, L) for a n'™ order A—¥ modulator
combined with a stochastic input generator as follows:

— Time. We set T = {1o, 11,....ty—1} wWith 1o =0, ty_y =3 and 8t = t;1) — t; = gyo5. N =
24000;

— Set of states. The model contains »n integrators such that each contains one real-valued
(or analog) variable. A state s € S can thus be described as a tuple (u, xq, x2, ..., X,, V),
where
- Xi,..., X, are analog variables storing the integrators’ states;

— u is an analog variable storing values for the input signal £“;

— v is a digital variable storing values for the output signal £".

The number of analog signals is thus n, = n + 1 and the number of digital signals n; = 1.
We assume that the states of the integrators cannot go beyond certain values that are fixed
by the model. When this value is reached, we say that the integrators saturate. In practice,
x;e[—1,1]1fori e€{l,2,...,n} and —1, 1 are the saturation values. If we assume that
U € [—Umax, Umax], WE get Ay = [—1, 11" X [—Umax, Umax] and D; = {—1, 1}. Given an
execution o = soS;...5v_1, we use u(k) = m, (s, 1), x; (k) = m,(s¢,i + 1), and v(k) =
(s, 1). Forall k € {0, ..., N — 1}, we have £“(o0)[t;] = u(k) and £V (0)[t;] = v(k);

— Transition relation. When u (k) is given, the simulation routine computes x; (k+1), x, (k+
1),...,x,(k + 1) and v(k + 1). Thus the probability distribution of s; — s, for all
(Sk, Sx+1) € S x S is induced by the probability distribution of the input value u(k + 1).
The choice of this probability distribution is discussed below.

— Initial state. Initially, the values of the integrators’ states are 0 and by convention the
digital output v(0) is set to 1 and the input value #(0) to 0. Thus the initial state is sy =
©,...,0,1);

— Boolean predicates. We define a Boolean predicate Satur which is associated with a state
s if and only if one of the analog components of s, i.e., either the input or an integrator
state, saturates. Formally, Satur € L(s) if and only if there exist i in {1, ..., n,} such that
7.(s,i)=1orm,(s,i)=—1.

6.1.2 Discussion on the stochastic input generator

In [7], the circuit is analysed for all input signals with an amplitude less or equal to some
value um,x. To get comparable results with our probabilistic approach, we have to define
the stochastic input generator so that it samples uniformly the set of all signals with an
amplitude bounded by uy,.x. A simple way to do this is as follows: for all k, u(k) is chosen
in a set [—Umax, Umax] With a uniform random distribution.

@ Springer

Form Methods Syst Des (2010) 36: 97-113 109

Table 1 Saturation analysis of a

3th order A—X modulator with umax Nbtrue Nbtrials Proba. found Computational time (s)
o =0.001, 8 =0.001 and
§=0.02 0.1 0 342 0 1.54

0.15 321 4847 0.0625 19.23

0.2 14985 29229 0.5 116.34

025 881 898 0.96875 3.61

0.3 342 342 1 1.35849

However this class of signals is too broad in practice. As mentioned in Sect. 5.2, the mod-
ulators are designed to work better for signals with a given bandwidth of frequencies. More
precisely, an important parameter in the design of a A—X modulator is its over-sampling
ratio (OSR) [18]. This parameter means that the modulator is optimized for signals with a
bandwidth which is ﬁ times smaller than the maximal bandwidth permitted by the time-
step 4t, i.e., f, = ﬁ according to the Nyquist theorem [20]. In practice, a low-pass filter
is then generally applied on the input signal to eliminate frequencies greater than fj, = Ofg‘R.
In our experiments, we used a low-pass filter H? that we applied to random signals with
a maximum amplitude of uy,y, i.e., for all k, u(k) = H(w(k)) where w(k) is chosen in
[—Umax> Umax] With a uniform random distribution. The resulting stochastic input generator
randomly picks a signal in the set of all signals intended to be used with the model we

consider.

6.2 Saturation analysis

We consider the formula Prsy (<>Satur), i.e., whether saturation occurs with a probability
greater or equal to 6 for different values of up,,. We first used BI-SPRT to estimate the
probability of <>Sarur for the third order modulator that is analysed in [7]. In [7], reach-
ability techniques are used to guarantee that for every input signal in a given range, the
integrator state never saturates. While this approach is clearly sound for proving stability, its
computational cost is prohibitive. As an example, in [7], the absence of saturation is proved
for a small number of steps (for instance N = 31). By providing probabilistic guarantees
instead of exhaustiveness, our approach makes it possible to consider much larger horizons
(N = 24000 in the following experiments). To remain in the same experimental setting as
in [7], we do not use a low-pass filter. We set the two error bounds « and 8 to 0.001 and
use an indifference region of size (p;, po) = (@ —0.01, 6 4 0.01). The results we obtained
are reported in Table 1. The first and fourth columns report the value of u,x and the value
of p found, respectively. Column 3 reports the number of simulations performed. The re-
sults confirm the fact, proved in [7], that for signals with a maximum amplitude of 0.1, i.e.,
Umax = 0.1, the circuit never saturates whereas if .,y is more than 0.3, the circuit always
does.

In Table 2, we show the results we obtained for modulators of orders 3 (S3), 5 (Ss), and 7
(S7), respectively. In those experiments, we use the low-pass filter for the input signal. This
explain why higher values of uy,x can be used without provoking saturation. From these
experiments, which cannot be handled with the technique of [7], we can observe that higher
order modulators are more likely to saturate.

2The description of low-pass filters is outside the scope of this paper. We used a 5t order Butterworth filter
provided by the Signal Processing Toolbox of Matlab.

@ Springer

110 Form Methods Syst Des (2010) 36: 97-113

Table 2 Estimation of the
probability to saturate for S, Ss Umax Pr(S3 = <OSatur) Pr(S5 = <$Satur) Pr(S7 = OSatur)

and S7, with BI-SPRT algorithm

and @ =0.01, 8 = 0.01 and 025 0 0 0
8=0.05 0.5 0 0 0.0625
075 0 0 0.125
1 0 0 0.21875
125 0.03125 0.15625 0.4375
L5 0.21875 0.5 0.75
175 0.59375 0.8125 0.9375
2 0.875 1 1
225 1 1 1
25 1 1 1

6.3 Frequency domain analysis

In addition to improving the computation time, our approach makes it possible to verify
more complex properties than those that can be handled with a reachability-based technique.
In particular, by defining execution predicates involving the Fourier transform, we can check
reliably whether an analog signal was properly converted to a digital one.

The quality of the conversion is usually measured in terms of the signal-to-noise ratio
(SNR), i.e., the comparison between the power of the original analog signal (denoted wy)
and the power of the quantization noise (denoted w,), on the bandwidth of interest [0, f3].
Let o be an execution and é * and é” be the Fourier transforms of the input analog signal u
and the corresponding digital signal v associated with o. The quantities w,(c) and w, (o)
are given by:

wsw):(> |§“[vk1|2>

k<N, ve=fp

1

and wn(o>:< > |§“[vk]—§”[vk]|2>2,

k<N, vk <fp
and the signal-to-noise ratio of the execution o, traditionally given in decibels, is:

ws (o)
snr(o) = 20log,) ———.
wy (o)
The higher the signal-to-noise ratio, the better the quality of the conversion. In Table 3, we
compute the average value of the SNR over 100 executions for filtered, random input signals
generated as above with different values of u,y, and for three modulators of different orders.
These results seem to show that the 5™ order modulator performs better than the 3™ and
the 7" order ones, except for input signals of higher amplitudes for which only the 3™ order
modulator seems to be able to achieve acceptable performance. However, the numbers in this
table correspond to a fixed number of simulations (they do not result from an application
of our methodology) and thus cannot be used to estimate the actual probabilities that the
circuits behave correctly for inputs with given amplitudes. To estimate these probabilities,
we can apply our approach using an execution predicate pg, involving the signal-to-noise
ratio of an execution. If we assume that a conversion for an execution ¢ is correct if snr(o)
is more than 30, then the predicate is defined as

psur(0) =T iff snr(o) > 30.

@ Springer

Form Methods Syst Des (2010) 36: 97-113 111

Table 3 Comparison of average signal-to-noise ratio for A—X' of different orders computed on 100 execu-
tions

Mmax SNR, 3 order A-¥ SNR, 5" order A-% SNR, 7 order A-%
05 39.948 46.4423 44.047

1 45.7603 51.9534 49.7312
15 49.0874 55.12 52.8598
2 51.4339 57.4009 55.3808
25 53.0783 59.0686 50.9091
3 54.5813 57.3029 29.832
35 53.7013 45.8932 —2.68854
4 49.6055 21.8596 —9.30988
45 41.5892 -3.11012 —9.14168
5 32.2871 —5.03031 —8.1362

Table 4 Probabilities that the
Signal-to-noise predicate holds Umax Pr(83 k= psnr) Pr(Ss = psor) Pr(S7 E psar)

for a 3, a 5t and a 7 order

A-X modulator Sys3, Syss and 2 1 1 1
Sys7, estimated with the 25 1 1 0.9375
BI-SPRT algorithm with
a=0.01, 8=0.01 and § = 0.05 3 ! 0.96875 0.625
35 1 0.78125 0.125
4 1 0.40625 0
4.5 0.84375 0.0625 0
5 0.59375 0 0

This predicate can efficiently differentiate executions for which the conversion was accept-
able (as in Fig. 2) from executions for which it is not (as in Fig. 3). It is easy to derive a
MATLAB routine that can decide whether or not an execution of a A—X modulator satis-
fies psnr. In Table 4, we report the results obtained when we apply the BI-SPRT algorithm
to estimate the probability that the executions of our three modulators satisfy the predicate

psnr .
6.4 Mixed-domains (time—frequency) analysis

In the previous experiments, we can observe that for some values of U,y (€.8. Umax = 2),
both the formula <>Safur and the predicate pg, hold with an estimated probability 1. This
means that for all signals with a maximum amplitude of, e.g., un.x = 2, the circuit saturates
and provides a correct conversion. Thus, there cannot be a causality link between saturation
in one state and improper conversion. In [7], it is assumed that the absence of saturation is
necessary for pg, to be true. Our experiments show that this may be an overly conservative
assumption.

In this section, we are interested in investigating whether saturation during y consecutive
states, where y > 1 can cause wrong behaviors. For this we defined a y-sequence predicate
Dy such that p, is true for a sequence o, of y states if and only if foreach0 <i <y, o0 (i) =
Satur. We evaluated the probabilities Pr(Ss = <py), Pr(Ss = par) and Pr(S = (Gpy —
= psnr)) for y =10 and y = 100 and different values of u,x. The results are reported in
Table 5.

@ Springer

112 Form Methods Syst Des (2010) 36: 97-113

Table 5 Mixed-domains analysis for a Sth order A—X modulator (¢ = 0.0001, 8 =0.0001 and § = 0.05)

umax Pr(SsE=pio) Pr(Ss Epioo) Pr(Ss = psar) Pr(®Gpio— —psnr) Pr(Gprop — —psar)

3 0.15625 0 0.96875 0.84375 1

35 0.625 0.09375 0.84375 0.46875 0.96875
4 0.9375 0.53125 0.5 0.5 0.90625
45 1 0.90625 0.15625 0.8125 0.90625
5 1 1 0.03125 0.96875 0.96875

We can observe that the probability of (pjoo — —psnr) is always very high even when
neither pjgo nor —pg,, are trivially satisfied. This shows that there is a correlation between
saturation during 100 consecutive states and bad signal conversions.

7 Conclusion

This paper is the first attempt to apply the simulation-based techniques of Younes [26, 27,
29, 30] to verifying non-trivial properties of mixed-signal circuits. In comparison to the
formal approach presented in [7], our technique makes it possible to obtain better perfor-
mance results as well as to handle a larger class of properties. Our results are correct up to
a pre-specified probability of error, while those of [7] are exact. Of particular interest is the
possibility of specifying properties in the time domain as well as in the frequency domain.
We also introduce mixed-domains properties, i.e., properties that apply both for the timed
signal and for its Fourier transform.

Our work requires the ability to monitor properties of discrete-time signals, which can
easily be done with existing techniques [8, 12]. In a series of recent papers [14, 16], Nick-
ovic et al. proposed techniques for monitoring properties of dense-time analog signals. An
interesting direction would be to adapt our techniques to work in this latter, more demanding
context.

We also intend to consider extensions of SLTL incorporating past temporal operators
and a better correlation between execution predicates and temporal operators. We plan to
define more complex specifications for frequency domain properties based on the needs
of designers of mixed signal circuits. Our ultimate goal is to provide them with a general
framework for specifying and verifying properties of mixed-signal circuits.

Acknowledgements We thank H. Younes for answering many questions on his work. We also thank Nir
Piterman who provided us with interesting comments and suggestions.

References

1. Aziz PM, Sorensen HV, Van Der Spiegel J (1996) An overview of sigma-delta converters. IEEE Signal
Process Mag, pp 61-84, January 1996

2. Baier C, Haverkort BR, Hermanns H, Katoen J-P (2003) Model-checking algorithms for continuous-time
Markov chains. IEEE Trans Software Eng 29(6):524-541

3. Biere A, Heljanko K, Junttila TA, Latvala T, Schuppan V (2006) Linear encodings of bounded Itl model
checking. Log Methods Comput Sci 2(5)

4. Ciesinski F, Baier C (2006) Liquor: A tool for qualitative and quantitative linear time analysis of reactive
systems. In: QEST, IEEE, pp 131-132

@ Springer

Form Methods Syst Des (2010) 36: 97-113 113

10.

12.

13.

14.

17.

18.
19.

20.

21.
22.

23.

24.
25.

26.

217.

28.

29.

30.

31.

. Ciesinski F, Groier M (2004) On probabilistic computation tree logic. In: Validation of stochastic sys-

tems. Lecture notes in computer science, vol 2925. Springer, Berlin, pp 147-188

. Courcoubetis C, Yannakakis M (1995) The complexity of probabilistic verification.] ACM 42(4):857—

907

. Dang T, Donze A, Maler O (2004) Verification of analog and mixed-signal circuits using hybrid sys-

tems techniques. In: Hu AJ, Martin AK (eds) FMCAD’(04-Formal methods for computer aided design.
Lecture notes in computer science, vol 3312. Springer, Berlin, pp 21-36

. d’Amorim M, Rosu G (2005) Efficient monitoring of w-languages. In: CAV. Lecture notes in computer

science, vol 3576. Springer, Berlin, pp 364-378

. Frigo M, Johnson SG (1997) The fastest Fourier transform in the west. Technical report MIT-LCS-TR-

728, Massachusetts Institute of Technology, September 1997
Gupta S, Krogh BH, Rutenbar RA (2004) Towards formal verification of analog designs. In: ICCAD, pp
210-217

. Kwiatkowska MZ, Norman G, Parker D (2004) Prism 2.0: A tool for probabilistic model checking. In:

QEST, IEEE, pp 322-323

Bauer A, Leucker M, Schallhart C (2006) Monitoring of real-time properties. In: FSTTCS. Lecture notes
in computer science, vol 4337. Springer, Berlin, pp 260-272

Matsumo M, Nishimura T (2000) Dynamic creation of pseudorandom number generators. In: Monte-
Carlo and Quasi-Monte Carlo methods 1998. Springer, Berlin, pp 56-69

Maler O, Nickovic D, Pnueli A (2008) Checking temporal properties of discrete, timed and continuous
behaviors. In: Pillars of computer science, pp 475-505

. Medeiro F, Pérez-Verdi B, Rodriguez-Vazquez A (2001) Top-down design of high-performance sigma-

delta modulators. Kluwer, Dordrecht. Chapter 2

. Nickovic D, Maler O (2007) Amt: A property-based monitoring tool for analog systems. In: FORMATS,

pp 304-319

Pnueli A (1977) The temporal logic of programs. In: Proc. 18th annual symposium on foundations of
computer science (FOCS), pp 46-57

Schreier R (2003) The delta-sigma toolbox version 6.0, January 2003

Zakhor A, Hein S (1993) On the stability of sigma delta modulators. IEEE Trans Signal Process, 41, July
1993

Smith SW (1997) The scientist and engineer’s guide to digital signal processing. California Technical
Publishing, San Diego

Schreier R, Temes GC (2005) Understanding delta-sigma data converters. Wiley/IEEE Press, Hoboken
Sen K, Viswanathan M, Agha G (2004) Statistical model checking of black-box probabilistic systems.
In: CAV. Lecture notes in computer science, vol 3114. Springer, Berlin, pp 202-215

Sen K, Viswanathan M, Agha G (2005) On statistical model checking of stochastic systems. In: CAV.
Lecture notes in computer science, vol 3576, pp 266—-280

Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Stat 16(2):117-186

Younes HLS, Kwiatkowska MZ, Norman G, Parker D (2006) Numerical vs. statistical probabilistic
model checking. STTT 8(3):216-228

Younes HLS (2005) Probabilistic verification for “black-box” systems. In: CAV. Lecture notes in com-
puter science, vol 3576. Springer, Berlin, pp 253-265

Younes HLS (2005) Verification and planning for stochastic processes with asynchronous events. PhD
thesis, Carnegie Mellon

Younes HLS (2005) Ymer: A statistical model checker. In: CAV. Lecture notes in computer science, vol
3576. Springer, Berlin, pp 429-433

Younes HLS (2006) Error control for probabilistic model checking. In: VMCALI. Lecture notes in com-
puter science, vol 3855. Springer, Berlin, pp 142-156

Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance
sampling. In: CAV. Lecture notes in computer science, vol 2404. Springer, Berlin, pp 223-235

Younes HLS, Simmons RG (2006) Statistical probabilistic model checking with a focus on time-bounded
properties. Inf Comput 204(9):1368-1409

@ Springer

	On simulation-based probabilistic model checking of mixed-analog circuits
	Abstract
	Introduction
	Signal definitions
	Solving the probabilistic model checking problem with a simulation-based approach
	The probabilistic model checking problem
	The statistical model checking approach
	Single sampling plan
	Sequential probability ratio test
	Additional information on Younes' work

	Model and logic
	Stochastic signal discrete-time event systems
	Relation between executions and signals:

	Probabilistic signal linear temporal logic
	Solving the probabilistic model checking for SSDES and SLTL

	A class of mixed-signal circuits: Delta-Sigma modulators
	Analog to digital conversion via Delta-Sigma modulation
	Conversion interpretation in the frequency domain
	Verification issues and reachability-based verification

	Experimental results
	On representing Delta-Sigma modulators and properties with SSDES
	SSDES representation
	Discussion on the stochastic input generator

	Saturation analysis
	Frequency domain analysis
	Mixed-domains (time-frequency) analysis

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

