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Convex Optimization

» Convex set: the line segment between any two points lies in the set.

» Convex function: the line segment between any two points (z, f(z))
and (y, f(y)) lies on or above the graph of f.

» Convex optimization

minimize fo(x) (1)
s.t. filz) <0i=1,...,m (2)
hi(x)=0i=1,...,p (3)

> fo and f; convex, h; linear.
» convex objective function, convex domain (feasible set).
» any local optimum is also a global optimum.

» Operations preserve convexity

» (for convex sets) intersection, affine transformation,
perspective transformation, ...

» (for convex functions) nonnegative weighted sum, maximum
and supremum, composition with affine functions,
composition with monotonic convex/concave functions, ...



Optimal Separating Hyperplane

Suppose that our data set {x;,y;}Y, is linear separable. Define a
hyperplane by

{z: f(z) = BTz + By = ﬁT(Jj —x9) =0} where |8 = 1.

> f(x) is the sign distance to the hyperplane.
> we can define a classification rule induced by f(z): sgn[37 (x —z0)];

Define the margin of f(x) to be the minimal yf(x) through the data
C = mz_in yi f ()

A optimal separating hyperplane is the hyperplane that maximizes the
margin,

max  C, s.t. y(87zi+6o) 2C, i=1,...,N
8,60, 18]=1 yi(B @i+ Bo) = C,



We can get rid of the norm constraint on (3,

TGO

and arbitrarily set ||3]| = 1/C, then we can rephrase the problem as

IgnanBH’ s.t. yi(ﬁTLEZ' +ﬁ0) > 1, 1= 1,. .. 7]\/v
»20

This is a convex optimization problem.



Soft Margin SVM

The data is not always perfect. We need to extend optimal separating
hyperplane to non-separable cases. The trick is to relax the margin
constraints by introducing some “slack” variables.

minimize I3l over S, S (4)
s.t. yi(B i+ B) >1-¢&, i=1,...,N (5)

N
>0 Y &<Z (6)

i=1

> still convex.

> & > 1 — misclassification
& > 0 — the data is correctly classified but lies in the margin.

» 7 is a tuning parameter.

How to solve it? Use Lagrange/duality theory.



Lagrangian Theory

Lagrangian theory characterizes the solution of a constrained
optimization problem. Recall the primal problem:

minimize folx)
s.t. filz)<0i=1,....,m
hi(x)=04i=1,...,p

The stationary points are given by

ol@) | O dhi(e) O dhila)
o TN Ta t g =0

dx

where \, v are free parameters called Lagrange multipliers. Accordingly
we define Lagrangian prime function (or Lagrangian) as

L(z,\v) ) + Z)\ fi(@) + ZVihi(CU)
i=1



We define Lagrangian dual function g(\,v) as
g\ v) = ;g/fyL(%)\,u).
The so-called Lagrangian dual problem is the following:

maximize g\ v) (10)
s.t. A>0. (11)

The weak duality theorem says

g\ v) < fo(z®) forall A and v

In other words, maximizing g(\, ) over A and v produce a bound on
fo(z®) (Note that g(\, v) is piecewise linear and convex). The difference
between g(A*,v*) and fo(z*) is called the “duality gap”.



K.K.T. Conditions

Slater's Theorem (Strong Duality Theorem) says: if the constraint
functions are affine, the duality gap is zero.

Then, K.K.T. conditions provide necessary and sufficient conditions for
a point z* to be an optimum

% =0 first-order derivative of optimality
. .
A fi(xz*) =0 complementary slackness conditions
Ap >0 dual constraints
fi(z*) <0 prime constraints
hi(x*) =0 prime constraints

Remarks: complementary slackness conditions are directly related to
support vectors.



The Dual Problem

Recall the prime problem (soft-margin SVM)

minimize 18Il over 5,050 (12)
s.t. yi(B i+ Bo) >1-¢&, i=1,...,N (13)

N
G>0; Y &<Z (14)

i=1

Obviously strong duality holds. So we can find its dual problem by the
following steps

1. Define Lagrange primal function (and Lagrange multipliers).
2. Take the first-order derivatives w.r.t. 3, By and &;, and set to zero.

3. Substitute the results into the primal function.



Maximize

s.t.

Solution :

N N

N
Lp = Zai - %Z Z i yiyir (zi, i) (15)
i=1

i=14'=1

0<a; <, 2=1,...,N

N
i=1

N
B=Y i
i=1

N
fa) =BTz 4B =Y diyi (zi,7) + Bo
i=1

(16)
(17)
(18)

(19)

(20)

> Sparse representation: the separating hyperplane f(z) is spanned

those data points i where «; # 0, called Support Vectors.
» follows directly from complementary slackness conditions:

o [yi(BT i+ Bo) + & — 1] =0

» Both the estimation and the evaluation of f(z) only involve dot

product.



