
SVM as a Convex Optimization Problem

Leon Gu

CSD, CMU



Convex Optimization

I Convex set: the line segment between any two points lies in the set.

I Convex function: the line segment between any two points (x, f(x))
and (y, f(y)) lies on or above the graph of f .

I Convex optimization

minimize f0(x) (1)

s.t. fi(x) ≤ 0 i = 1, . . . ,m (2)

hi(x) = 0 i = 1, . . . , p (3)

I f0 and fi convex, hi linear.
I convex objective function, convex domain (feasible set).
I any local optimum is also a global optimum.

I Operations preserve convexity

I (for convex sets) intersection, affine transformation,
perspective transformation, ...

I (for convex functions) nonnegative weighted sum, maximum
and supremum, composition with affine functions,
composition with monotonic convex/concave functions, ...



Optimal Separating Hyperplane

Suppose that our data set {xi, yi}N
i=1 is linear separable. Define a

hyperplane by

{x : f(x) = βT x + β0 = βT (x− x0) = 0} where ‖β‖ = 1.

I f(x) is the sign distance to the hyperplane.

I we can define a classification rule induced by f(x): sgn[βT (x−x0)];

Define the margin of f(x) to be the minimal yf(x) through the data

C = min
i

yif(xi)

A optimal separating hyperplane is the hyperplane that maximizes the
margin,

max
β,β0,‖β‖=1

C, s.t. yi(βT xi + β0) ≥ C, i = 1, . . . , N



We can get rid of the norm constraint on β,

1
‖β‖

yi(βT xi + β0) ≥ C

and arbitrarily set ‖β‖ = 1/C, then we can rephrase the problem as

min
β,β0

‖β‖ , s.t. yi(βT xi + β0) ≥ 1, i = 1, . . . , N

This is a convex optimization problem.



Soft Margin SVM

The data is not always perfect. We need to extend optimal separating
hyperplane to non-separable cases. The trick is to relax the margin
constraints by introducing some “slack” variables.

minimize ‖β‖ over β, β0 (4)

s.t. yi(βT xi + β0) ≥ 1− ξi, i = 1, . . . , N (5)

ξi ≥ 0;
N∑

i=1

ξi ≤ Z (6)

I still convex.

I ξi > 1 – misclassification
ξi > 0 – the data is correctly classified but lies in the margin.

I Z is a tuning parameter.

How to solve it? Use Lagrange/duality theory.



Lagrangian Theory

Lagrangian theory characterizes the solution of a constrained
optimization problem. Recall the primal problem:

minimize f0(x) (7)

s.t. fi(x) ≤ 0 i = 1, . . . ,m (8)

hi(x) = 0 i = 1, . . . , p (9)

The stationary points are given by

df0(x)
dx

+
m∑

i=1

λi
dfi(x)

dx
+

p∑
i=1

νi
dhi(x)

dx
= 0

where λ, ν are free parameters called Lagrange multipliers. Accordingly,
we define Lagrangian prime function (or Lagrangian) as

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x).



We define Lagrangian dual function g(λ, ν) as

g(λ, ν) = inf
x∈X

L(x, λ, ν).

The so-called Lagrangian dual problem is the following:

maximize g(λ, ν) (10)

s.t. λ > 0. (11)

The weak duality theorem says

g(λ, ν) ≤ f0(x∗) for all λ and ν

In other words, maximizing g(λ, ν) over λ and ν produce a bound on

f0(x∗) (Note that g(λ, ν) is piecewise linear and convex). The difference

between g(λ∗, ν∗) and f0(x∗) is called the “duality gap”.



K.K.T. Conditions

Slater’s Theorem (Strong Duality Theorem) says: if the constraint
functions are affine, the duality gap is zero.
Then, K.K.T. conditions provide necessary and sufficient conditions for
a point x∗ to be an optimum

∂L(x,λ∗,ν∗)
∂x

∣∣∣
x∗

= 0 first-order derivative of optimality

λ∗i fi(x∗) = 0 complementary slackness conditions
λ∗i ≥ 0 dual constraints

fi(x∗) ≤ 0 prime constraints
hi(x∗) = 0 prime constraints

Remarks: complementary slackness conditions are directly related to

support vectors.



The Dual Problem

Recall the prime problem (soft-margin SVM)

minimize ‖β‖ over β, β0 (12)

s.t. yi(βT xi + β0) ≥ 1− ξi, i = 1, . . . , N (13)

ξi ≥ 0;
N∑

i=1

ξi ≤ Z (14)

Obviously strong duality holds. So we can find its dual problem by the
following steps

1. Define Lagrange primal function (and Lagrange multipliers).

2. Take the first-order derivatives w.r.t. β, β0 and ξi, and set to zero.

3. Substitute the results into the primal function.



Maximize LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′ 〈xi, xi′〉 (15)

s.t. 0 ≤ αi ≤ γ, i = 1, . . . , N (16)
N∑

i=1

αiyi = 0 (17)

Solution : (18)

β̂ =
N∑

i=1

α̂iyixi (19)

f(x) = βT x + β0 =
N∑

i=1

α̂iyi 〈xi, x〉+ β0 (20)

I Sparse representation: the separating hyperplane f(x) is spanned
those data points i where αi 6= 0, called Support Vectors.

I follows directly from complementary slackness conditions:
αi

[
yi(βT xi + β0) + ξi − 1

]
= 0

I Both the estimation and the evaluation of f(x) only involve dot
product.


