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Partially observed GMs

e Speech recognition
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Fig. 1.7 Isolated Word Problem
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Partially observed GM

e Biological Evolution
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Mixture Models, con'd g
\
e A density model p(x) may be multi-modal.
e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
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Unobserved Variables o

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and
abstractive view of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to
measure

e.g., the temperature of a star, causes of a disease, evolutionary
ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t
measured, because of faulty sensors, etc.

e Discrete latent variables can be used to partition/cluster data
into sub-groups.

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(Xn‘,u,Z) = zk”kN(Xal M Z)
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e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of
stars in astronomical data, etc.

Gaussian Mixture Models (GMMSs) s

e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector:

p(z,) = multi(z, : ) :H(”k )zh

e JXis a conditional Gaussian variable with a class-specific mean/covariance

1 .
P(X, 12y =1, 1,%) = Wem{-%(xﬂ 1) 2 (X, _/'lk)}
k

e The likelihood of a sample:

= 7 ( Yu Zl) mixture component
*. K mixture proportion

P(x, D) =Y p(z* L1 2)p(x,| 2 =1, 1,%) P
=2 T NG, 207 )= 3, NGl )
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Why is Learning Harder?

\
e In fully observed iid settings, the log likelihood decomposes

into a sum of local terms (at least for directed models).
¢(60;D)=log p(x,z|0) =log p(z|8,)+log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log > p(x,z|0)=log > p(z16,)p(x|z,6,)
z ’ z

X, Xz X; X X> X;
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Toward the EM algorithm

e Recall MLE for completely observed data

-4

e Data log-likelihood
£(6;D) = IogH P(Z,%,) = logH p(z, | 7)p(x, | 2,, 18,0)
=Zl091:[ﬂﬁ +Z|OQI:IN(XH;MUU)Z”K
-5 S ogm - XX k) O

e MLE T e =argmax_ £(0; D),

l&k‘MLE:argmaxyz(e;D) = :[lk‘MLE = -

Gy me =argmax_ £(0; D)

e What if we do not know z,?

Eric Xing 10




Question

e “ ... We solve problem X using Expectation-Maximization ...”
e What does it mean?
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e What do we take Expectation with? (2> < X>

e What do we take expectation over? /Z Cg éa )

e M
e What do we maximize? </DJ ’ ( Kl g / >7
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e What do we maximize with respect to? ¢/
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Recall: K-means s

el =7 :'

200 = argmax(x, ~ )" 50 (x, ~ )
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Expectation-Maximization

e Start:

e "Guess" the centroid 1 and coveriance 2, of each of the K clusters
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Example: Gaussian mixture
model

o A mixture of K Gaussians:
e Zis a latent class indicator vector
R k
p(z,) =multi(z, : 7) =[] (=, )"

k
e JXis a conditional Gaussian variable with class-specific mean/covariance

1 g
px, 12, =1,u,%) = WEXP{'%(XM 1) 2 (X, ‘Hk)}
K

e The likelihood of a sample:
pOx|ws) =Y, pz* =1|7)p(x.| 2 =1, 11,%)

-5, Ll 2 K et 20D

e The expected complete log likelihood

(£0:x,2))=> (log p(z, 7)),y + 2. (109 P(X, | 2, 0. 3))

-0

%[2 ) :ZZ<Z:>IOg”k _%ZZ<Z:>((XH — 1) 2 (X, _;uk)+|Og‘zk‘+C)
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E-step

e We maximize</€ (9)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of the sufficient
statistics of the hidden variables (i.e., 2) given current est. of the
parameters (i.e., zand ).

7Nl 40, 20)
> NG, |47 20)
i

k(t)y _ /5K _ k _ 0 vy
Th _<Zn>qu)_p(zn _1|X7/U 12 )_

Here we are essentially doing inference
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Recall out objective 2

e The expected complete log likelihood

(£.(8;x,2)) = (log p(z, 7)), ) + 2. (109 P(X, | 2, 1,%))

p(zlx)

Z;<z:>logﬂk %Zgzw((xnwfzi(xn - p,) +logz,|+C)

Eric Xing 16




[ X X ]
0000
0000
[ XN
[ X J
M-step °
e We maximize</€ (9)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under
current results of the expected value of the hidden variables
m, =argmax(l(0)), = Z(.(0)=0,vk, stz =1
k
z¥ 50)
= ﬂ;:z”< ”>q“’ N :annA:mk%
k(t)
w =argmax(1(0)), = g :2”77”“:” Fact:
znT” aloglA ™| A7
) KO (x 10D (x, — D) oA™
T =argmax(1(6)), = X{= 2ot fkrk&( “ DXI:X =xx

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their

Eric Xing corresponding "sufficient statistics")

Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

e K-means e EM
e Inthe K-means “E-step” we do hard o E-step
assignment:

T -1
200 = argmax(x, ~ ) 5,10 (x, ~ ) N
7N e E)
TN (| 1, 50)

= p(z} =1 % 4", 2) =

e Inthe K-means “M-step” we update the
means as the weighted sum of the data,

but now the weights are 0 or 1: e M-step
- k()
L = an(zﬁ”, k), s 7m
N = = k= K
PIICN) I
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Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(0;D)=log) p(x,z|0)=log) p(z|6,)p(x|z,6,)

is difficult!

e What shall we do?

Complete & Incomplete Log
Likelihoods o

e Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).
If Zcould be observed, then "
£.(0:x,2) =log p(x, 2 |6)

e Usually, optimizing () given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

£.(0;x)=log p(x|6) =log > p(x,z|6)

e This objective won't decouple z

Eric Xing 20
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Expected Complete Log
Likelihood

\
° FO@IStFIbUtIOﬂ/} define expected complete log likelihood:

<4(6,X,z)> Zq(zlx 0)log p(x,z|6)
f_/_/

A deterministic funct|on of @ ’“ﬂ}w
Linear in £() - inherit its factorizabiility 2= [ ,

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality %

(£0:x) log p(x|0) /F
IogZP(XZIH) )
L ) 9,9

[ b@j&bg + m)

= (0;x)2(4(0;x, z)>q
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Lower Bounds and Free Energy o
e For fixed data x, define a functional called the free energy:
0
Flg.0)= Lotz IlogP =% B <000
e The EM algorithm is coordinate-ascent on F:
o E-step: g™ =argmaxF(g,0") 1(2)
e M-step: 0" =arg max F(g™,0")
¢
F@e]
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E-step: maximization of expected
Lwrt. g

e Claim: @arg max F(q,0") = p(z| x,0")
p R

e This is the posterior distribution over the latent variables given the data
and the parameters. Often we need this at test time anyway (e.g. to
perform classification).

e Proof (easy): this setting attains the bound 48,x)>F¢,0)

# Fy — f M I(’T
F(p(z|x,0").0") ;P(Z‘Xﬁ )log p(zx.0") :
zzz:q(zu)logp(ﬂm m
~log plx | 0') = £(6" %) !

e Can also show this result using variational calculus or tr?éz‘?%t
that ¢(6;x)-F(g.6)=KL(g |l p(z | x.6))
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E-step = plug in posterior
expectation of latent variables o

e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:

; 1 =trilsm
@Z(mh(x,z)exp{ze,ﬁ(%z)} cfl'-)(.g)>

e Special cases: if p(X]2) are GLIMs, then £ (x,z) =7 (2)& (x)

e The expected complete log likelihood under ¢’ = p(7| x,6")

IS
(40"ix.2)) ., =X q(z]|x.0")log p(x,2|6") - A®)
S0 0(2) e £ ()~ AO)
Eric Xing / l ( 24
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M-step: maximization of expected
Lw.rt. 6

e Note that the free energy breaks into two terms:

Fg.0)=Y g(z| x)logw

(9'#’.
(z|x) 2/
=>g(z|x)log p(x,z|0)-> g(z|x)logg(z | x)
:<4(0;X,z)>q +H,

e The first term is the expected complete log likelihood (energy) and the
second term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to @ for fixed ¢
we only need to consider the first term:
F+1 . o
0™ =arg mgx(lc @; x, z)>qM =argmax gq(z | x)log p(x,z|6)

e Under optimal ¢, this is equivalent to solving a standard MLE of fully
observed model p(x,z| ), with the sufficient statistics involving z
replaced by their expectations w.r.t. p(z] x,6).

Example: HMM s

e Supervised learning: estimation when the “right answer” is known

e Examples:

GIVEN:  agenomic region X = X4...X4 g0 000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown ()_,4/ [CD)
e Examples: [
GIVEN: the porcupine genome; we don’t know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize Ax{0) -
-- Maximal likelihood (ML) estimation

Eric Xing 26
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Hidden Markov Model:

from static to dynamic mixture models

Static mixture Dynamic mixture

e = /x< \
S 5

-'*\ K
L -
o

i

The underlying

\\_.
@ . OO0 O
Speech signal,
dice,
The sequence:
N Phonemes,

sequence of rolls,

Eric Xing
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The Baum Welch algorithm .,/

e The complete log likelihood

T T
£.(0;x,y) =log p(x,y) = |09H£/’()’n,1)1—[p(yﬂ,r |Yn,r71)HP(Xn,r |Xn,r)J
n =2 =1
e The expected complete log likelihood

e EM
e The E step
Vor =(Var)= P77 =
@ (Var Vi) = PWira =Ly =11x,)
e The M step ("symbolically" identical to MLE)

IR a Z Zr 260t b = 2 Zr nr¥ns
T == / T-1 ; T-1
' N ! Z Zf 1/nt Z Zr 17 .t

Eric Xing
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Unsupervised ML estimation

e Given x= x,...x, for which the true state path y= y,...y, is
unknown,

o EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters 6.

1. Estimate 4;, B in the training data

How? 4 =3 (virvis), Be=2, . (yas)¥ns
2. Update @ according to A, By

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set @ each iteration

EM for general BNs s

while not converged
% E-step
for each node /
£55=0 % reset expected sufficient statistics
for each data sample »
do inference with X, ,

for each node /
ES~S/ += <5‘5/ (Xn,/"X”v”/)>

p(Xn,Hlxn,—H)
% M-step
for each node /

0,:= MLE(£SS;)

Eric Xing 30
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models.
Finds MLE of parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

o E-step: q”l =arg max F((/, HT)
e M-step: o = arg mgx F(q”l,ﬁr)

e In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.

Eric Xing 31

Conditional mixture model:
Mixture of experts

@/ X
( @
o We WWVVO using different experts, each respo

differentregions of the input space.
e Latent variable Zchooses expert using softmax gating function:
P(z" =1x)= Softmax(grx)
e Each expert can be a linear regression model: P(y‘x,z" =1)= /I/(y;H[X,o—i)
e The posterior expert responsibilities are
Pz -1 p(zkfl‘X)pk(yX,Hk,a,f)
Y, P27 =1x)p,(yix.60,.07)

Eric Xing 32
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EM for conditional mixture model

i,

e Model: KT
Plylx)=2 p(z"“ =11x.&)p(y 2" =1,x,6,,0) )2
e The objective function \1

(£.0:%,y,2)) =D (109 p(Z, [ %:,£)) 1y, + 2. (109 PLY, | X 2,,0,9)) )

.
- Zz<z‘n‘> Iog(softmax(gkT xn))izz<z'n‘>[(yn"9;xn)+ logo,” +Cj
n k n ok O,
o EM: “
“=1x,) P (| %,. 0. 0%)
e E-step: Z.:(f):,o(zﬂk:lxﬂy ”,9): p(zn _n) PR\l ko C k
RGNS W e AT AP

e M-step:
using the normal equation for standard LR 8= (X" X)"X"¥ | but with the data
re-weighted by 7 (homework)

IRLS and/or weighted IRLS algorithm to update {&,, 6,, o,} based on data pair

} ; k(t) 5
e xine (X, with weights 7,/ (homework?) -

Hierarchical mixture of experts

A twer level balanced Hierarducal Mixtures of Experty meodelr aw

a medudar Newralr Ner . Bayegiary Net

e This is like a soft version of a depth-2 classification/regression tree.

e AVY|X6,,6,) can be modeled as a GLIM, with parameters
dependent on the values of &, and &, (which specify a "conditional
path" to a given leaf in the tree).

Eric Xing 34
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Mixture of overlapping experts

X.

Z, % = A
x
x
x %
. x %
oL X

Y.

N » X

e By removing the X > Zarc, we can make the partitions
independent of the input, thus allowing overlap.

e This is a mixture of linear regressors; each subpopulation has
a different conditional mean.
p(z* fl)Pk(Y‘Xa‘gkai)
Z,P(ZJ =1)p,(y|x,0,,6%)
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P(z¥=1xy.0)=

Partially Hidden Data

e Of course, we can learn when there are missing (hidden)
variables on some cases and not on others.

e In this case the cost function is:
40:0)= 3 logp(x,.y,|0)+ > 109) p(Xy.ynl0)
neComplete meMissing Ym
Note that ¥;, do not have to be the same in each case --- the data can

have different missing values in each different sample

e Now you can think of this in a new way: in the E-step we
estimate the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data
plus the expected likelihood on the incomplete data using the
E-step.
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EM Variants o°
e Sparse EM: |

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.

Eric Xing 37
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A Report Card for EM 2
e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood
e Some bad things about EM:
e can get stuck in local minima
e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step
e is a maximum likelihood/MAP method
Eric Xing 38
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