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Reading: J-Chap. 10,11; KF-Chap. 17
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Partially observed GMs
Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
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Partially observed GM
Biological Evolution

ancestor
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T years
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Mixture Models
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Mixture Models, con'd
A density model p(x) may be multi-modal.
We may be able to model it as a mixture of uni-modal 
distributions (e.g., Gaussians).
Each mode may correspond to a different sub-population 
(e.g., male and female).

⇒
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Unobserved Variables
A variable can be unobserved (latent) because:

it is an imaginary quantity meant to provide some simplified and
abstractive view of the data generation process

e.g., speech recognition models, mixture models …
it is a real-world object and/or phenomena, but difficult or impossible to 
measure

e.g., the temperature of a star, causes of a disease, evolutionary 
ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t 
measured, because of faulty sensors, etc.

Discrete latent variables can be used to partition/cluster data 
into sub-groups.
Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

This model can be used for unsupervised clustering.
This model (fit by AutoClass) has been used to discover new kinds of 
stars in astronomical data, etc.
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

Z is a latent class indicator vector:

X is a conditional Gaussian variable with a class-specific mean/covariance

The likelihood of a sample:
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Why is Learning Harder?
In fully observed iid settings, the log likelihood decomposes 
into a sum of local terms (at least for directed models).

With latent variables, all the parameters become coupled 
together via marginalization
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Recall MLE for completely observed data

Data log-likelihood

MLE

What if we do not know zn?

Cxzz

xN

zxpzpxzpD

n k
kn

k
n

n k
k

k
n

n k

z
kn

n k

z
k

nn
n

n
n

nn

k
n

k
n

+−=

+=

==

∑∑∑∑

∑ ∏∑ ∏

∏∏

2
2

1 )-(log

),;(loglog

),,|()|(log),(log);(

2 µπ

σµπ

σµπ

σ

θl

Toward the EM algorithm

zi

xi
N

 
),;(maxargˆ , DMLEk θlππ =

);(maxargˆ , DMLEk θlµµ =

);(maxargˆ , DMLEk θlσσ =
∑

∑=⇒
n

k
n

n n
k
n

MLEk z
xz

,ˆ    µ



6

Eric Xing 11

Question
“ … We solve problem X using Expectation-Maximization …”

What does it mean?

E
What do we take Expectation with?
What do we take expectation over?

M
What do we maximize?
What do we maximize with respect to?
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Recall: K-means
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Expectation-Maximization
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters 

Loop
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Example: Gaussian mixture 
model

A mixture of K Gaussians:
Z is a latent class indicator vector

X is a conditional Gaussian variable with class-specific mean/covariance

The likelihood of a sample:

The expected complete log likelihood
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We maximize           iteratively using the following           
iterative procedure:

─ Expectation step: computing the expected value of the sufficient 
statistics of the hidden variables (i.e., z) given current est. of the 
parameters (i.e., π and µ). 

Here we are essentially doing inference
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Recall out objective
The expected complete log likelihood
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We maximize           iteratively using the following           
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Compare: K-means and EM

K-means
In the K-means “E-step” we do hard 
assignment:

In the K-means “M-step” we update the 
means as the weighted sum of the data, 
but now the weights are 0 or 1:

EM
E-step

M-step

)()(maxarg )()()()( t
kn

t
k

Tt
knk

t
n xxz µµ −Σ−= −1

∑
∑=+

n
t

n

n n
t

nt
k kz

xkz
),(

),(
)(

)(
)(

δ
δ

µ 1

The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.
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Theory underlying EM
What are we doing?

Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

But we do not observe z, so computing 

is difficult!

What shall we do?
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Complete & Incomplete Log 
Likelihoods

Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).
Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.
But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

This objective won't decouple 
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Expected Complete Log 
Likelihood
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For any distribution q(z), define expected complete log likelihood:

A deterministic function of θ
Linear in lc() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

Jensen’s inequality
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Lower Bounds and Free Energy
For fixed data x, define a functional called the free energy:

The EM algorithm is coordinate-ascent on F :
E-step:

M-step:
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E-step: maximization of expected 
lc w.r.t. q

Claim: 

This is the posterior distribution over the latent variables given the data 
and the parameters. Often we need this at test time anyway (e.g. to 
perform classification).

Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )

Can also show this result using variational calculus or the fact 
that
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E-step ≡ plug in posterior 
expectation of latent variables

Without loss of generality: assume that p(x,z|θ) is a 
generalized exponential family distribution:

Special cases: if p(X|Z) are GLIMs, then 

The expected complete log likelihood under                      
is
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M-step: maximization of expected 
lc w.r.t. θ

Note that the free energy breaks into two terms:

The first term is the expected complete log likelihood (energy) and the 
second term, which does not depend on θ, is the entropy.

Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:

Under optimal qt+1, this is equivalent to solving a standard MLE of fully 
observed model p(x,z|θ), with the sufficient statistics involving z
replaced by their expectations w.r.t. p(z|x,θ).
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Example: HMM
Supervised learning: estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ) -
-- Maximal likelihood (ML) estimation 
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixtureDynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixtureStatic mixture

AX1

Y1

N
The sequence:The sequence:

The underlying The underlying 
source:source:

Phonemes,Phonemes,

Speech signal, Speech signal, 

sequence of rolls, sequence of rolls, 

dice,dice,
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The Baum Welch algorithm
The complete log likelihood

The expected complete log likelihood

EM
The E step

The M step ("symbolically" identical to MLE)
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Unsupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:

1. Estimate Aij , Bik in the training data 
How?                             , ,

2. Update θ according to Aij , Bik
Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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EM for general BNs
while not converged

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

do inference with Xn,H

for each node i

% M-step
for each node i

θi := MLE(ESSi )
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Summary: EM Algorithm
A way of maximizing likelihood function for latent variable models. 
Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

E-step: 
M-step: 

In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.
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Conditional mixture model: 
Mixture of experts

We will model p(Y |X) using different experts, each responsible for 
different regions of the input space.

Latent variable Z chooses expert using softmax gating function: 

Each expert can be a linear regression model:
The posterior expert responsibilities are
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EM for conditional mixture model
Model:

The objective function

EM:

E-step:

M-step:  
using the normal equation for standard LR                       , but with the data 
re-weighted by τ (homework)
IRLS and/or weighted IRLS algorithm to update {ξk, θk, σk} based on data pair 
(xn,yn), with weights           (homework?)
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Hierarchical mixture of experts

This is like a soft version of a depth-2 classification/regression tree.
P(Y |X,G1,G2) can be modeled as a GLIM, with parameters 
dependent on the values of G1 and G2 (which specify a "conditional 
path" to a given leaf in the tree).
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Mixture of overlapping experts

By removing the X Z arc, we can make the partitions 
independent of the input, thus allowing overlap.
This is a mixture of linear regressors; each subpopulation has 
a different conditional mean.

∑ =

=
==

j jjj
j

kkk
k

k

xypzp
xypzpyxzP

),,()(
),,()(

),,( 2

2

1
1

1
σθ

σθ
θ

Eric Xing 36

Partially Hidden Data
Of course, we can learn when there are missing (hidden) 
variables on some cases and not on others.
In this case the cost function is:

Note that Ym do not have to be the same in each case --- the data can 
have different missing values in each different sample

Now you can think of this in a new way: in the E-step we 
estimate the hidden variables on the incomplete cases only.
The M-step optimizes the log likelihood on the complete data 
plus the expected likelihood on the incomplete data using the 
E-step.
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EM Variants
Sparse EM:
Do not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a while.

Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even 
given the completed data. We can still make progress by 
doing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EM
Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions
each iteration guaranteed to improve likelihood

Some bad things about EM:
can get stuck in local minima
can be slower than conjugate gradient (especially near convergence)
requires expensive inference step
is a maximum likelihood/MAP method


