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School of Computer Science

Approximate Inference:
Loopy Belief Propagation and 

Variants

Probabilistic Graphical Models  (10Probabilistic Graphical Models  (10--708)708)

Lecture 16, Nov 7, 2007
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Reading: KF-Chap. 12
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An Ising model on 2-D image
Nodes encode hidden 
information (patch-
identity).
They receive local 
information from the 
image (brightness, 
color).
Information is 
propagated though the 
graph over its edges.
Edges encode 
‘compatibility’ between 
nodes.

?air or water ?
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Why Approximate Inference?
Tree-width of NxN graph is O(N)
N can be a huge number(~1000s of pixels)
Exact inference will be too expensive
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For a distribution p(X|θ) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

Variational methods
formulating probabilistic inference as an optimization problem:
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BetheBethe Energy MinimizationEnergy Minimization
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The Objective
Let us call the actual distribution P

We wish to find a distribution Q such that Q is a “good”
approximation to P
Recall the definition of KL-divergence

KL(Q1||Q2)>=0
KL(Q1||Q2)=0 iff Q1=Q2

But, KL(Q1||Q2) ≠ KL(Q2||Q1
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Which KL?
Computing KL(P||Q) requires inference!
But KL(P||Q) can be computed without performing inference 
on P

Using 
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The Objective

We will call                 the “Energy Functional” *
=?

F(P,Q) >= F(P,P)
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*also called Gibbs Free Energy
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The Energy Functional
Let us look at the functional

can be computed if we have marginals over each  fa

is harder! Requires summation over all 
possible values
Computing F, is therefore hard in general.
Approach 1: Approximate with easy to compute
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Tree Energy Functionals
Consider a tree-structured distribution

The probability can be written as:

involves summation over edges and vertices and is therefore easy to compute
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Tree Energy Functionals
Consider a tree-structured distribution

The probability can be written as:

involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs 
Free Energy

For a general graph, choose

Called “Bethe approximation” after the physicist Hans Bethe

Equal to the exact Gibbs free energy when the factor graph is a tree
In general, HBethe is not the same as the H of a tree
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Bethe Approximation
Pros:

Easy to compute, since entropy term involves sum over pairwise and 
single variables

Cons:
may or may not be well connected to

It could, in general, be greater, equal or less than  

Optimize each b(xa)'s. 
For discrete belief, constrained opt. with Lagrangian multiplier 
For continuous belief, not yet a general formula
Not always converge
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Undirected graph 
(Markov random field)

Directed graph
(Bayesian network)
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Recall Beliefs and messages in 
FG
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The “belief” is the BP approximation 
of the marginal probability.

Eric Xing 16

Bethe Free Energy for FG
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Constrained Minimization of the 
Bethe Free Energy
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Bethe = BP on FG

Identify

to obtain BP equations:
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The “belief” is the BP approximation of 
the marginal probability.
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BP Message-update Rules

( A sum product algorithm )
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Belief Propagation on trees

BP Message-update Rules

BP on trees always converges to exact marginals (cf. Junction 
tree algorithm)
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Belief Propagation on loopy 
graphs

BP Message-update Rules

May not converge or converge to a wrong solution
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Loopy Belief Propagation
If BP is used on graphs with loops, messages may circulate 
indefinitely

Empirically, a good approximation is still achievable
Stop after fixed # of iterations
Stop when no significant change in beliefs
If solution is not oscillatory but converges, it usually is a good 
approximation
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For a distribution p(X|θ) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

Variational methods
formulating probabilistic inference as an optimization problem:
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The Theory Behind LBP
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But we do not optimize q(X) explicitly, focus on the set of beliefs

e.g.,

Relax the optimization problem

approximate objective:
relaxed feasible set:

The loopy BP algorithm: 
a fixed point iteration procedure that tries to solve b*
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The Theory Behind LBP
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Exact:

Regions:

(intractable)

(Kikuchi, 1951)

Region-based Approximations to 
the Gibbs Free Energy
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Better approximations?
Recall that Bethe approximation was

We could construct bigger regions

Called Kikuchi approximation
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Define an approximation of the free energy
Some restrictions on choice of regions

Obtain fixed point equations by solving constrained 
optimization problem using this approximation
Convert to a message passing algorithm ala BP

Message-update rules obtained by enforcing marginalization constraints.

Belief in a region is the product of:
Local information (factors in region)
Messages from parent regions
Messages into descendant regions from parents who are not 
descendants.

Called Generalized BP or GBP

Recipe for generalizing BP  
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Generalized Belief Propagation
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Generalized Belief Propagation
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Generalized Belief Propagation


