School of Computer Science
Carnegie Mellon

Approximate Inference:
Loopy Belief Propagation and

Variants
000
Probabilistic Graphical Models (10-708) | oo ®@®
0000
o000
Lecture 16, Nov 7, 2007 o0
[
Eric Xing
Reading: KF-Chap. 12
[ X X ]
0000
0000
. . o0
An Ising model on 2-D imag o

e Nodes encode hidden

information (patch-
identity).

e They receive local

information from the

image (brightness,
color).

e Information is

propagated though the
graph over its edges.

e Edges encode

‘compatibility’ between

nodes.
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Why Approximate Inference?

e Tree-width of NxN graph is O(N)
e N can be a huge number(~1000s of pixels)
e Exact inference will be too expensive

1
p(X)Zexp{Zﬁinin +Zeioxi}
i<j i

Variational Methods st

e For a distribution p(X|#) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

e.g.f*:argmaxformin { F(f) }
=X

a (tractable) probability distribution
or, solutions to certain probabilistic queries
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Bethe Energy Minimization
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The Objective

e Let us call the actual distribution P
P(X)=1/Z]] f.(X.)
faeF

e We wish to find a distribution Q such that Q is a “good”
approximation to P

e Recall the definition of KL-divergence

Q(X)
KL = X)log(=+—=
Q11Q,) ;Ql( )Og(QZ(X))

* KL(Q4]lQ)>=0
°  KL(QilIQ)=01ff Q;=Q;,
o But, KL(Q,]|Qz) # KL(Q2lIQ,)
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Which KL? o2
e Computing KL(P]|Q) requires inference!
e But KL(P||Q) can be computed without performing inference
onP
_ Q(X)
KL(Ql P)—;Q(X)IOQ(P(X))
= > Q(X)logQ(X)—->"Q(X)log P(X)
:—HQ(X)—EQ logP(X)
° USing P(X) :l/ZH fa(xa)
KL(QIIP)=~Hq(X)~Eqlog(/ Z ] ] f,(X,))
=—Hy(X)-logl/Z - > E,log f,(X,)
[ X X ]
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The Objective s

KL(Q[IP)=—Hq(X)— D E,log f,(X,)Hlog Z

-
F(P.Q)

o Wewillcall F(P,Q) the “Energy Functional” *
e F(P,P)=?

e F(P,Q)>=F(P,P)

Eric Xing *also called Gibbs Free Engrgy




The Energy Functional

e Let us look at the functional

F(P,Q)=-Ho(X)~ X Eqlog f.(X,)

f,eF

D Eylog f.(X,) can be computed if we have marginals over each f,

foeF

e Ho=-2Q(X)logQ(X) is harder! Requires summation over all
possiblxe values

e Computing F, is therefore hard in general.

e Approach 1: Approximate F(P,Q) with easy to compute IE(F’,Q)

[ X X ]
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Tree Energy Functionals 2

e Consider a treef_structured distribution

e The probability can be written as: b(x) = Hbu (x X )Hb

* He=-X Zbu(x X, )Inb, (x,,x, )+ leZb Inlbjt
° FW:{—Z Zbu(x X )Inb (x, x} ZMZb )Inb, (x ‘ z Zb X, X; )Inf (%, x) ZZb )In £,(x
7ZZb X0 X, In%(—) ZZb )Inb, (x,

=R, +Fy+. +Fy+Fpy-F -F-F -F-F-F

e involves summation over edges and vertices and is therefore easy to compute
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Tree Energy Functionals

e Consider a tree-structured distribution

e The probab|I|tycan be written as: b(x) = ]_[b ]_[b
® H.-= ZZb b, ( Z —IZb Inb
° F. ZZb In a ) +Z1 d) Zb )Inb; (x

:F12+F23+..+F67JrmeFlfFS7F27F67F37F7

><)

e involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs
Free Energy o

e For a general graph, choose F(P.Q) = Faun

Bethe: zzb lnb z _1 Zb Inb
Bethe ZZb In a X +Zl d Zb Inb <fa(xa)>_Hbetha

e Called “Bethe approximation” after the physicist Hans Bethe

Foee = Fio + Fog +..+ Foy + Frg —F = F; —2F, -2F, .-

e Equal to the exact Gibbs free energy when the factor graph is a tree

e Ingeneral, Hgeye is NOt the same as the H of a tree
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Bethe Approximation

e Pros:

e Easy to compute, since entropy term involves sum over pairwise and
single variables

e Cons:
° ﬁ(P,Q) =F,,, May or may not be well connected to F(P,Q)
e It could, in general, be greater, equal or less than F(P,Q)

e Optimize each H(x,)'s.

For discrete belief, constrained opt. with Lagrangian multiplier

For continuous belief, not yet a general formula

Not always converge

From GM to factored graphs s

Parents(i)
.)gi o
Undirected graph Directed graph
(Markov random field) (Bayesian network)
1
P(X) = 2H‘//i(xi)H ‘//(ij)(xi ' Xj) P(X) = H P(Xi | Xparents(i))

(ii)/'

N
\ factor graphs /

interactions

variables
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Recall Beliefs and messages in
FG g
\
b(x) e £(x) [ Tm...(
aeN(r)
I !
“beliefs” “messages”

E a l b(X)OCf(X)H H c%/
ieN(a) ceN(i)\a
[ (1 —
E I The “belief” is the BP approximation

of the marginal probability.

Bethe Free Energy for FG s

N

FsemfZZba(xa)lnba(Xa) Zl d;) Zb )Inb, (x
a fa(xa)
H getne ZZb )b, (x,) Zd IZb )Inb, (x

I:Bethe = _< fa(Xa )> -H betha
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Constrained Minimization of the
Bethe Free Energy

L = Fgepe + Z7i{z by (x;) —1}

53> zzaxxi){zba(xa)—bi(xi)}

a ieN(a) x X2\

oL ) .
ab, (%) - —> b (%;) exp[di _1aEN(i)/1ai(Xi)]

oL
X ba(xa)ocexr{— Ea<xa)+iENZ(a)zai(xi)J

Bethe = BP on FG

® ldently A=l TTm ()

beN (i)=a
e to obtain BP equations:

by (%) o< f; (%) Hmaai(xi)
T aeN(i)T

“beliefs” “messages”

b, (X)oe f.(X) [T TImesi(x)

ieN(a) ceN(i)\a

The “belief” is the BP approximation of
the marginal probability.
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BP Message-update Rules o
Using b,.,;(X;) = D b,(X,), we get
X, \x;
ma—>i(Xi): Z fa(xa) H Hmbej(xj)
X4 \X; jeN(a)\i beN(j)\a
( A sum product algorithm)
:i_ a
Belief Propagation on trees o
K k
® ® O
Mki l
i
| —O =@k @—O—0
Kk

e o o
e BP Message-update Rules
M5 (%) o 2w (X ()T T M () by (x;) o< v, () T M (%)

1 lexternal evidence
Compatibilities (interactions)

e BP on trees always converges to exact marginals (cf. Junction
tree algorithm)
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Belief Propagation on loopy
graphs o2
k K |
® ®*—0
Mki . l
i 0—O—0« («(@—@—0
k

o—o9o“®o
e BP Message-update Rules
Mo (%) o0 D O x)w OO T M (%) b, (%) o v, ) TM (%)

X k
o Texternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Loopy Belief Propagation

e |f BP is used on graphs with loops, messages may circulate
indefinitely

e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs

e |If solution is not oscillatory but converges, it usually is a good
approximation

Eric Xing 22
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The Theory Behind LBP

\
e For a distribution p(X|d) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

q" =argmin { Foep(p.0)

Fouie = ZZb 2)n fa((xa; 21 d,) Zb )JInb, (%, )= —( f, (X, )) = Hyupe

g a (tractable) probability distribution

The Theory Behind LBP s

e But we do not optimize g(X) explicitly, focus on the set of beliefs
o eg. b={b; =7(x,%), b =7(x)}

e Relax the optimization problem

e approximate objective: Heorna =H (b, B)

o relaxed feasible set: M, ={ TZOlZf(X,-):LZf(X,wX,)=T(X,)}

b" =arg min {(E), +F(b) |

e The loopy BP algorithm:
o afixed point iteration procedure that tries to solve b*
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Region-based Approximations to | 3%

the Gibbs Free Energy («ikuchi, 1951) e
Exact: &[g(X)]  (intractable)
Regions: 6[{6.(X,)}]

Better approximations? s

e Recall that Bethe approximation was

Foete = Fiz + Foz +..+ Fgy + -
Fre—F—F-2F, —2F,.—F |

F = Fse + Foser + Faazs —
Foo —Fe+tF+F+F+F

e Called Kikuchi approximation |

Eric Xing
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Recipe for generalizing BP

e Define an approximation of the free energy
e Some restrictions on choice of regions
e Obtain fixed point equations by solving constrained
optimization problem using this approximation
e Convert to a message passing algorithm ala BP
e Message-update rules obtained by enforcing marginalization constraints.
e Belief in a region is the product of:
e Local information (factors in region)
e Messages from parent regions

e Messages into descendant regions from parents who are not
descendants.

e Called Generalized BP or GBP
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Generalized Belief Propagation

1245 2356 4578 5689

> > ><|

8
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Generalized Belief Propagation

1245 2356 4578 5689

> > >

by oc m,_sm, sMg_sMg

Generalized Belief Propagation

1245 2356 4578 5689

\\ //

5

58

b45 oc [ f45] [m12—>45m78—>45m2—>5m6—>5m8—>5]
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Generalized Belief Propagation o
1245 2356 4578 5689
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B4 oc [T, i Trs f45][m36»25m78a45

m6~>5 m8~>5 ]
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