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Clustering
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Object Recognition and Tracking

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)
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Modeling The Mind …

… …

…

t=1 t=T

Read sentenceRead sentence

View pictureView picture

Decide whether consistentDecide whether consistent

Latent Latent 
brain processes:brain processes:

fMRIfMRI scan:scan:
∑∑
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PNASPNAS paperspapers

ResearchResearch
topicstopics

1900 2000 ?

ResearchResearch
circlescircles

The Evolution of Science

CS

BioPhyPhy
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Partially Observed, Open and 
Evolving Possible Worlds

Unbounded # of objects/trajectories
Changing attributes
Birth/death, merge/split
Relational ambiguity 

The parametric paradigm:

Finite
Structurally 
unambiguous
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How to open it up?How to open it up?
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A Classical Approach
Clustering as Mixture Modeling

Then "model selection" 
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Model Selection vs. Posterior 
Inference

Model selection
"intelligent" guess: ???
cross validation: data-hungry 
information theoretic:

AIC
TIC
MDL :

Bayes factor: need to compute data likelihood

Posterior inference: 
we want to handle uncertainty of model complexity explicitly

we favor a distribution that does not constrain M in a "closed" space!

( )),ˆ|(|)(minarg KKL MLgf θ⋅⋅
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Parsimony,  Parsimony,  Ockam'sOckam's RazorRazor
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Two "Recent" Developments
First order probabilistic languages (FOPLs)

Examples: PRM, BLOG …
Lift graphical models to "open" world (#rv, relation, index, lifespan …)
Focus on complete, consistent, and operating rules to instantiate possible worlds, 
and formal language of expressing such rules
Operational way of defining distributions over possible worlds, via sampling 
methods

Bayesian Nonparametrics
Examples: Dirichlet processes, stick-breaking processes …
From finite, to infinite mixture, to more complex constructions (hierarchies, 
spatial/temporal sequences, …)
Focus on the laws and behaviors of both the generative formalisms and resulting 
distributions
Often offer explicit expression of distributions, and expose the structure of the 
distributions --- motivate various approximate schemes
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Clustering

How to label them ?

How many clusters ???
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Genetic Demography

Are there genetic prototypes among them ?
What are they ?
How many ? (how many ancestors do we have ?) 
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Genetic Polymorphisms
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Biological Terms

– Each variant is called an “allele”
– Almost always bi-allelic
– Account for most of the genetic 

diversity among different (normal) 
individuals, e.g. drug response, 
disease susceptibility

Genetic polymorphism: a difference in DNA sequence among 
individuals, groups, or populations

Single Nucleotide Polymorphism (SNP): DNA sequence 
variation occurring when a single nucleotide - A, T, C, or G -
differs between members of the species

Eric Xing 14

From SNPs to Haplotypes
Alleles of adjacent SNPs on a chromosome form haplotypes

Powerful in the study of  disease association or genetic evolution
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Haplotype

Re-construction

Chromosome phase is knownChromosome phase is unknown

Haplotype and Genotype
A collection of alleles derived from the same chromosome
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Ancestral Inference

Better recovery of the ancestors leads to better haplotyping results 
(because of more accurate grouping of common haplotypes)

True haplotypes are obtainable with high cost, but they can validate model 
more subjectively (as opposed to examining saliency of clustering)

Many other biological/scientific utilities 

Gn

Hn1 Hn2

Ak θk

?

NN

Essentially a clustering problem, but Essentially a clustering problem, but ……
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The probability of a genotype g:

Standard settings:
H| = K << 2J fixed-sized population haplotype pool

p(h1,h2)= p(h1)p(h2)=f1f2 Hardy-Weinberg equilibrium

Problem: K ? H ?

∑
∈

=
  ,

2121
21

),|(),()(
Hhh

hhgphhpgp

Genotyping
model

Haplotype
model

Population haplotype
pool

A Finite (Mixture of ) Allele Model

Gn

Hn1 Hn2
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A Infinite (Mixture of ) Allele 
Model

Gn

Hn1 Hn2

Ak θk

∞

NN

How?
Via a nonparametric hierarchical Bayesian formalism ! 
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Random Partition of Probability 
Space

. (event, pevent) 

centroid :=φ

ancester :=(a,θ){ }11 πφ ,
{ }22 πφ ,

{ }55 πφ ,

{ }66 πφ ,

{ }33 πφ ,

{ }44 πφ ,

…
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Dirichlet Process
A CDF, G, on possible worlds 
of random partitions follows a 
Dirichlet Process if for any 
measurable finite partition
(φ1,φ2, .., φm):

(G(φ1), G(φ2), …, G(φm) ) ~ 
Dirichlet( αG0(φ1), …., αG0(φm) )

where G0 is the base measure
and α is the scale parameter

1φ 2φ
5φ

6φ

3φ
4φ

Thus a Thus a DirichletDirichlet Process Process G G defines a distribution of distribution defines a distribution of distribution 

a distribution

another 
distribution



11

Eric Xing 21

Stick-breaking Process
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Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence 
of samples, such a distribution is formally known as the Dirichlet Process (DP)
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{A,θ} {A,θ} {A,θ} {A,θ} {A,θ} {A,θ} ……
3

1
2 4

5 6 7

8 9

The DP Mixture of Ancestral 
Haplotypes

The customers around a table form a cluster
associate a mixture component (i.e., a population haplotype) with a table 

sample {a, θ} at each table from a base measure G0 to obtain the 
population haplotype and nucleotide substitution frequency for that 
component

With p(h|{Α, θ}) and p(g|h1,h2), the CRP yields a posterior distribution on 
the number of population haplotypes (and on the haplotype 
configurations and the nucleotide substitution frequencies)
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A Hierarchical Bayesian Infinite 
Allele model

).},{|(~ kahph θ

•• Assume anAssume an individual haplotypeindividual haplotype hh is stochastically is stochastically 
derived from aderived from a population haplotypepopulation haplotype ak withwith
nucleotidenucleotide--substitution frequencysubstitution frequency θk: : 

•• Not knowing the correspondences between individual  Not knowing the correspondences between individual  
and population haplotypes, each individual haplotype and population haplotypes, each individual haplotype 
is a mixture of  population haplotypesis a mixture of  population haplotypes..

•• The number and identity of the population haplotypes are unknownThe number and identity of the population haplotypes are unknown

−− use ause a DirichletDirichlet Process Process to construct a priorto construct a prior distributiondistribution GG on on HH´́××RRJJ..

Gn

Hn1 Hn2

Ak θk

∞

G

τ G0
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DP-haplotyper

Inference: Markov Chain Monte Carlo (MCMC)
Gibbs sampling
Metropolis Hasting

Gn

Hn1 Hn2

A θ

N

K

G

α G0 DP

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual 

haplotypes and genotypes)
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Model components
Choice of base measure:

Nucleotide-substitution model:

Noisy genotyping model:
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Gibbs sampling

Starting from some initial haplotype reconstruction H(0) , pick a first table 
with an arbitrary a1

(0) , and form initial population-hap pool A(0) ={a1 
(0) }: 

i) Choose an individual i and one of his/her two haplytopes t, uniformly and at 
random, from all ambiguous individuals;

ii) Sample from , update ;

iii) Sample , where , from  ;
update A(t+1) ;

iii) Sample from , update H(t+1).
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Convergence of Ancestral 
Inference
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Haplotyping Error

The Gabriel data


