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The Elimination Algorithm

Probabilistic Graphical Models  (10Probabilistic Graphical Models  (10--708)708)

Lecture 4, Sep 26, 2007
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Reading: J-Chap 3, KF-Chap. 8, 9
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Probabilistic Inference
We now have compact representations of probability 
distributions:  Graphical Models

A GM G describes a unique probability distribution P

How do we answer queries about P?

We use inference as a name for the process of 
computing answers to such queries
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Query 1: Likelihood

Most of the queries one may ask involve evidence
Evidence e is an assignment of values to a set E variables in the domain
Without loss of generality E = { Xk+1, …, Xn }

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  e
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Query 2: Conditional Probability

Often we are interested in the conditional probability 
distribution of a variable given the evidence

this is the a posteriori belief in X, given evidence e

We usually query a subset Y of all domain variables 
X={Y,Z} and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(y|e) is called a marginal prob.
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Applications of a posteriori Belief
Prediction: what is the probability of an outcome given the starting 
condition

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not restricted 
by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 
evidence e, and ignoring (the values of) other variables 
z :

this is the maximum a posteriori configuration of y.
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Query 3: Most Probable 
Assignment
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x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Applications of MPA

Classification 
find most likely label, given the evidence

Explanation 
what is the most likely scenario, given the evidence

Cautionary note:

The MPA of a variable depends on its "context"---the set 
of variables been jointly queried
Example:

MPA of X ?
MPA of (X, Y) ?
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Thm:
Computing P(X = x | e) in a GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMs
For particular families of GMs, we can have provably efficient 
procedures

Complexity of Inference
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Approaches to inference

Exact inference algorithms

The elimination algorithm
Message-passing algorithm (sum-product, belief propagation)
The junction tree algorithms      

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms
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Query: P(e)

By chain decomposition, we get
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a naïve summation needs to 
enumerate over an 
exponential number of  terms

A signal transduction pathway:

What is the likelihood that protein E is active?

Marginalization and Elimination
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Rearranging terms ...
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Elimination on Chains
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Now we can perform innermost summation

This summation "eliminates" one variable from our 
summation argument at a "local cost".
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Elimination on Chains
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Rearranging and then summing again, we get
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Elimination in Chains
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A B C ED

Eliminate nodes one by one all the way to the end, we 
get
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Complexity:
• Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(kn2)
• Compare to naïve evaluation that sums over joint values of n-1

variables O(nk)

Elimination in Chains
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Rearranging terms ...

A B C ED

Undirected Chains
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The Sum-Product Operation
In general, we can view the task at hand as that of computing 
the value of an expression of the form:

where F is a set of factors

We call this task the sum-product inference task.
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Outcome of elimination
Let X be some set of variables, 
let F be a set of factors such that for each φ∈ F , Scope[φ ] ⊆ X, 
let Y⊂ X be a set of query variables, 
and let Z = X−Y be the variable to be eliminated

The result of eliminating the variable Z is a factor

This factor does not necessarily correspond to any probability or conditional 
probability in this network. (example forthcoming)
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Dealing with evidence
Conditioning as a Sum-Product Operation

The evidence potential:

Total evidence potential:

Introducing evidence --- restricted factors:
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General idea:
Write query in the form

this suggests an "elimination order" of latent variables to be 
marginalized

Iteratively

Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up
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Inference on General GM via 
Variable Elimination
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The elimination algorithm
Procedure Elimination (

G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s) 
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, ≺)
4. Normalization (F)
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The elimination algorithm
Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of 

Z such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set 

of factors 

Procedure Evidence (E)
1. for each i∈ΙE , 
F =F ∪δ(Ei, ei)

Procedure Sum-Product-
Variable-Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-
Var(F Zi)
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The elimination algorithm
Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of 

factors 

Procedure Evidence (E)
1. for each i∈ΙE , 
F =F ∪δ(Ei, ei)

Procedure Sum-Product-Variable-
Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. φ∗ ← ∏φ∈F φ
3. return φ∗

4. Normalization (φ∗)

Procedure Normalization (φ∗)
1. P(X|E)=φ∗(X)/∑xφ∗(X)

Procedure Sum-Product-Eliminate-Var (
F, // Set of factors
Z // Variable to be eliminated
)

1. F ′ ← {φ∈ F : Z ∈ Scope[φ]}
2. F ′′ ← F − F ′
3. ψ ←∏φ∈F ′ φ
4. τ ← ∑Z ψ
5. return F ′′∪ {τ}
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A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network
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Query: P(A |h)
Need to eliminate: B,C,D,E,F,G,H

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 
Conditioning (fix the evidence node (i.e., h) to its observed 
value (i.e.,   )):

This step is isomorphic to a marginalization step:
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Example: Variable Elimination



13

Eric Xing 25

Query: P(B |h)
Need to eliminate: B,C,D,E,F,G

Initial factors:

Step 2: Eliminate G
compute
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Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B,C,D,E,F

Initial factors:

Step 3: Eliminate F
compute

B A

DC

E F

G H

∑ ),()|(),(
f

hf feafpae φφ =

),(),|()|()|()()(    ⇒ eadcePadPbcPbPaP fφ

),()|(),|()|()|()()(⇒
),()|()|(),|()|()|()()(⇒
),|()|()|(),|()|()|()()(

feafPdcePadPbcPbPaP
feegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

h

h

φ
φ

B A

DC

E

Example: Variable Elimination
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C,D,E

Initial factors:

Step 4: Eliminate E
compute
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Query: P(B |h)
Need to eliminate: B,C,D

Initial factors:

Step 5: Eliminate D
compute

B A

DC

E F

G H
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Example: Variable Elimination



15

Eric Xing 29

B A

DC

E F

G H

∑ ),()|(),(
c

dc cabcpba φφ =

),()()(    ⇒ babPaP cφ

),()|()()( ⇒
),,()|()|()()( ⇒

),(),|()|()|()()( ⇒
),()|(),|()|()|()()(⇒

),()|()|(),|()|()|()()(⇒
),|()|()|(),|()|()|()()(

cadcPbPaP
dcaadPdcPbPaP

eadcePadPdcPbPaP
feafPdcePadPdcPbPaP

feegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

d

e

f

h

h

φ
φ

φ
φ

φ

B A

Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C

Initial factors:

Step 6: Eliminate C
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B

Initial factors:

Step 7: Eliminate B
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: { }

Initial factors:

Step 8: Wrap-up
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Suppose in one elimination step we compute

This requires 
multiplications

For each value for x, y1, …, yk, we do k multiplications

additions

For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables 
in the intermediate factor
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Complexity of variable 
elimination
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A graph elimination algorithm

moralization
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graph elimination

Understanding Variable 
Elimination
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Graph elimination
Begin with the undirected GM or moralized BN

Graph G(V, E) and elimination ordering I

Eliminate next node in the ordering I
Removing the node from the graph
Connecting the remaining neighbors of the nodes

The reconstituted graph G'(V, E')
Retain the edges that were created during the elimination procedure
The graph-theoretic property: the factors resulted during variable 
elimination are captured by recording the elimination clique
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A graph elimination algorithm

Intermediate terms correspond to the cliques resulted from 
elimination

moralization
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graph elimination

Understanding Variable 
Elimination
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Graph elimination and 
marginalization

Induced dependency during marginalization vs. elimination 
clique

Summation <-> elimination
Intermediate term <-> elimination clique
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Complexity
The overall complexity is determined by the number of the 
largest elimination clique

What is the largest elimination clique? – a pure graph theoretic question

Tree-width k: one less than the smallest achievable value of the 
cardinality of the largest elimination clique, ranging over all possible 
elimination ordering

“good” elimination orderings lead to small cliques and hence reduce 
complexity (what will happen if we eliminate "e" first in the above graph?)

Find the best elimination ordering of a graph --- NP-hard
Inference is NP-hard

But there often exist "obvious" optimal or near-opt elimination ordering  
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Examples
Star

Tree
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Limitation of Procedure Elimination

Limitation
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

Elimination ≡ message passing on a clique tree

Messages can be reused
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

Elimination ≡ message passing on a clique tree
Another query ...

Messages mf and mh are reused, others need to be recomputed
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Summary
The simple Eliminate algorithm captures the key algorithmic 
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 

The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

This graph interpretation will also provide hints about how to design 
improved inference algorithm that overcome the limitation of 
Eliminate. 


