The Hidden Markov Models for sequence parsing

Gene structure in eukaryotes

Gene finding

- Given un-annotated sequences,
- delineate:
- transcription initiation site,
- exon-intron boundaries,
- transcription termination site,
- a variety of other motifs: promoters, polyA sites, branching sites, etc.
- The hidden Markov model (HMM)

The underlying source: genomic entities, dice,
The sequence:

Ploy NT,
sequence of rolls,

Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6
$$

- Loaded die
$P(1)=P(2)=P(3)=P(5)=1 / 10$
$P(6)=1 / 2$
Casino player switches back-\&-forth between fair and loaded die once every 20 turns

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

Question \# 1 - Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Question \# 2 - Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

Question \# 3 - Learning

GIVEN

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361651561511514612356234

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

A stochastic generative model

Observed sequence:

A

B

Hidden sequence (a parse or segmentation):

Definition (of HMM)

$$
a_{0,1}+\ldots+a_{0, k}=1
$$

- Emission probabilities associated with each state

$$
\begin{aligned}
& e_{i b}=P\left(x_{t}=b \mid y_{t}=i\right) \\
& e_{i, b 1}+\ldots+e_{i, b M}=1, \text { for all states } i=1 \ldots K
\end{aligned}
$$

The dishonest casino model

Likelihood of a parse

Given a sequence $x=x_{1} \ldots \ldots x_{N}$ and a parse $\mathrm{y}=\mathrm{y}_{1}, \ldots \ldots, \mathrm{y}_{\mathrm{N}}$,

To find how likely is the parse:
(given our HMM and the sequence)

$P(x, y)=P\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots \ldots, y_{N}\right)$
(Joint probability)
$=P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \ldots P\left(y_{N} \mid y_{N-1}\right) P\left(x_{N} \mid y_{N}\right)$
$=P\left(y_{1}\right) P\left(y_{2} \mid y_{1}\right) \ldots P\left(y_{N} \mid y_{N-1}\right) \times P\left(x_{1} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \ldots P\left(x_{N} \mid y_{N}\right)$
$=P\left(y_{1}, \ldots \ldots, y_{N}\right) P\left(x_{1}, \ldots, x_{N} \mid y_{1}, \ldots \ldots, y_{N}\right)$
$=a_{0, y 1} a_{y 1, y 2} \cdots \cdots a_{y N-1, y N} e_{y 1, x 1}+\cdots e_{y N, x N}$
$P(x)={ }_{y} P(x, y) \quad$ (Marginal probability)
$P(y \mid x)=P(x, y) / P(x) \quad$ (Posterior probability)

Example: the dishonest casino

Let the sequence of rolls be:
$x=1,2,1,5,6,2,1,6,2,4$

Then, what is the likelihood of
$\mathbf{y}=$ Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs $a_{0 \text { Fair }}=1 / 2, a_{0 \text { Loaded }}=1 / 2$)
$1 / 2 \times P(1 \mid$ Fair $) P($ Fair | Fair $) P(2 \mid$ Fair $) P($ Fair | Fair $) \ldots P(4 \mid$ Fair $)=$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211=0.5 \times 10^{-9}$

Example: the dishonest casino

So, the likelihood the die is fair in all this run is just 5.21×10^{-9}

OK, but what is the likelihood of

$\pi=$ Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?
$1 / 2 \times P(1 \mid$ Loaded $) P($ Loaded \mid Loaded $) \ldots P(4 \mid$ Loaded $)=$
$1 / 2 \times(1 / 10)^{8} \times(1 / 2)^{2}(0.95)^{9}=.00000000078781176215=0.79 \times 10^{-9}$

Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Example: the dishonest casino

Let the sequence of rolls be:
$x=1,6,6,5,6,2,6,6,3,6$

Now, what is the likelihood $\pi=F, F, \ldots, F$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=0.5 \times 10^{-9}$, same as before

What is the likelihood
$\mathbf{y}=\mathrm{L}, \mathrm{L}, \ldots, \mathrm{L}$?
$1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735=0.5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

The three main questions on HMMs

1. Evaluation

GIVEN an HMM \boldsymbol{M}, and a sequence x , FIND

Prob ($\mathrm{x} \mid \mathrm{M}$)
2. Decoding

GIVEN an HMM \boldsymbol{M}, and a sequence x ,
FIND the sequence π of states that maximizes, e.g., $\mathrm{P}(\mathrm{x} \mid \pi, \mathrm{M})$
3. Learning

GIVEN an HMM \boldsymbol{M}, with unspecified transition/emission probs., and a sequence x ,

FIND parameters $\theta=\left(\mathrm{e}_{\mathrm{i},}, \mathrm{a}_{\mathrm{ij}}\right)$ that maximize $\mathrm{P}(\mathrm{x} \mid \theta)$

Applications of HMMs

Some early applications of HMMs

- finance, but we never saw them
- speech recognition
- modelling ion channels

In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.

Some current applications of HMMs to biology

- mapping chromosomes
- aligning biological sequences
- predicting sequence structure
- inferring evolutionary relationships
- finding genes in DNA sequence

Typical structure of a gene

Some facts about human genes

- Comprise about 3% of the genome
- Average gene length: ~ 8,000 bp
- Average of 5-6 exons/gene
- Average exon length: ~200 bp
- Average intron length: ~2,000 bp
- ~8\% genes have a single exon

Some exons can be as small as 1 or 3 bp .

HUMFMR1S is not atypical: 17 exons $40-60$ bp long, comprising 3% of a 67,000 bp gene

The idea behind a GHMM genefinder

- States represent standard gene features: intergenic region, exon, intron, perhaps more (promotor, 5'UTR, 3'UTR, PolyA,..).
- Observations embody state-dependent base composition, dependence, and signal features.
- In a GHMM, duration must be included as well.
- Finally, reading frames and both strands must be dealt with.

GENSCAN (Burge \& Karlin)

The HMM algorithms

Questions:

1. Evaluation: What is the probability of the observed sequence? Forward
2. Decoding: What is the probability that the state of the 3 rd position is $B k$, given the observed sequence? Backward
3. Decoding: What is the most likely die sequence? Viterbi
4. Learning: Under what parameterization are the observed sequences most probable? Baum-Welch (EM)

The Forward Algorithm

We want to calculate

$P(x)=$ probability of x, given the HMM
Sum over all possible ways of generating x :

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\pi} \mathrm{P}(\mathrm{x}, \pi)=\Sigma_{\pi} \mathrm{P}(\mathrm{x} \mid \pi) \mathrm{P}(\pi)
$$

To avoid summing over an exponential number of paths π, define

$$
f_{k}(t)=P\left(x_{1} \ldots x_{t}, \pi_{t}=k\right) \quad \text { (the forward probability) }
$$

The Forward Algorithm - derivation

Compute the forward probability:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{k}}(\mathrm{t}) & =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}, \mathrm{x}_{\mathrm{t}}, \pi_{\mathrm{t}}=\mathrm{k}\right) \\
& =\Sigma_{\pi \mathrm{t}-1} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}, x_{\mathrm{t}}, \pi_{\mathrm{t}-1}, \pi_{\mathrm{t}}=\mathrm{k}\right) \\
& =\Sigma_{\pi \mathrm{t}-1} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}, \pi_{\mathrm{t}-1}\right) \mathrm{P}\left(\pi_{\mathrm{t}}=\mathrm{k} \mid \pi_{-1}, \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}\right) \mathrm{P}\left(\mathrm{x}_{\mathrm{t}} \mid \pi_{\mathrm{t}}=\mathrm{k}, \pi_{\mathrm{t}-1}, \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}\right) \\
& =\Sigma_{\pi \mathrm{t}-1} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}, \pi_{\mathrm{t}-1}\right) \mathrm{P}\left(\pi_{\mathrm{t}}=\mathrm{k} \mid \pi_{\mathrm{t}-1}\right) \mathrm{P}\left(\mathrm{x}_{\mathrm{t}} \mid \pi_{\mathrm{t}}=\mathrm{k}\right) \\
& =\Sigma_{i} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{\mathrm{i}-1}=\mathrm{i}\right) \mathrm{P}\left(\pi_{\mathrm{t}}=\mathrm{k} \mid \pi_{\mathrm{t}-1}=\mathrm{i}\right) \mathrm{P}\left(\mathrm{x}_{\mathrm{t}} \mid \pi_{\mathrm{t}}=\mathrm{k}\right) \\
& =e_{k}\left(x_{\mathrm{t}}\right) \Sigma_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}(\mathrm{t}-1) \mathrm{a}_{\mathrm{ik}}
\end{aligned}
$$

The Forward Algorithm

We can compute $f_{k}(t)$ for all k, t, using dynamic programming!

Initialization:
$\mathrm{f}_{0}(0)=1$
$f_{k}(0)=0$, for all $k>0$

Iteration:
$f_{l}(t)=e_{l}\left(x_{t}\right) \Sigma_{k} f_{k}(t-1) a_{k} \quad\left(a_{0 k}\right.$ is a vector of initial probability $)$

Termination:
$P(x)=\Sigma_{k} \mathrm{f}_{\mathrm{k}}(\mathrm{T})$

The Backward Algorithm

We want to compute

$$
\mathrm{P}\left(\pi_{\mathrm{t}}=\mathrm{k} \mid \mathrm{x}\right),
$$

the probability distribution on the $t^{\text {th }}$ position, given x
We start by computing

$$
\begin{aligned}
\mathrm{P}\left(\pi_{\mathrm{t}}=\mathrm{k}, \mathrm{x}\right) & =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}}, \pi_{\mathrm{t}}=\mathrm{k}, \mathrm{x}_{\mathrm{t}+1} \ldots \mathrm{x}_{\mathrm{N}}\right) \\
& =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}}, \pi_{\mathrm{t}}=k\right) \mathrm{P}\left(x_{\mathrm{t}+1} \ldots x_{\mathrm{N}} \mid x_{1} \ldots x_{\mathrm{t}}, \pi_{\mathrm{t}}=k\right) \\
& =\mathrm{P}\left(x_{1} \ldots x_{\mathrm{t}}, \pi_{\mathrm{t}}=k\right) \mathrm{P}\left(x_{\mathrm{t}+1} \ldots x_{\mathrm{N}} \mid \pi_{\mathrm{t}}=k\right)
\end{aligned}
$$

Forward, $\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \quad$ Backward, $\mathrm{b}_{\mathrm{k}}(\mathrm{i})$

The Backward Algorithm - derivation

Define the backward probability:
$\begin{aligned} \mathrm{b}_{\mathrm{k}}(\mathrm{t}) & =\mathrm{P}\left(\mathrm{x}_{\mathrm{t}+1} \ldots \mathrm{x}_{\mathrm{N}} \mid \pi_{\mathrm{t}}=\mathrm{k}\right) \\ & =\Sigma_{\pi \mathrm{t}+1} \mathrm{P}\left(\mathrm{x}_{\mathrm{t}+1}, \mathrm{x}_{\mathrm{t}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{\mathrm{t}+1} \mid \pi_{\mathrm{t}}=\mathrm{k}\right)\end{aligned}$
$=\Sigma_{i} P\left(\pi_{t+1}=i \mid \pi_{t}=k\right) P\left(x_{t+1} \mid \pi_{t}=k\right) P\left(x_{t+2}, x_{t+2}, \ldots, x_{N} \mid \pi_{t+1}=k\right)$
$=\Sigma_{i} a_{k, i} e_{i}\left(x_{t+1}\right) P\left(x_{i+2}, \ldots, x_{N} \mid \pi_{i+1}=i\right)$
$=\Sigma_{\mathrm{i}} \mathrm{a}_{\mathrm{k}, \mathrm{i}} \mathrm{e}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{t}+1}\right) \mathrm{b}_{\mathrm{i}}(\mathrm{t}+1)$

The Backward Algorithm

We can compute $b_{k}(t)$ for all k, t, using dynamic programming

Initialization:

$$
b_{k}(T)=1, \text { for all } k
$$

Iteration:

$$
\mathrm{b}_{\mathrm{k}}(\mathrm{t})=\Sigma_{1} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{t}+1}\right) \mathrm{a}_{\mathrm{k}} \mathrm{~b}_{1}(\mathrm{t}+1)
$$

Termination:

$$
\mathrm{P}(\mathrm{x})=\Sigma_{1} \mathrm{a}_{0} \mathrm{e}_{\|}\left(\mathrm{x}_{1}\right) \mathrm{b}_{1}(1)
$$

Posterior Decoding

We can now calculate

$$
P\left(\pi_{t}=k \mid x\right)=\frac{f_{k}(t) b_{k}(t)}{P(x)}
$$

Then, we can ask
What is the most likely state at position t of sequence x :
Define π^{*} by Posterior Decoding:

$$
\pi_{t}^{*}=\operatorname{argmax}_{k} P\left(\pi_{t}=k \mid x\right)
$$

Decoding

GIVEN $x=x_{1} x_{2} \ldots \ldots x_{T}$

We want to find $\pi=\pi_{1}, \ldots \ldots, \pi_{\mathrm{T}}$, such that $P(\pi \mid x)$ is maximized
$\pi^{*}=\operatorname{argmax}_{\pi} \mathrm{P}(\pi \mid x)=\operatorname{argmax}_{\pi} \mathrm{P}(\pi, x)$
We can use dynamic programming!

Let $\mathrm{V}_{\mathrm{k}}(\mathrm{t})=\max _{\{\pi 1, \ldots, \pi i-1\}} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}-1}, \pi_{1}, \ldots, \pi_{\mathrm{t}-1}, \mathrm{x}_{\mathrm{t}}, \pi_{\mathrm{t}}=\mathrm{k}\right)$
$=$ Probability of most likely sequence of states ending at state $\pi_{\mathrm{t}}=\mathrm{k}$

Decoding - main idea

Given that for each possible state k, and for a fixed position t,

$$
V_{k}(t)=\max _{\{\pi 1, \ldots, \pi t-1\}} P\left(x_{1} \ldots x_{t-1}, \pi_{1}, \ldots, \pi_{t-1}, x_{t}, \pi_{t}=k\right)
$$

What is $V_{l}(t+1)$?
From definition,
$\mathrm{V}_{\mathrm{l}}(\mathrm{t}+1)=\max _{\{\pi 1, \ldots, \pi t\}} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{t}}, \pi_{1}, \ldots, \pi_{t}, \mathrm{x}_{\mathrm{t}+1}, \pi_{t+1}=\mathrm{I}\right)$

$$
\begin{aligned}
& =\max _{\{\pi 1, \ldots, \pi t\}} \mathrm{P}\left(x_{t+1}, \pi_{t+1}=I \mid x_{1} \ldots x_{t}, \pi_{1}, \ldots, \pi_{t}\right) P\left(x_{1} \ldots x_{t}, \pi_{1}, \ldots, \pi_{t}\right) \\
& =\max _{\{\pi 1, \ldots, \pi t\}} P\left(x_{t+1}, \pi_{t+1}=I \mid \pi_{t}\right) P\left(x_{1} \ldots x_{t-1}, \pi_{1}, \ldots, \pi_{t-1}, x_{t}, \pi_{t}\right) \\
& =\max _{k} P\left(x_{t+1}, \pi_{t+1}=I \mid \pi_{t}=k\right) \max _{\{\pi 1, \ldots, \pi t-1\}} P\left(x_{1} \ldots x_{t-1}, \pi_{1}, \ldots, \pi_{t-1}, x_{t}, \pi_{t}=k\right) \\
& =e_{l}\left(x_{t+1}\right) \max _{k} a_{k l} V_{k}(t)
\end{aligned}
$$

The Viterbi Algorithm

Input: $x=x_{1} \ldots . . x_{N}$
Initialization:

$$
\begin{array}{ll}
\mathrm{V}_{0}(0)=1 & (0 \text { is the imaginary first position) } \\
\mathrm{V}_{\mathrm{k}}(0)=0, \text { for all } \mathrm{k}>0 &
\end{array}
$$

Iteration:
$\mathrm{V}_{\mathrm{j}}(\mathrm{t})=\mathrm{e}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{t}}\right) \times \max _{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{V}_{\mathrm{k}}(\mathrm{t}-1)$
$P \operatorname{tr}_{\mathrm{j}}(\mathrm{t})=\operatorname{argmax}_{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{V}_{\mathrm{k}}(\mathrm{t}-1)$
Termination:
$\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{T})$
Traceback:

$$
\begin{aligned}
& \pi_{\mathrm{T}}{ }^{*}=\operatorname{argmax}_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~T}) \\
& \pi_{\mathrm{t}-1}{ }^{*}=\operatorname{Ptr}_{n t}(\mathrm{t})
\end{aligned}
$$

Viterbi Algorithm - a practical detail

Underflows are a significant problem
$P\left(x_{1}, \ldots ., x_{t}, \pi_{1}, \ldots, \pi_{t}\right)=a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots \ldots . a_{\pi t-1, \pi t} e_{\pi 1}\left(x_{1}\right) \ldots \ldots e_{\pi t}\left(x_{t}\right)$
These numbers become extremely small - underflow

Solution: Take the logs of all values
$V_{i}(t)=\log e_{k}\left(x_{t}\right)+\max _{k}\left[V_{k}(t-1)+\log a_{k i}\right]$

Computational Complexity

What is the running time, and space required, for Forward, and Backward?

Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space: O(KN)
Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each position by multiplying by a constant

Model learning: two scenarios

1. Supervised learning: estimation when the "right answer" is known

Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls
2. Unsupervised learning: estimation when the "right answer" is unknown

Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

QUESTION: Update the parameters θ of the model to maximize $\mathrm{P}(\mathrm{x} \mid \theta)$

Supervised ML estimation

Given $x=x_{1} \ldots x_{N}$
for which the true $\pi=\pi_{1} \ldots \pi_{N}$ is known,

Define:

$\mathrm{A}_{\mathrm{kl}} \quad=\#$ times $\mathrm{k} \rightarrow$ I transition occurs in π
$\mathrm{E}_{\mathrm{k}}(\mathrm{b}) \quad=$ \# times state k in π emits b in x
We can show that the maximum likelihood parameters θ are:

$$
a_{k l}=\frac{A_{k l}}{\sum_{i} A_{k i}} \quad e_{k}(b)=\frac{E_{k}(b)}{\sum_{c} E_{k}(c)}
$$

(Homework!)

Supervised ML estimation

Intuition: When we know the underlying states,
Best estimate is the average frequency of transitions \& emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
$P(x \mid \theta)$ is maximized, but θ is unreasonable
0 probabilities - VERY BAD

Example:

Given 10 casino rolls, we observe
$\mathrm{x}=2,1,5,6,1,2,3,6,2,3$
$\pi=F, F, F, F, F, F, F, F, F, F$

Then:
$\mathrm{a}_{\mathrm{FF}}=1 ; \quad \mathrm{a}_{\mathrm{FL}}=0$
$\mathrm{e}_{\mathrm{F}}(1)=\mathrm{e}_{\mathrm{F}}(3)=.2$;
$\mathrm{e}_{\mathrm{F}}(2)=.3 ; \mathrm{e}_{\mathrm{F}}(4)=0 ; \mathrm{e}_{\mathrm{F}}(5)=\mathrm{e}_{\mathrm{F}}(6)=.1$

Pseudocounts

Solution for small training sets:

Add pseudocounts
$\mathrm{A}_{\mathrm{kl}} \quad=\#$ times $\mathrm{k} \rightarrow$ transition occurs in $\pi+\mathrm{r}_{\mathrm{kl}}$
$\mathrm{E}_{\mathrm{k}}(\mathrm{b}) \quad=\#$ times state k in π emits b in $\mathrm{x}+\mathrm{r}_{\mathrm{k}}(\mathrm{b})$
$r_{k l}, r_{k}(b)$ are pseudocounts representing our prior belief

Larger pseudocounts \Rightarrow strong prior belief

Small pseudocounts $(\varepsilon<1)$: just to avoid 0 probabilities --- smoothing

Unsupervised ML estimation

Given $x=x_{1} \ldots x_{N}$
for which the true $\pi=\pi_{1} \ldots \pi_{N}$ is unknown, EXPECTATION MAXIMIZATION
0. Starting with our best guess of a model M, parameters θ :

1. Estimate $A_{k}, E_{k}(b)$ in the training data
2. Update θ according to $A_{k l}, E_{k}(b)$
3. Repeat 1 \& 2, until convergence

This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum-Welch algorithm -comments

Time Complexity:
\# iterations $\times \mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$

- Guaranteed to increase the log likelihood of the model

$$
P(\theta \mid x)=P(x, \theta) / P(x)=P(x \mid \theta) /(P(x) P(\theta))
$$

- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overt-fitting

