The Hidden Markov Models
for sequence parsing

Gene structure in eukaryotes o]
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Gene finding

» Given un-annotated sequences,
» delineate:

PATACACAGCGCACACAT |
[ATAAGCTTGCACACT GATGCACACACACOGACACGTTGTC

transcription initiation site,
— exon-intron boundaries,
transcription termination site, T cacoorecoeecToaT

| TTAGCATTCGTACGAGGAA(
| TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC

1 1 . [ TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
a variety of other motifs: promoters, T TATAT CoAT GUARCET S TATATACATCEACART A
[ AGAACT GAAGAGT TTCAAAACCTAAAAATAATTGGAATAT

polyA sites, branching sites, etc. [RRAGTTTGaT T TACAATTTATARAACTCTATTGTAAGT |

AGAAAACAGT GCAAAT CAAAGTA

\TTTTAGTTGTACAATTGAGTAAA
ATTTTGGATAATATTTGCTGTTTAC
[ AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
- AAAGAAATAGCTATATTTGTAGAAGT GCA
[ TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
 The hidden Markov model (HMM) e ———
GT AATACAATGTAAATAATTGCAAATAATGTTGTA
\CGTAAACAATAATGTAGH

(GATAAACAGTTGCCTTTAGT TGCAT GACTTCCCGCTGGAT.

Hidden Markov models .

The underlying source: @ @ e G
genomic entities,

dice,

The sequence: @ @ @ @
Ploy NT,

sequence of rolls,




Example: The Dishonest Casino o)

A casino has two dice:

e Fairdie ﬁ ﬁ
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 e

e Loaded die

P(1) =P(2) =P(3) =P(5) =1/10
P(6)=1/2

Casino player switches back-&-forth between
fair and loaded die once every 20 turns

Game:
You bet $1
You roll (always with a fair die)

Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2

wnN e

Question # 1 — Evaluation =

GIVEN

A sequence of rolls by the casino player
64621461461361366616646616266163661636165156 612356

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs




Question # 2 — Decoding v

GIVEN

A sequence of rolls by the casino player
64621461461361366616646616366163661636165156 612356

QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs

Question # 3 — Learning W

GIVEN

A sequence of rolls by the casino player
64621461461361366616646616366163661636165156 6 6

QUESTION

How “loaded” is the loaded die? How “fair’ is the fair die? How
often does the casino player change from fair to loaded, and
back?

This is the LEARNING question in HMMs




A stochastic generative model s

Observed sequence:

O—O—O—O—O—D—

Hidden sequence (a parse or segmentation):

O—E—O—O—0O—0E—

Definition (of HMM) v

Definition: A hidden Markov model (HMM)

* Observation alphabet S ={ by, by, ..., by} C\ /‘)
1 2

e Set of hidden states Q={1, ..., K}

» Transition probabilities between any two states ) 1
a;; = P(y=ilye1=1)
a+..+a=1, forallstatesi=1...K R

 Start probabilities ay ;
Qop* - +Ao=1
* Emission probabilities associated with each state

ep=P(x=Db]y =10
€p* ... tepy=1 forallstatesi=1..K




The dishonest casino model o)
LOADED
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= L
Likelihood of a parse o]

Given a sequence X = Xj...... XN

and a parsey =Yy, ......, Y @ @ @
To find how likely is the parse: @ @ @

(given our HMM and the sequence)

P Y) =Py ooy X Yiy ooeeees Yn) (Joint probability)
=P(y) P(Y, | y1) o PO YNt
=Py) P2l YD) - PO | Waed) %
=Py e W)

=80y, 80 Aoy
P =2 P(x.y) (Marginal probability)

Py|X¥ =P(x y)P(X (Posterior probability)




Example: the dishonest casino =

Let the sequence of rolls be:
x=1,2,1,5,6,2,1,6,2,4 ﬁ ﬁ

Then, what is the likelihood of

y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs agra = %2, Aol oaded = ¥2)
%~ P(1| Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

Y~ (1/6)10 7 (0.95)° =.00000000521158647211 = 0.5 = 107

Example: the dishonest casino =

So, the likelihood the die is fair in all this run
is just 5.21 " 10°

& >

OK, but what is the likelihood of

p = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

%~ P(1|Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =
Y5 (1/10)8 © (1/2)? (0.95)° = .00000000078781176215 = 0.79 ~ 10°

Therefore, it is after all 6.59 times more likely that the die is fair all the
way, than that it is loaded all the way




Example: the dishonest casino 3

Let the sequence of rolls be:

& >

x=1,6,6,56,2,6,6,3,6

Now, what is the likelihood p=F, F, ..., F?

% (1/6)10° (0.95)° =0.5" 10°, same as before

What is the likelihood

y=LL, .., L?

Y% (1/10)* " (1/2)% (0.95)° = .00000049238235134735 = 0.5 ~ 107

So, it is 100 times more likely the die is loaded

The three main questions on HMMs o]

1. Evaluation

GIVEN an HMM M, and a sequence X,

FIND Prob (x | M)
2. Decoding

GIVEN an HMM M, and a sequence X,

FIND the sequence p of states that maximizes, e.g., P(x | p, M)
3. Learning

GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence X,

FIND parameters q = (e, a;) that maximize P(x| q)




Applications of HMMs

Some early applications of HMMs

. finance, but we never saw them
. speech recognition
. modelling ion channels

In the mid-late 1980s HMMs entered genetics and molecular

biology, and they are now firmly entrenched.

Some current applications of HMMs to biology

. mapping chromosomes

. aligning biological sequences

. predicting sequence structure

. inferring evolutionary relationships
. finding genes in DNA sequence

Typical structure of a gene
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Some facts about human genes s

» Comprise about 3% of the genome
» Average gene length: ~ 8,000 bp

» Average of 5-6 exons/gene

* Average exon length: ~200 bp

» Average intron length: ~2,000 bp

* ~8% genes have a single exon

Some exons can be as small as 1 or 3bp.

HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising
3% of a 67,000 bp gene

The idea behind a GHMM genefinder o)

» States represent standard gene features: intergenic region,
exon, intron, perhaps more (promotor, 5’UTR, 3’'UTR, Poly-
A,..).

embody state-dependent base composition,
dependence, and signal features.

 |na GHMM, duration must be included as well.

e Finally, and must be dealt
with.
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[GAGAACGT GT GAGAGAGAGGCAAGCCGAAAAAT CA(
CGAAGGATACACTATCGT CGTCCT T GTCCGACGAA

PATACACAGCGCACACAT |
|ATAAGCT TGCACACT GAT GCACACACACCGACACGTTGTC

[ GOGT GCACAAT TTGOGOCAATTTCCCCCC

[TTTTCAACCCAGCACOGCT CGT \CG
| TTAGCATTCGTACGAGGAACAGT GCTGTCATTGT GGCCGC.
[ TGT GTAGCT AAAAAGCGT AATTATTCATTATCTAGCTATC
[TTTTCGGATATTATTGICATTTGCCTTTAATCTTGTGTAT
| TTATATGGATGAAACGT GCTATAATAACAAT GCAGAATGA
[AGAACT GAAGAGT TTCAAAACCTAAAAATAATTGGAATAT
[AAAGTTTGGTTTTACAATTTGATAAAACT CTATTGTAAGT
| GGAGCGTAACATAGGGT AGAAAACAGT GCAAAT CAAAGTA
| CCTAAATGGAATACAAATTTTAGT TGTACAATTGAGTAAA

[ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC

/ \ &l [AAGGGGAACATATTCATAATTTTCAGGT TTAGGTTACGCA

intergeni orwar [ TATGTAGGOGTAAAGAAATAGCTATATTTGTAGAAGTGCA

Reverse (-) strand [Eeflely Reverse (-) strand [TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
\

ATTICCTT
| GTGCAGT AATACAAT GTAAATAATTGCAAATAATGTTGTA
[ACTAAATACGT AAACAAT AAT GTA(

| GATAAACAGTTGOCTTTAGT TGCATGACTTCCOGCTGGAT

The HMM algorithms "

Questions:

Evaluation: What is the probability of the observed sequence? Forward

Decoding: What is the probability that the state of the 3rd position is BK,
given the observed sequence? Backward

3. Decoding: What is the most likely die sequence? Viterbi

Learning: Under what parameterization are the observed sequences
most probable? Baum-Welch (EM)




The Forward Algorithm o)

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating Xx:
PX) = SpP(x p) = S,P(x|p) P(P)

To avoid summing over an exponential number of paths p,
define

fil(D) = P(X... % P;=K) (the forward probability)

The Forward Algorithm — derivation o

Compute the forward probability: @ . @ @

fil() = P(X..- %1 %, Py =K) OO

= Sprr PO X1, % Peas P =K)

= Spt-l P(X1..- X1, Pd)P (@ = KlPrg, X1--- X )PP = Ky Pregs X4 Xi1)
= Sp1 P(Xg--- X1, Pr) PP = Klpy.q) PP, = K)
=S P(X;... %1, Pis = 1) P(py = Klpy1=1) P(XIp = K)

= e (%) S; fi(t-1) ay

12



The Forward Algorithm R

We can compute f,(t) for all k, t, using dynamic programming!

Initialization:
fo(0) =1
f(0) =0, forallk >0

lteration:
i) = e,(x) S, flt-1) ay  (agis a vector of initial probability)

Termination:
P() = S, f(T)

The Backward Algorithm W

We want to compute P(p,=k|Xx),
the probability distribution on the t" position, given x

We start by computing

P(p,=Kk, X) = P(X... %, P; = K, X41---Xn)
= P(Xp. - % Py = K) POGug- Xy | X% Pr=K)
= P(X - X Py = K) P(Xuq-- Xy [ P = K)

Forward, f,(i) Backward, b,(i)

13



The Backward Algorithm — derivation =

Define the backward probability: @ @
D) = Pz %y IPy = K -® :

= Spte1 P(%e1s Xeazseeos Xnp Prea Pt = K)
= Si P(pt+1: i | pt: k)P(Xt+1|pt: k)P(Xt+2! X1+21---a XNlpt+1:k)
=S ay; €i(Xu)P Xiszs «+or Xy [Pia=1)

=S ay; (%) bi(t+1)

The Backward Algorithm 3

We can compute b,(t) for all k, t, using dynamic programming

Initialization:
b(T) =1, for all k

lteration:

b(t) =S, €(X.1) ay by(t+1)
Termination:

P(X) =S, aq e(x) b(1)




Posterior Decoding

We can now calculate

fil(t) bi(®)
P(x)

PP =k|x)=

Then, we can ask

What is the most likely state at position t of sequence x:

Define p” by Posterior Decoding:

p’,=argmax P(p; =k | x)

Decoding

GIVEN X = XX5...... Xt

We want to find p=py, ......, Pr
such that P(p|x) is maximized

p’ = argmax, P(p|x) = argmax, P(p,x)

We can use dynamic programming!

Let Vi((t) = maXgy . iy PXe-- Xy Pry voes Py X Pt = K)

= Probability of most likely sequence of states ending at
state p, = k

15



Decoding — main idea v

Given that for each possible state k,
and for a fixed position t,

ptay PX1--Xeq, Pryoes Pras X Py =K)

What is V,(t+1)?

From definition,
VI(EHL) = Maxps . poP(Xa-Xy Pry - Pr X P = )
= maXgpy  pgP Xy Pur = Xqo X6 Py B) PXq X Py BY)
= maXgpy  pgPXesn Par =1 ) PXew Xeqs Py oo Pz X0 B
maxy P(Xu1, Pur =1 P = K) maXgpy o eajPXq- X1, Py - Pras X6 P=K)
= €(X¢r1) Max ay V()

The Viterbi Algorithm v

Input: X = X;...... XN

Initialization:
Vp(0) =1 (O is the imaginary first position)
V,(0) =0, forallk >0

lteration:
Vi(t) = ej(xy) = maxy ag Vi(t-1)

Ptr(t) = argmaxy a; V(t-1)

Termination:
P(x, p*) = max, V,(T)

Traceback:
pr* = argmax, V(T)
P = Ptry (1)

16



Viterbi Algorithm — a practical detail

Underflows are a significant problem

These numbers become extremely small — underflow

Solution: Take the logs of all values

Computational Complexity

What is the running time, and space required, for Forward, and
Backward?

Time: O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows
Viterbi: sum of logs

Forward/Backward: rescaling at each position by multiplying by a
constant

17



Model learning: two scenarios o)

1. Supervised learning: estimation when the “right answer” is known

Examples:
GIVEN: a genomic region X = X... X; go9,900 Where we have good
(experimental) annotations of the CpG |s(iands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

2. Unsupervised learning: estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’'t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he
changes dice

QUESTION: Update the parameters q of the model to maximize P(x|q)

Supervised ML estimation W

Given X = X;... Xy
for which the true p = p;...py is known,

Define:
Ay = # times k® | transition occurs in p
E(b) = # times state k in p emits b in x

We can show that the maximum likelihood parameters q are:

Ay E(b)
eyb) =
Si Aki SC Ek(C) (Homework!)

=

18



Supervised ML estimation o

Intuition: When we know the underlying states,

Best estimate is the average frequency of transitions & emissions that
occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|qg) is maximized, but g is unreasonable
0 probabilities — VERY BAD

Example:
Given 10 casino rolls, we observe
x =2, 1, 5, 6, 1, 2, 3
p=F F F F F F F
Then: ag=1, a5 =0
er(1l) = ex(3) = .2;
er(2) = .3;e:(4) =0;e(5) = ec(6) = .1

6, 2, 3
F, F, F

Pseudocounts o]

Solution for small training sets:

Add pseudocounts

Ay = # times k® | transition occurs in p + 1y
E.(b) = # times state k in p emits b in x + r(b)

g, r(b) are pseudocounts representing our prior belief
Larger pseudocounts b strong prior belief

Small pseudocounts (e< 1): just to avoid O probabilities --- smoothing

19



Unsupervised ML estimation s

Given X = X;... Xy
for which the true p = p;...py IS unknown,
EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters q:
1. Estimate A, E.(b) in the training data

2. Update g according to A, E.(b)

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set q each iteration

The Baum-Welch algorithm --

comments *4.3__ \

Time Complexity:
# iterations ~ O(KZ2N)
» Guaranteed to increase the log likelihood of the model
P@|x) =P, a)/Px)=Px|aq)/(Pkx)P@))
* Not guaranteed to find globally best parameters
Converges to local optimum, depending on initial conditions

» Too many parameters / too large model: Overt-fitting
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