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The Hidden Markov Models 
for sequence parsing

Gene structure in eukaryotes



2

Gene finding

• Given un-annotated sequences, 
• delineate:

– transcription initiation site,
– exon-intron boundaries,
– transcription termination site,

– a variety of other motifs: promoters, 
polyA sites, branching sites, etc.

• The hidden Markov model (HMM)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Hidden Markov models

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying source:

Ploy NT, 

genomic entities, 

sequence of rolls, 

dice,
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Example: The Dishonest Casino

A casino has two dice:
• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
• Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth between 
fair and loaded die once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2

Question # 1 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs
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Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what 
portion with the loaded die?

This is the DECODING question in HMMs

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361651561511514612356234

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How 
often does the casino player change from fair to loaded, and 
back?

This is the LEARNING question in HMMs
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A stochastic generative model

A

B

1 4 3 6 6 4

Observed sequence:

BA A ABB

Hidden sequence (a parse or segmentation):

Definition (of HMM)

Definition: A hidden Markov model (HMM)

• Observation alphabet Σ = { b1, b2, …, bM }
• Set of hidden states Q = { 1, ..., K }
• Transition probabilities between any two states

ai,j = P(yt=j|yt-1=i)
ai,1 + … + ai,K = 1,   for all states i = 1…K

• Start probabilities a0,i

a0,1 + … + a0,K = 1

• Emission probabilities associated with each state

eib = P( xt = b | yt = i)
ei,b1 + … + ei,bM = 1,   for all states i = 1…K

K

1

…

2
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The dishonest casino model

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

Likelihood of a parse

Given a sequence x = x1……xN

and a parse y = y1, ……, yN,

To find how likely is the parse:
(given our HMM and the sequence)

P(x, y) = P(x1, …, xN, y1, ……, yN) (Joint probability)
= P(y1) P(x1 | y1) P(y2 | y1) P(x2 | y2) … P(yN | yN-1) P(xN | yN)
= P(y1) P(y2 | y1) … P(yN | yN-1) × P(x1 | y1) P(x2 | y2) … P(xN | yN)
= P(y1, ……, yN) P(x1, …, xN | y1, ……, yN)
= a0,y1 a y1,y2……a yN-1,yN e y1,x1……eyN,xN

P(x) = ? yP(x,y) (Marginal probability)

P(y|x) = P(x, y)/P(x) (Posterior probability)

A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... 
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Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of

y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 0.5 × 10-9

Example: the dishonest casino

So, the likelihood the die is fair in all this run

is just 5.21 × 10-9

OK, but what is the likelihood of

π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 
Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

Therefore, it is after all 6.59 times more likely that the die is fair all the 
way, than that it is loaded all the way
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Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?

½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood

y = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 0.5 × 10-7

So, it is 100 times more likely the die is loaded

The three main questions on HMMs

1. Evaluation

GIVEN an HMM M , and a sequence x,
FIND Prob (x | M)

2. Decoding

GIVEN an HMM M , and a sequence x,
FIND the sequence π of states that maximizes, e.g., P(x | π, M)

3. Learning

GIVEN an HMM M , with unspecified transition/emission probs.,
and a sequence x,

FIND parameters θ = (eik, aij) that maximize P(x | θ)
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Applications of HMMs

Some current applications of HMMs to biology

• mapping chromosomes
• aligning biological sequences
• predicting sequence structure
• inferring evolutionary relationships
• finding genes in DNA sequence

Some early applications of HMMs

• finance, but we never saw them  
• speech recognition  
• modelling ion channels

In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

Typical structure of a gene
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Some facts about human genes

• Comprise about 3% of the genome
• Average gene length: ~ 8,000 bp
• Average of 5-6 exons/gene
• Average exon length: ~200 bp
• Average intron length: ~2,000 bp
• ~8% genes have a single exon

Some exons can be as small as 1 or 3 bp.

HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising 
3% of a 67,000 bp gene

The idea behind a GHMM genefinder

• States represent standard gene features: intergenic region, 
exon, intron, perhaps more (promotor, 5’UTR, 3’UTR, Poly-
A,..).

• Observations embody state-dependent base composition, 
dependence, and signal features.

• In a GHMM, duration must be included as well.

• Finally, reading frames and both strands must be dealt 
with.  
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GENSCAN (Burge & Karlin)

E0 E1 E2

E

poly -A

3'UTR5'UTR

tEi

Es

I0 I 1 I 2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

4

3

2

1

    =)|•(

θ
θ
θ
θ

yp

The HMM algorithms

Questions:

1. Evaluation: What is the probability of the observed sequence? Forward

2. Decoding: What is the probability that the state of the 3 rd position is Bk, 
given the observed sequence? Backward

3. Decoding: What is the most likely die sequence? Viterbi

4. Learning: Under what parameterization are the observed sequences 
most probable? Baum-Welch (EM)
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The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x) =  Σπ P(x, π)  =  Σπ P(x | π) P(π) 

To avoid summing over an exponential number of paths π, 
define 

fk(t) = P(x1…xt, π t = k) (the forward probability)

The Forward Algorithm – derivation

Compute the forward probability:

fk(t) = P(x1…xt-1,xt, π t = k) 

= Σπt-1 P(x1…xt-1,xt, π t-1, π t = k)

= Σπt-1 P(x1…xt-1, πt-1)P(πt = k|πt-1, x1…xt-1)P(xt|πt = k, πt-1, x1…xt-1)

= Σπt-1 P(x1…xt-1, π t-1) P(π t = k|π t-1) P(xt|π t = k)

= Σi P(x1…xi-1, π i-1 = i) P(π t = k|π t-1=i) P(xt|π t = k)

= ek(xt) Σi fi(t-1) aik

AA xtx1

πty1 ... 

Axt-1

πt-1

... 

... 

... 
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The Forward Algorithm

We can compute fk(t) for all k, t, using dynamic programming!

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:
fl(t) = el(xt) Σk fk(t-1) a kl (a0k is a vector of initial probability)

Termination:
P(x) = Σk fk(T)

The Backward Algorithm

We want to compute P(π t = k | x),

the probability distribution on the tth position, given x

We start by computing

P(π t = k, x) = P(x1…xt, π t = k, xt+1…xN)
= P(x1…xt, π t = k) P(xt+1…xN | x1…xt, π t = k) 
= P(x1…xt, π t = k) P(xt+1…xN | π t = k) 

Forward, fk(i) Backward, bk(i)
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The Backward Algorithm – derivation

Define the backward probability:

bk(t) = P(xt+1…xN |π t = k) 

= Σπt+1 P(xt+1, xt+2,…, xN, π t+1|π t = k)

= Σi P(π t+1= i | π t= k)P(xt+1|π t= k)P(xt+2, xt+2,…, xN|π t+1=k)

= Σi ak,i e i(xt+1)P(xi+2, …, xN |π i+1= i)

= Σi ak,i e i(xt+1) b i(t+1)

A Axt+1 x1

πt+1 y1... 

Axt

πt

... 

... 

... 

The Backward Algorithm

We can compute bk(t) for all k, t, using dynamic programming

Initialization:

bk(T) = 1, for all k

Iteration:

bk(t) = Σ l el(xt+1) a kl bl(t+1)

Termination:

P(x) = Σ l a0l el(x1) b l(1)
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Posterior Decoding

We can now calculate

fk(t) bk(t)
P(π t = k | x) = –––––––

P(x)

Then, we can ask

What is the most likely state at position t of sequence x:

Define π* by Posterior Decoding:

π*
t = argmaxk P(π t = k | x)  

Decoding

GIVEN x = x1x2……xT

We want to find π = π1, ……, πT,
such that P(π|x) is maximized

π* = argmaxπ P(π|x) = argmaxπ P(π,x) 

We can use dynamic programming!

Let Vk(t) = max {π1,…, πi-1} P(x1…xt-1, π1, …, πt-1, xt, πt = k)

= Probability of most likely sequence of states ending at 
state πt = k

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xT

2

1

K

2
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Decoding – main idea

Given that for each possible state k, 
and for a fixed position t,

Vk(t) = max {π1,…, π t-1} P(x1…xt-1, π1, …, πt-1, xt, πt = k)

What is VI(t+1)?

From definition, 
Vl(t+1) = max {π1,…, π t}P( x1…xt, π1, …, πt, xt+1, πt+1 = l)

= max{π1,…, π t}P(x t+1, πt+1 = l | x1…xt,π1,…, πt) P(x1…xt, π1,…, πt)
= max{π1,…, π t}P(x t+1, πt+1 = l | πt ) P(x1…xt-1, π1, …, πt-1, xt, πt)
= maxk P(xt+1, πt+1 = l | πt = k) max {π1,…, π t-1}P(x1…xt-1,π1,…,πt-1, xt,πt=k)
= el(xt+1) maxk akl Vk(t)

The Viterbi Algorithm

Input: x = x1……xN

Initialization:
V0(0) = 1 (0 is the imaginary first position)
Vk(0) = 0, for all k > 0

Iteration:
Vj(t) = ej(xt) × maxk akj Vk(t-1)

Ptrj(t) = argmaxk akj Vk(t-1)

Termination:
P(x, π*) = maxk Vk(T)

Traceback:
πT* = argmaxk Vk(T)
πt-1*  = Ptrπt (t)



17

Viterbi Algorithm – a practical detail

Underflows are a significant problem

P(x1,…., xt, π1, …, πt ) =  a0π1 aπ1π2……a πt-1,πt eπ1(x1)……eπt(xt)

These numbers become extremely small – underflow 

Solution: Take the logs of all values

Vi(t) = log ek(xt) + maxk [ Vk(t-1) + log aki ]

Computational Complexity

What is the running time, and space required, for Forward, and 
Backward?

Time:   O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each position by multiplying by a
constant
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Model learning: two scenarios

1. Supervised learning: estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good 
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

2. Unsupervised learning: estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ)

Supervised ML estimation

Given x = x1…xN

for which the true π = π1…πN is known,

Define:

Akl = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Akl Ek(b)
akl = ––––– ek(b) =   –––––––

Σi  Aki Σc Ek(c) (Homework!)
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Supervised ML estimation

Intuition: When we know the underlying states,
Best estimate is the average frequency of transitions & emissions that 
occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe 

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
π = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
eF(1) = eF(3) = .2; 
eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1 

Pseudocounts

Solution for small training sets:

Add pseudocounts

Akl = # times k→l transition occurs in π + rkl

Ek(b) = # times state k in π emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ strong prior belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities --- smoothing



20

Unsupervised ML estimation

Given x = x1…xN

for which the true π = π1…πN is unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:

1. Estimate Akl, Ek(b) in the training data 
– How? Akl=Σt P(πt = k,πt+1= l | x, θ), Ek(b)=Σ{t|xt = b} P(πt =k| x, θ). How? (homework)

2. Update θ according to Akl, Ek(b)
– A "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum-Welch algorithm --
comments

Time Complexity:

# iterations × O(K2N)

• Guaranteed to increase the log likelihood of the model

P(θ | x) = P(x, θ) / P(x) = P(x | θ) / ( P(x) P(θ) )

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overt-fitting


