10-810: Advanced Algorithms and Models for Computational Biology

Optimal leaf ordering and classification

Hierarchical clustering

- As we mentioned, its one of the most popular methods for clustering gene expression data
- One of its main advantages is the global overview of the entire experiment in one figure.
- Biologists often omit the tree and use the figure to determine functional assignments

Clustering tree

- For *n* leaves there are *n-1* internal nodes
- Each flip in an internal node creates a new linear ordering
- There are 2^{n-1} possible linear ordering of the leafs of the tree

Importance of the Ordering

- Genes that are adjacent in the linear ordering are often hypothesized to share a common function.
- Ordering can help determine relationships between genes and clusters in time series data analysis.

Some heuristics

- Due to the large number of possible orderings (2^{n-1}) , finding the optimal ordering was considered impractical by Eisen [Eisen98]
- Thus, some heuristics have been suggested for this problem:
 - Order genes based on their expression levels [Eisen98]
 - Order clusters using results of one dimensional som (Cluster)
 - Order leaves and internal nodes based on similarity to parents siblings [Alon99]

Problem Definition

Denote by Φ the space of the possible linear orderings consistent with the tree.

Denote by $v_1 \dots v_n$ the tree leaves.

Our goal is to find an ordering that maximizes the similarity of adjacent elements:

$$\max_{\phi \in \Phi} \sum_{i=1}^{n-1} S(\gamma_i^{\phi}, \gamma_{i+1}^{\phi})$$

where *S* is the similarity matrix

Computing the Optimal Similarity

Recursively compute the optimal similarity $L_T(u,w)$ for any pair of leaves (u,w) which could be on different **corners** (leftmost and rightmost) of T.

For a leaf $u \in T$, $C_T(u)$ is the set of all possible corner leaves of T when u is on one corner of T.

$$L_T(u,w) = \max_{m \in C_{T_1}(u), k \in C_{T_2}(w)} L_{T_1}(u,m) + L_{T_2}(k,w) + S(m,k)$$

For all $u \in T_1$

For all $w \in T_2$

$$L_T(u,w) = \max_{m \in C_{T_1}(u), k \in C_{T_2}(w)} L_{T_1}(u,m) + L_{T_2}(k,w) + S(m,k)$$

For all $u \in T_1$

For all $k \in T_2$

$$LL(u,k) = \max_{m \in C_{T_1}(u)} L_{T_1}(u,m) + S(m,k)$$

For all $w \in T_2$

$$L_{T}(u, w) = \max_{k \in C_{T_{2}(w)}} LL(u, k) + L_{T_{2}}(w, k)$$

Algorithm Complexity

Time complexity: $F(n) = \theta(n^3)$

By induction. If $T = T_1, T_2$ and |T| = n, $|T_1| = s$ and $|T_2| = r$ we have:

$$F(n) \le sr^2 + s^2r + F(s) + F(r) \le (s+r)^3 \le n^3$$

For the complete balanced binary tree with *n* leaves we have:

1

Space complexity:

We store one value for each pair of leaves. We use pointers to reconstruct the path we took. Thus, space complexity is $O(n^2)$.

Random Inputs

Num of leaves	Num of values	Computing S	Improved O(n ⁴)	O(n³)	Improved O(n³)
400	20	0	2	2	1
900	30	2	20	25	3
1600	40	10	190	140	19
2500	50	29	900 (15 min)	580 (10 min)	59
3600	60	72	5700 (95 min)	1850 (30 min)	186

Running Time – Biological Datasets

type of dataset	num of genes	num of experiments	Computing S	Improved O(n ⁴)	O(<i>n</i> ³)	Improved O(<i>n</i> ³)
Cell cycle – cdc15	800	24	1	16	12	2
Cell cycle (Spellman)	800	59	3	14	12	1
Different sources (Eisen)	979	79	7	26	20	2
Environment response (Young)	3684	45	55	259	437	209

Results – Synthetic Data

Hierarchical clustering

Hierarchical clustering

Input

Input

Optimal ordering

Optimal ordering

Biological Results

- Spellman identified 800 genes as cell cycle regulated in *Saccharomyces cerevisiae*.
- Genes were assigned to five groups termed *G1,S,S/G2,G2/M* and *M/G1* which approximate the commonly used cell cycle groups in the literature.
- This assignment was performed using a 'phasing' method which is a supervised classification algorithm.
- In addition to the phasing method, the authors clustered these genes using hierarchical clustering

Cell Cycle – 24 experiments of cdc15 temperature sensitive mutant

Optimal ordering

24 experiments of cdc15 temperature sensitive mutant

Classification

Types of classifiers

 We can divide the large variety of classification approaches into roughly two main types

1. Generative:

- build a generative statistical model
- e.g., mixture model

2. Discriminative

- directly estimate a decision rule/boundary
- e.g., logistic regression

Golub et al

- 38 test samples (27 ALL 11 AML)
- Each gene was initially compared to an idealized expression pattern: 11111111111111110000000000000000000 for class 1 and similarly 0000000000000000000011111111111111 for the second class.
- The actual selection was done by setting:

$$p(g,c) = \frac{\mu_1(g) - \mu_2(g)}{\sigma_1(g) + \sigma_2(g)}$$

 Large values of |p(g,c)| indicate strong correlation between the gene and the classes, and the sign of p(g,c) depends on the class in which this gene is expressed.

Weighted voting

- Use a subset of the selected genes (50).
- Set $a_g = p(g,c)$ and $b_g = (\mu_1(g) + \mu_2(g))/2$
- Given a new sample X, we set the vote of gene g to:

$$v_g = a_g(x_g - b_g)$$

 A positive value is a vote for class 1 and a negative for the second class

Weighted voting

Voting strength

- The votes are summed for each of the two classes.
- The decision is made by using:

$$PS = \frac{v_{win} - v_{lose}}{v_{win} + v_{lose}}$$

- PS determines our confidence in the classification result.
- How do we chose PS?

Testing the classifier

- Cross validation.
- Test set: 38 samples:
 - 20 ALL
 - 14 AML
- 29 of 34 had a classification value higher than the threshold and all were predicted correctly.

Classification results

Selected genes

Can we do better?

Generative classifiers

A mixture of two Gaussians, one Gaussian per class choice of class:

$$X \in class \quad 1 \Rightarrow X \sim (\mu_1, \sigma_1)$$

 $X \in class \quad 0 \Rightarrow X \sim (\mu_0, \sigma_0)$

- where X corresponds to, e.g., a tissue sample (expression levels across the genes).
- Three basic problems we need to address:
 - decisions
 - estimation
 - variable (feature) selection

Decision: Bayesian classifiers

 Given a probabilistic model and an unlabeled data vector X, we can use Bayes rule to determine the class:

$$p(class = 1 \mid X) = \frac{P(X \mid class = 1)P(class = 1)}{P(X \mid class = 1)P(class = 1) + P(X \mid class = 0)P(class = 0)}$$

- We compute p(class=1|X) and p(class=0|X) and chose the class with the highest probability
- This method can be easily extended to multiple classes

Decision boundary

 Given a probabilistic model and an unlabeled data vector X, we can use Bayes rule to determine the class:

$$p(class = 1 \mid X) = \frac{P(X \mid class = 1)P(class = 1)}{P(X \mid class = 1) + P(X \mid class = 0)}$$

 Using Bayes classifiers, the decision comes down to the following (log) likelihood ratio:

$$\log \frac{p(X \mid \mu_1, \sigma_1) p(class = 1)}{p(X \mid \mu_0, \sigma_0) p(class = 0)} > 0 \Rightarrow class = 1$$

Decision boundary

 Using Bayes classifiers, the decision comes down to the following (log) likelihood ratio:

$$\log \frac{p(X \mid \mu_1, \sigma_1) p(class = 1)}{p(X \mid \mu_0, \sigma_0) p(class = 0)} > 0 \Rightarrow class = 1$$

Why?

The prior class probabilities P(class) bias our decisions towards one class or the other.

Decision boundary:

$$\log \frac{p(X \mid \mu_1, \sigma_1) p(class = 1)}{p(X \mid \mu_0, \sigma_0) p(class = 0)} = 0$$

Decision boundaries

Equal covariances

$$X \sim (\mu_1, \Sigma); class = 1$$

$$X \sim (\mu_0, \Sigma)$$
; $class = 0$

The decision rule is linear

Decision boundaries

Unequal covariances

$$X \sim (\mu_1, \sigma_1); class = 1$$

 $X \sim (\mu_0, \sigma_0); class = 0$

The decision rule is quadratic

Estimation

Suppose we are given a set of labeled tissue samples

$$X^1 \dots X^k - \text{class} = 1$$

 $X^{k+1} \dots X_n - \text{class} = 0$

- We can estimate the two Gaussians separately.
- For example, maximum likelihood estimation gives

$$P(class=1) = k/n$$

 μ_1 = sample mean of $X^1 \dots X^k$

 Σ_1 = sample covariance of $X^1 \dots X^k$

- and similarly for the other class(es)
- We already mentioned that this is the MLE estimator

Golub et al

- Leukemia classification problem
- 7130 ORFs (expression levels)
- 38 labeled training examples,
- 34 test examples

Our mixture model (assume equal class priors)

$$X \sim (\mu_1, \Sigma)$$
; $class = 1$

$$X \sim (\mu_0, \Sigma)$$
; $class = 0$

Problems?

Golub et al

- Leukemia classification problem
- •7130 ORFs (expression levels)
- •38 labeled training examples,
- •34 test examples Our mixture model (assume equal class priors)

$$X \sim (\mu_1, \Sigma); class = 1$$

 $X \sim (\mu_0, \Sigma); class = 0$

$$X \sim (\mu_0, \Sigma); class = 0$$

Problems?

For 7000+ genes we would need to set roughly 18,000,000 parameters in each covariance matrix! (with 38 examples)

Naïve Bayes classifiers

- This full covariance model is too complex, we need to constrain the covariance matrices
- The simplest constraint we can use is a diagonal covariance matrix instead of a full covariance
- When using such a matrix we make the (implicit) assumption that the genes are independent given the class labels
- In other words, we assume that:

$$p(X \mid class = 1) = \prod_{i} p(X_i \mid class = 1)$$
$$X_i \sim N(\mu_i^1, \sigma_i^2)$$

where X_i is the value for gene i

Naïve Bayes classifiers

- Lets further assume equal variance for a specific gene across the two sets of samples (that is, noise is independent of the sample condition)
- As a result, we need to only estimate class-conditional means and a common variance for each gene
- How well might we do in the Golub et al. task?

3 test errors (out of 34)

Feature selection

- Test which genes are predictive of the class distinction
- Why is this important? Is more information always better?
- We can test the predictive power of genes by testing if the mean expression level is different in the two class populations
- We assume the two classes (0 and 1) have the same covariance matrix

Feature selection

- H₀ is that a gene is not predictive of the class label
- H₁ is that a gene can predict the class label

$$H_0 = X_1 \sim N(\mu, \sigma^2), X_2 \sim N(\mu, \sigma^2)$$
$$H_1 = X_1 \sim N(\mu_1, \sigma^2), X_2 \sim N(\mu_2, \sigma^2)$$

- We can use a likelihood ratio test for this purpose Let x^t_i
 denote the observed expression levels for gene i
- The parameter estimates are computed from the available populations in accordance with the hypothesis.

Gene selection (cont.)

- We rank the genes in the descending order of the test statistics $T(x_i)$.
- How many genes should we include?
- We include all the genes for which the associated p-value of the test statistic is less than 1/m, where m is the number of genes
- This ensures that we get on average only 1 erroneous predictor (gene) after applying the test for all the genes

Golub example

- In the Golub et al. problem, we get 187 genes, and only 1 test error (out of 34)
- How many genes do we really need?
- Only a few genes are necessary for making accurate class distinctions

Golub cont.

The figure shows the value of the discriminant function

$$f(x) = \log \frac{p(X \mid \mu_1, \sigma_1)}{p(X \mid \mu_0, \sigma_0)}$$

across the test examples

 The only test error is also the decision with the lowest confidence

Unsupervised

- Build a class predictor using the clustering algorithm
- Use cross validation to determine class membership
- Problems ?

What you should know

- Optimal ordering can help interpreting expression results
- Different classifier types
- Cross validation, feature selection