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Hierarchical clustering
• As we mentioned, its one 

of the most popular 
methods for clustering 
gene expression data

• One of its main 
advantages is the global 
overview of the entire 
experiment in one figure.

• Biologists often omit the 
tree and use the figure to 
determine functional 
assignments



Clustering tree

• For n leaves there are n-1
internal nodes

• Each flip in an internal 
node creates a new linear 
ordering 

• There are 2n-1 possible 
linear ordering of the leafs of 
the tree
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Importance of the Ordering
• Genes that are adjacent in the linear ordering are often 
hypothesized to share a common function.

• Ordering can help determine relationships between genes 
and clusters in time series data analysis. 

Hierarchical clustering

PermutedInitial structure



Some heuristics

• Due to the large number of possible orderings (2n-1), finding 
the optimal ordering was considered impractical by Eisen
[Eisen98]

• Thus, some heuristics have been suggested for this problem:

- Order genes based on their expression levels [Eisen98]

- Order clusters using results of one dimensional som (Cluster)

- Order leaves and internal nodes based on similarity to 

parents siblings [Alon99]



Problem Definition
Denote by Φ the space of the possible linear orderings 
consistent with the tree.

Denote by v1 …vn the tree leaves.

Our goal is to find an ordering that maximizes the similarity of 
adjacent elements:
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where S is the similarity matrix



Computing the Optimal 
Similarity

Recursively compute the 
optimal similarity LT(u,w)
for any pair of leaves (u,w)
which could be on different 
corners (leftmost and 
rightmost) of T. 

For a leaf u∈T, CT(u) is the 
set of all possible corner 
leaves of T when u is on 
one corner of T.
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LT(u,w) = maxm∈CT1(u),k∈CT2(w) LT1(u,m) + LT2(k,w) + S(m,k)



For all u∈T1

For all w∈T2
LT(u,w) = maxm∈CT1(u),k∈CT2(w) LT1

(u,m) + LT2
(k,w) + S(m,k)
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For all u∈T1

For all k∈T2

LL(u,k) = max m∈CT1(u) LT1(u,m) + S(m,k)

For all w∈T2

LT(u,w) = max k∈CT2(w) LL(u,k) + LT2(w,k)



Algorithm Complexity
Time complexity : F(n) = θ(n3)

By induction. If T = T1,T2 and |T| = n, |T1| = s and 
|T2| = r we have:

F(n) ≤ sr2 + s2r  + F(s) + F(r) ≤ (s+r)3 ≤ n3

For the complete balanced binary tree with n leaves 
we have:

?
Space complexity: 

We store one value for each pair of leaves. We use pointers 
to reconstruct the path we took. Thus,  space complexity is 
O(n2).



Random Inputs
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Running Time – Biological Datasets
type of dataset num of 

genes
num of 

experiments
Computing S Improved 

O(n4)

Cell cycle –
cdc15

800 24 1 16 12 2

3

Different sources 
(Eisen)

979 79 7 26 20 2

55

14

259

59

45

800

3684

Cell cycle 
(Spellman)

Environment 
response
(Young)

O(n3) Improved 
O(n3)

12 1

209437
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Biological Results

• Spellman identified 800 genes as cell cycle regulated in 
Saccharomyces cerevisiae.

• Genes were assigned to five groups termed G1,S,S/G2,G2/M and 
M/G1 which approximate the commonly used cell cycle groups in 
the literature.

• This assignment was performed using a ‘phasing’ method which is 
a supervised classification algorithm.

• In addition to the phasing method, the authors clustered these genes 
using hierarchical clustering



Optimal ordering

Cell Cycle – 24 
experiments of cdc15 
temperature sensitive 
mutant

Hierarchical clustering



24 experiments of 
cdc15 temperature 
sensitive mutant



Classification



Types of classifiers
• We can divide the large variety of classification approaches into 

roughly two main types 

1. Generative:
- build a generative statistical model
- e.g., mixture model

2. Discriminative
- directly estimate a decision rule/boundary
- e.g., logistic regression



Golub et al
• 38 test samples (27 ALL 11 AML)
• Each gene was initially compared to an idealized expression 

pattern: 11111111111111000000000000000000 for class 1 
and similarly 000000000000000000000011111111111111 for 
the second class.

• The actual selection was done by setting:

• Large values of |p(g,c)| indicate strong correlation between the 
gene and the classes, and the sign of p(g,c) depends on the 
class in which this gene is expressed.
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Weighted voting

• Use a subset of the selected genes (50). 

• Set ag=p(g,c) and bg=(µ1(g)+µ2(g))/2

• Given a new sample X, we set the vote of gene g to:

• A positive value is a vote for class 1 and a negative for the 
second class
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Weighted voting



Voting strength 
• The votes are summed for each of the two classes.
• The decision is made by using:

• PS determines our confidence in the classification result.
• How do we chose PS ?
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Testing the classifier
• Cross validation.
• Test set: 38 samples:

- 20 ALL
- 14 AML

• 29 of 34 had a classification value higher than the threshold and all 
were predicted correctly.



Classification results Selected genes

Can we do better?



Generative classifiers
• A mixture of two Gaussians, one Gaussian per class choice of class:

• where X corresponds to, e.g., a tissue sample (expression levels
across the genes).

• Three basic problems we need to address:
- decisions
- estimation
- variable (feature) selection
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Decision: Bayesian classifiers
• Given a probabilistic model and an unlabeled data vector X, we 

can use Bayes rule to determine the class:

• We compute p(class=1|X) and p(class =0|X) and chose the 
class with the highest probability

• This method can be easily extended to multiple classes
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Decision boundary
• Given a probabilistic model and an unlabeled data vector X, we 

can use Bayes rule to determine the class:

• Using Bayes classifiers, the decision comes down to the following 
(log) likelihood ratio:
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Decision boundary
• Using Bayes classifiers, the decision comes down to the following 

(log) likelihood ratio:

Why?
The prior class probabilities P(class) bias our decisions towards 
one class or the other. 

• Decision boundary: 
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Decision boundaries
• Equal covariances

The decision rule is linear
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Decision boundaries
• Unequal covariances

• The decision rule is quadratic
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Estimation
• Suppose we are given a set of labeled tissue samples 

X1 … Xk – class = 1
Xk+1 … Xn – class =0

• We can estimate the two Gaussians separately.
• For example, maximum likelihood estimation gives

P(class=1) = k/n
µ1 = sample mean of X1 … Xk

Σ1 = sample covariance of X1 … Xk

• and similarly for the other class(es)
• We already mentioned that this is the MLE estimator



Golub et al
• Leukemia classification problem

• 7130 ORFs (expression levels)
• 38 labeled training examples, 
• 34 test examples
Our mixture model (assume equal class priors)

Problems?
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Golub et al
•Leukemia classification problem

•7130 ORFs (expression levels)
•38 labeled training examples, 
•34 test examples
Our mixture model (assume equal class priors)

Problems?
For 7000+ genes we would need to set  roughly 18,000,000 parameters in each 
covariance matrix! (with 38 examples)
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Naïve Bayes classifiers
• This full covariance model is too complex, we need to constrain the 

covariance matrices
• The simplest constraint we can use is a diagonal covariance matrix 

instead of a full covariance
• When using such a matrix we make the (implicit) assumption that 

the genes are independent given the class labels 
• In other words, we assume that:

where Xi is the value for gene i
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Naïve Bayes classifiers
• Lets further assume equal variance for a specific gene across the 

two sets of samples (that is, noise is independent of the sample
condition)

• As a result, we need to only estimate class-conditional means and a 
common variance for each gene

• How well might we do in the Golub et al. task?
3 test errors (out of 34)



Feature selection
• Test which genes are predictive of the class distinction 

• Why is this important?  Is more information always better?

• We can test the predictive power of genes by testing if the mean
expression level is different in the two class populations

• We assume the two classes ( 0 and 1) have the same covariance 
matrix 



Feature selection
• H0 is that a gene is not predictive of the class label
• H1 is that a gene can predict the class label

• We can use a likelihood ratio test for this purpose Let xt
i

denote the observed expression levels for gene i
• The parameter estimates are computed from the available

populations in accordance with the hypothesis. 
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Gene selection (cont.)
• We rank the genes in the descending order of the test statistics T(xi). 
• How many genes should we include?
• We include all the genes for which the associated p-value

of the test statistic is less than 1/m, where m is the number of genes 

• This ensures that we get on average only 1 erroneous predictor 
(gene) after applying the test for all the genes



Golub example
• In the Golub et al. problem, we get 187 genes, and only 1 test error 

(out of 34)
• How many genes do we really need? 
• Only a few genes are necessary for making accurate class 

distinctions



Golub cont.
• The figure shows the value of the 

discriminant function 

across the test examples

• The only test error is also the 
decision with the lowest 
confidence
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Unsupervised

• Build a class predictor using the clustering algorithm

• Use cross validation to determine class membership

• Problems ?



What you should know
• Optimal ordering can help interpreting expression results
• Different classifier types
• Cross validation, feature selection


