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Some important dates in history | 3322
(billions of years ago) '
e Origin of the universe 15+4
e Formation of the solar system 4.6
e First self-replicating system 3.5+0.5
e Prokaryotic-eukaryotic divergence 1.8 +0.3
e Plant-animal divergence 1.0
e Invertebrate-vertebrate divergence 0.5
e Mammalian radiation beginning 0.1

(86 CSH Doolittle et al.)




The three kingdoms
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Two important early observations

e Different proteins evolve at different rates, and this seems
more or less independent of the host organism, including its
generation time.

e lItis necessary to adjust the observed percent difference
between two homologous proteins to get a distance more or
less linearly related to the time since their common ancestor.
( Later we offer a rational basis for doing this.)

e A striking early version of these observations is next.
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How does sequence variation H
0000
[
arise? o
H

e Mutation:
e (a) Inherent: DNA replication errors are not always corrected.
e (b) External: exposure to chemicals and radiation.

e Selection: Deleterious mutations are removed quickly.
Neutral and rarely, advantageous mutations, are tolerated and

stick around.

e Fixation: It takes time for a new variant to be established
(having a stable frequency) in a population.




Modeling DNA base substitution

e Standard assumptions (sometimes weakened)

e Site independence.

e Site homogeneity.

e Markovian: given current base, future substitutions independent of past.
e Temporal homogeneity: stationary Markov chain.

e Strictly speaking, only applicable to regions undergoing little
selection.

Some terminology

e |n evolution, homology (here of proteins), means similarity due to
common ancestry.

e A common mode of protein evolution is by duplication. Depending
on the relations between duplication and speciation dates, we have
two different types of homologous proteins. Loosely,

e Orthologues: the “same” gene in different organisms; common
ancestry goes back to a speciation event.

e Paralogues: different genes in the same organism; common
ancestry goes back to a gene duplication.

e Lateral gene transfer gives another form of homology.




Speciation vs. duplication

Ancestral [i-globin gene

DATPLICATION

A very recent
result (see later)
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Beta-globins (orthologues)

10 20 30 40
L L N L
BG-human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTAQ
BG-macaque - . . . . . . . .N. .. T ... .
BG-bovine --M. AL A F. K -
BG-platypus - . . . SGG N N L.
BG-chicken . . . W .A . . .QL1I G ... ..A.C.A AL 1
BG-shark - . .WSEV.LHEI TT KSITDKHSL.AK A LCMFEI T
50 60 70 80
n n L N
BG-human RFFESFGDLSTPDAVMGNPKVKAHGKKYLGAFSDGLAHLD
BG-macaque . . . . . . . . . .S . ... ... - N .
BG-bovine T T e T
BG-platypus . . . . A. . .. .SAG. ... ... .....A. .. TS.G.A.KN.
BG-chicken . . . A N . S.T. 1L M R TS.G.AVKN. .
BG-shark -Y.GNLKEFTACSYG----- E A T LGVAVT. .G
90 100 110 120
s L L N
BG-human NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
BG-macaque . . . . . . . Q. LKL
BG-bovine D......A. K. -V RN
BG-platypus D . . . . . . K . NR R B .R. .S
BG-chicken . I . N. .SQ - LoD A. .S
BG-shark DV.SQ.TD K K AEE \ K .AKCF._.VE. ILLK
130 140
L s
BG-human KEFTP VQAAYQKVVAGVANALAHKYH . means same as reference
BG-macaque P - - P sequence

BG-bovine R
BG-platypus . D . S .
BG-chicken . D . .
BG-shark DK.A.
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Beta-globins: uncorrected
pairwise distances

\
e DISTANCES between protein sequences (calculated over: 1 to 147)

e Below diagonal: observed number of differences
e Above diagonal: number of differences per 100 amino acids

hum mac bov pla chi sha
hum - 5 16 23 31 65
mac 7 -—- 17 23 30 62
bov 23 24 - 27 37 65
pla 34 34 39 - 29 64
chi 45 44 52 42 - 61

sha 91 88 91 90 87 e

Beta-globins: corrected pairwise
distances o

e DISTANCES between protein sequences (calculated over: 1 to 147)
e Below diagonal: observed number of differences
e Above diagonal: number of differences per 100 amino acids
e Correction method: Jukes-Cantor

hum mac bov pla chi sha
hum - 5 17 27 37 108
mac 7 - 18 27 36 102
bov 23 24 — 32 46 110
pla 34 34 39 - 34 106
chi 45 44 52 42 - 98

sha 91 88 91 90 87 -




Human globins (paralogues)

10 20 30
L | N
alpha-human -VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT
beta-human VH.T.EE.SA.T.L....-=-NVD.V_.G...G.LLVVY._ WwW.
delta-human VH.T.EE..A_.N.L....--NVDAV.G. LG .LLVVY _Ww.
epsilon-human VHFTAEE .AA_.TSL.S.M--NVE.A.G. LG .LLVVY _Ww.
gamma-human GHFTEE. .ATITSL....--NVEDA.G.T.G.LLVVY._W.
myo-human -G..DGEWQL.LNV. - E D1P H.Q.V.1.L.KGH E .
40 50 60 70
L N N L

alpha-human KTYFPHF-DLSHGSA----- QVKGHGKKVADALTNAVAHYV
beta-human QRF.ES.G...TPD.VMGNPK. . A . _ ... LG.FSDGL . .L
delta-human QRF.ES.G .SPD.VMGNPK . ALl LG.FSDGL . .L
epsilon-human Q RF . DS . GN .SP..ITLGNPK..A_. .. .. LTSFGD.IKNM
gamma-human QRF.DS.GN..SA. . IMGNPK..A. _ ... LTS .GD.IK.L
myo-human LEK.DK.KH.KSEDEMKASEDL K AT LT..GGILKKK

80 90 100 110

n | L N
alpha-human DDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHL
beta-human NLKGTFAT..E..CD..H...E..R..GNV.VCV._H.F
delta-human .NLKGTF.Q..E..CD..H. .E..R..GNV.VCV..RNF
epsilon-human . NLKP _.FAK . _E. .CD. .H. E. . ... GNVMVII . .T._F
gamma-human .- LKGTFAQ..E..CD. .H. E . . ... GNV .VTV. .1l _F
myo-human GHHEAEIKP.AQS . . T HKIPVKYLEFI E.11QV.QSKH

120 130 140

! L L
alpha-human PAEFTPAVHASLDKFLASVSTVLTSKYR=------
beta-human G K . -.P.Q.AYQ.VV.G.ANA_AH..H. ... ..
delta-human G K . . . .QMQ . AYQ.VV .G _.ANA.AH. .H......
epsilon-human G K . - E.Q-AWQ.LVSA.AILIA.AH SH oo
gamma-human G K . - E.Q..WQ.MVTA_ASA.S_.R.H. ... __
myo-human GD.GADAQGAMN.A._ELFRKDMA N.KELGFQG

Human globins: corrected
pairwise distances

e DISTANCES between protein sequences (calculated over 1 to 141)

e Below diagonal: observed number of differences

e Above diagonal: estimated number of substitutions per 100 amino acids

e Correction method: Jukes-Cantor

alpha
alpha ----
beta 82
delta 82
epsil 89
gamma 85

myo 116

beta delta epsil

281

10

35

39

117

281

7

39

42

116

281 313
30 31
34 33

21
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119 118

gamma myo

208

1000

470

402

470




Correcting distances between
DNA and protein sequences

Why it is necessary to adjust observed percent differences to get a
distance measure which scales linearly with time?

This is because we can have multiple and back substitutions at a
given position along a lineage.

All of the correction methods (with names like Jukes-Cantor, 2-
parameter Kimura, etc) are justified by simple probabilistic
arguments involving Markov chains whose basis is worth mastering.

The same molecular evolutionary models can be used in scoring
sequence alignments.

Markov chain

State space = {A,C,G,T}.

p(i.,j) = pr(next state S; | current state S))

Markov assumption:

p(next state S | current state S; & any configuration of states before
this) = p(i,j)

Only the present state, not previous states, affects the probs of
moving to next states.




The multiplication rule

pr(state after next is S, | current state is S;)

= Y, pr(state after next is S,, next state is S; | current state is S;) [addition rule]

= 3, pr(next state is S| current state is S)) x pr(state after next is S, | current
state is S;, next state is Sj) [multiplication rule]
= Zj Pij X Py [Markov assumption]

= (i,k)-element of P2, where P=(p, ).
L]

More generally,

pr(state t steps from now is S, | current state is S;) = i,k element of P!

Continuous-time version

e Forany (s, f):

o Letpyt) = pr(S; at time t+s | S;at time s) denote the stationary (time-homogeneous)
transition probabilities.

e Let P(f) = (p,(f)) denote the matrix of p(t)’s.
e Then for any (t, u): P(t+u) = P(t) P(u).

o It follows that P(t) = exp(Qt), where Q = P’(0) (the derivative of P(t) at t
=0).

e Qs called the infinitesimal matrix (transition rate matrix) of P(f), and
satisfies
P(t) = QP(t) = P(t)Q.
e Important approximation: when t is small,
Pt) ~1 + Qt.




Interpretation of Q

Roughly, g; is the rate of transitions of / to j, while q; = - %, q;, so
each row sum is 0 (Why?).

Now we have the short-time approximation:
p.j(t+h)=g;h+o(h) p;(t+h)=1+g;h+o(h)
where p,-J( t+A) is the probability of transitioning from /at time 7#to jat time #+#A

Now consider the Chapman-Kolmogorov relation: (assuming we have a
continuous-time Markov chain, and let p;(t) = pr(S; at time t))

p,(t+h)=3 pr(s, att, s, att+h)
:Zpr(s,. att)pr(S att+h|S; att)

=p, (M= A+g;h)+ 3 p.(t)xhg,

i#J

ie., h’l(pj (t+h)-p; (f)):pj Ng; +Zp, (*)g,, which becomes: P’ = QP as hV0.

i#j
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Probabilistic models
for DNA changes
Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

10



The Jukes-Cantor model (1969) o
e Substitution rate:
-M /13 -M
O D
u/3 |
u/3 u/3
u/3
C T
e ui3 O
the simplest symmetrical model for DNA evolution
Transition probabilities under the | 332z
Jukes-Cantor model o

e |ID assumption:
e All sites change independently
e All sites have the same stochastic process working at them

e Equiprobablity assumption:

e Make up a fictional kind of event, such that when it happens the site
changes to one of the 4 bases chosen at random equiprobably

e Equilibrium condition:

e No matter how many of these fictional events occur, provided it is not
zero, the chance of ending up at a particular base is 1/4 .

e Solving differentially equation system P’ = QP

11



Transition probabilities under the
Jukes-Cantor model (cont.)

e Prob transition matrix:

A s(t)  s(t) s(t)

Pit)= C | s(t) s(t)  s(t)
G | s(t) s(t) s(t)
T | s(t) s(t) s(t)

Where we can derive:

r(t) = %(1 +3e %‘”‘)

1 4,
5(7‘):2(1—5 > f) Homework!

Jukes-Cantor (cont.)

e Fraction of sites differences

difference per site

12



Kimura's K2P model (1980)

e Substitution rate:

~0-2p Q " G/> ~-2B
T
p p

-a-23 </C a T\) -a-23

e which allows for different rates of transition and transversions.
e Transitions (rate a) are much more likely than transversions (rate B).

Kimura (cont.)

e Prob transition matrix:

() st u®) st
P() = sty () s u®)
ult) s@® M) st
s() u®) s rO)

Where  s(t) = %4 (1 —e*)
u(t) = ¥ (1 + e4Bt — g2(*p)t)
rit) =1—2s(t) — u(t)

e By proper choice of and one can achieve the overall rate of change and
Ts=Tn ratio R you want (warning: terminological tangle).

13



Kimura (cont.)

|
e Transitions, transversions expected under different R:

Total differences

Transitions

Transversions

.
:
:
(=]

Transitions

10 15 20 25 30 00 05 10 15 20
Time (branch length) Time (branch length)

Other commonly used models

e Two models that specify the equilibrium base frequencies
(you provide the frequencies A; C; G; T and they are set up to
have an equilibrium which achieves them), and also let you
control the transition/transversion ratio:

e The Hasegawa-Kishino-Yano (1985) model:

to :
from :
— arg + Bre ane anT

ama + PBra - aTo amT
aT A ang - anr + B
aT A ang arc + fre —

14



Other commonly used models

e The F84 model (Felsenstein)

to:
from :

e where 75 = 7, + 75 and 7, = 7, + 7 (The equilibrium frequencies of
purines and pyrimidines)

The general time-reversible
model

e |t maintains "detailed balance" so that the probability of starting at
(say) A and ending at (say) T in evolution is the same as the
probability of starting at T and ending at A:

A C G T

Al -  am, Bm, ym
Cl|lam - om, &My
G| Bm, Om, — VIT,
T

ym, €M, VI —

e And there is of course the general 12-parameter model which has
arbitrary rates for each of the 12 possible changes (from each of the
4 nucleotides to each of the 3 others).

e (Neither of these has formulas for the transition probabilities, but
those can be done numerically.)

15
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Tamura-Nei (6)
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Jukes—Cantor (1)
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Adjusting evolutionary distance
using base-substitution model
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The Jukes-Cantor model 5
L
Ba o« o a
Common o -3a (24 a
ancestor of Q:
human and orang o a -3« o
a a a -3a
t time unit
r S S S
S r S S
P=
Human (now) S S r S
v
S S S r

Consider e.g. the 2nd
position in a-globin2 Alu1.  r = (1+3e*4)/4, s = (1-e*4)/4.

Definition of PAM

o Let P(t) = exp(Qt). Then the A,G element of P(t) is
pr(G now | A then) = (1 —e—4at)/4.
e Same for all pairs of different nucleotides.

e Overall rate of change k = 3.

e PAM = accepted point mutation
e When k =.01, described as 1 PAM

e Putt=.01/3a=1/300a. Then the resulting P = P(1/300¢) is called the
PAM(1) matrix.

e Why use PAMs?

17



Evolutionary time, PAM

\
e Since sequences evolve at different rates, it is

convenient to rescale time so that 7 PAM of evolutionary
time corresponds to 7% expected substitutions.

e For Jukes-Cantor, k = 3at is the expected number of
substitutions in [0,t], so is a distance. (Show this.)

e Set 3at =1/100, or t = 1/300c, so 1 PAM = 1/300« years.

Distance adjustment

e For a pair of sequences, k = 3at is the desired metric, but not
observable. Instead, pr(different) is observed. So we use a model
to convert pr(different) to k.

e This is completely analogous to the conversion of
6= pr(recombination)

to genetic (map) distance (= expected number of crossovers) using
the Haldane map function

0=1/2x (1 -e2),

assuming the no-interference (Poisson) model.

18



Towards Jukes-Cantor
adjustment

e E.g., 2nd position in a-globin Alu 1
common ancestor

e Assume that the common ancestor has
A, G, C or T with probability 1/4.

G C
orang human

e Then the chance of the nt differing g4
Pz = 3/4 x (1 —e8)
= 3/4 x (1 —e*3), since k =2 x 3at

Jukes-Cantor adjustment

e If we suppose all nucleotide positions behave identically and
independently, and n, differ out of n, we can invert this,

obtaining

k :—2xlog[1—:n¢ /nj

e This is the corrected or adjusted fraction of differences (under
this simple model). x 100 to get PAMs

e The analogous simple model for amino acid sequences has

[19X|Og[120,7¢/,,j

20 19
x 100 for PAM.

19



llustration

!
1. Human and bovine beta-globins are aligned with no deletions

at 145 out of 147 sites. They differ at 23 of these sites. Thus
n,/n = 23/145, and the corrected distance using the Jukes-
Cantor formula is (natural logs)

—19/20 x log(1 — 20/19 x 23/145) = 17.3 x 10-2.

2. The human and gorilla sequences are aligned without gaps
across all 300 bp, and differ at 14 sites. Thus n./n = 14/300,
and the corrected distance using the Jukes-Cantor formula is

— 3/4 x log(1 — 4/3 x 14/300) = 4.8 x 10-2.

Correspondence between observed a.a. 1
. . . [ X XX

differences and the evolutionary distance (Dayhoff | ese
et al., 1978) °
Observed Percent Difference Evolutionary Distance in PAMs

1 1

5 5

10 11

15 17

20 23

25 30

30 38

35 47

40 56

45 67

50 80

55 94

60 112

65 133

70 159

75 195

80 246

85 328

20



Scoring matrices for alignment

How scoring matrices work

134 LQQGELDLVMTSDILPRSELHYSPMFDFEVRLVLAPDHPLASKTQITPEDLASETLLI
137 LDSNSVDLVLMGVPPRNVEVEAEAFMDNPLVVIAPPDHPLAGERAISLARLAEETFVM

0 1 0 5

2 0 0 2
20
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From Henikoff 1996
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Statistical motivation for sels
alignment scores o

AGCTGATCA... H =homologous (indep. sites, Jukes—l)antor)

Alignment:  ppccggrra.. HYPOtheses: g\ hdom (indep. sites, equal freq.)

pr(data|H)=pr(AA| H)pr(GA|H)pr(CC|H)...

= (1- p)° p° where a =#agreements, o =#disagreements, p = %(1 —e®7),

pr(data|R) =pr(AA|R)pr(GA|R)pr(CC|R)...

_ l a é d
—(4) (4)
pr(data|H) 1-p p
- log—— = —u).
= 1000 Gata iRy T 919 4 T N003 g =X

e Since p<3/4, o =log((1-p)/(1/4))>0, while -u= log(p/(3/4))<O.

e Thus the alignment score = axo + dx(-u), where the match score o >
0, and the mismatch penalty is - < 0.

. [ X X ]
Large and small evolutionary sels
distances o

e Recall that
o p=(3/4)(1-e54),
o o=log((1-p)/(1/4)),
o -u=log(p/(3/4)).
e Now note thatif at ~0,

e thenp ~6at, and 1-p ~ 1, and so o ~log4, while -u ~log8at is large and
negative.

e Thatis, we see a big difference in the two values of o and x for small distances.
e Conversely, if atis large,

e p= (3/4)(1-¢), hence p/(3/4) = 1- &, giving i = -log(1- &) ~ & while 1-p = (1+3¢)/4,
(1-p)/(1/4) = 1+3¢, and so o = log(1+3¢) ~ 3e.

e Thus the scores are about 3 (for a match) to 1 (for a mismatch) for large
distances. This makes sense, as mismatches will on average be about 3 times
more frequent than matches.

e the matrix which performs best will be the matrix that reflects the
evolutionary separation of the sequences being aligned.

22



What about multiple alignment

!
e Phylogenetic methods: a tree, with branch lengths, and the

data at a single site.

B

ks
N\

p
©

_tZ Wangabey
tg 13\@
ST CAGTGACGCCCCAAACGT
CAGTGACGCTACAAACGT
e, 1 ,..@ — CTGTGACGTAACAAACGA
C)i CTGTGACGTAGCAAACGA
tf“@ — CTGTGACGTAGCAAACGA

e See next lecture for how to compute likelihood under this
hypothesis
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