Advanced Algorithms and Models for Computational Biology

-- a machine learning approach

Molecular Evolution: nucleotide substitution models

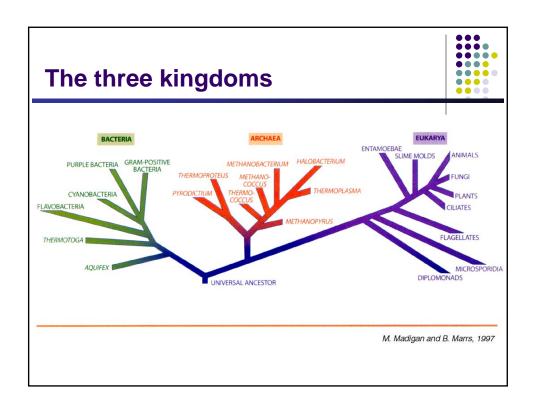
Eric Xing Lecture 20, April 3, 2006

Reading: DTW book, Chap 12 DEKM book, Chap 8

Some important dates in history (billions of years ago)

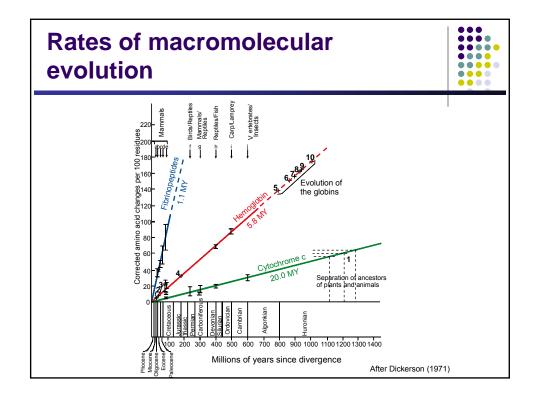
 Origin of the universe 	15 ±4
 Formation of the solar system 	4.6
First self-replicating system	3.5 ±0.5
 Prokaryotic-eukaryotic divergence 	1.8 ±0.3
Plant-animal divergence	1.0
Invertebrate-vertebrate divergence	0.5
 Mammalian radiation beginning 	0.1

(86 CSH Doolittle et al.)



Two important early observations

- Different proteins evolve at different rates, and this seems more or less independent of the host organism, including its generation time.
- It is necessary to adjust the observed percent difference between two homologous proteins to get a distance more or less linearly related to the time since their common ancestor. (Later we offer a rational basis for doing this.)
- A striking early version of these observations is next.



How does sequence variation arise?

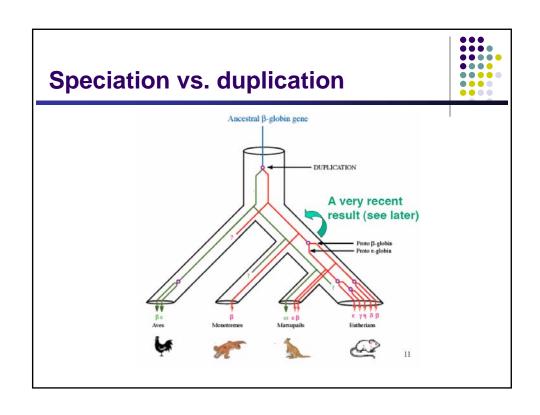
- Mutation:
 - (a) Inherent: DNA replication errors are not always corrected.
 - (b) External: exposure to chemicals and radiation.
- **Selection**: Deleterious mutations are removed quickly. Neutral and rarely, advantageous mutations, are tolerated and stick around.
- **Fixation**: It takes time for a new variant to be established (having a stable frequency) in a population.

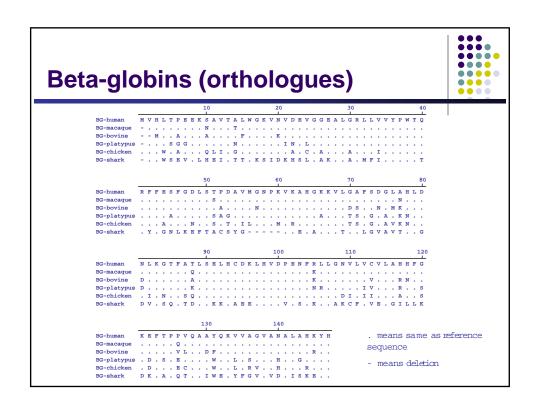
Modeling DNA base substitution

- Standard assumptions (sometimes weakened)
 - Site independence.
 - Site homogeneity.
 - Markovian: given current base, future substitutions independent of past.
 - Temporal homogeneity: stationary Markov chain.
- Strictly speaking, only applicable to regions undergoing little selection.

Some terminology

- In evolution, homology (here of proteins), means similarity due to common ancestry.
- A common mode of protein evolution is by duplication. Depending on the relations between duplication and speciation dates, we have two different types of homologous proteins. Loosely,
- **Orthologues**: the "same" gene in different organisms; common ancestry goes back to a speciation event.
- Paralogues: different genes in the same organism; common ancestry goes back to a gene duplication.
- Lateral gene transfer gives another form of homology.





Beta-globins: uncorrected pairwise distances

- DISTANCES between protein sequences (calculated over: 1 to 147)
 - Below diagonal: observed number of differences
 - Above diagonal: number of differences per 100 amino acids

	hum	mac	bov	pla	chi	sha
hum		5	16	23	31	65
mac	7		17	23	30	62
bov	23	24		27	37	65
pla	34	34	39		29	64
chi	45	44	52	42		61
sha	91	88	91	90	87	

Beta-globins: corrected pairwise distances

- DISTANCES between protein sequences (calculated over: 1 to 147)
 - Below diagonal: observed number of differences
 - Above diagonal: number of differences per 100 amino acids
 - Correction method: Jukes-Cantor

	hum		bov	pla	chi	sha
hum		5	17	27	37	108
mac	7		18	27	36	102
bov	23	24		32	46	110
pla	34	34	39		34	106
chi	45	44	52	42		98
sha	91	88	91	90	87	

nan g	obins (paralo	ogues)	
	10 20	30	
alpha-human	LSPADKINVKAAWGKVGAHA		'
beta-human	. T . E E . S A . T . L N V		
delta-human	. T . E E A . N . L N V		
epsilon-human	FTAEE.AA.TSL.S.M NV		
gamma-human	FTEEATITSLNV	EDA.G.T.G.LLVVY.W.	
myo-human	D G E W Q L . L N V E . D I	PGH.Q.V.I.L.KGH.E.	
	50	60 70	
alpha-human	YFPHF-DLSHGSAOV	KGHGKKVADALTNAVAHV	
beta-human	F.ES.GTPD.VMGNPK.	. A L G . F S D G L L	
delta-human	F.ES.GSPD.VMGNPK.	. A L G . F S D G L L	
epsilon-human	F.DS.GNSPILGNPK.	. A L T S F G D . I K N M	
gamma-human	F.DS.GNSAIMGNPK.	. A L T S . G D . I K . L	
myo-human	K . D K . K H . K S E D E M K A S E D L	. K A T . L T G G I L K K K	
	80 90	100 110	
alpha-human	M P N A L S A L S D L H A H K L R V D P	VNFKLLSHCLLVTLAAHL	
beta-human	LKGTFATECDH	ERGNV.VCVH.F	
delta-human	LKGTF.QECDH	E.R.GNV.VCVRNF	
epsilon-human	LKP.FAKECDH	EGNVMVIIF	
gamma-human	LKGTFAQECDH		
myo-human	HEAEIKP.AQST.HKIPV	KYLEFI.E.IIQV.QSKH	
	120 130	140	
alpha-human	EFTPAVHASLDKFLASVSTV	L T S K Y R	
beta-human	P . Q . A Y Q . V V . G . A N A	. A H H	
delta-human	Q M Q . A Y Q . V V . G . A N A		
	E . Q . A W Q . L V S A . A I A		
gamma-human	E . Q W Q . M V T A . A S A		
mvo-human	D. GADAQGAMN.A.ELFRKD	MA.N.KELGFQG	

Human globins: corrected pairwise distances

- DISTANCES between protein sequences (calculated over 1 to 141)
 - Below diagonal: observed number of differences
 - Above diagonal: estimated number of substitutions per 100 amino acids
 - Correction method: Jukes-Cantor

a	lpha	beta	delta	epsil	gamma	myo	
alpha		281	281	281	313	208	
beta	82		7	30	31	1000	
delta	82	10		34	33	470	
epsil	89	35	39		21	402	
gamma	a 85	39	42	29		470	
myo	116	117	116	119	118		

Correcting distances between DNA and protein sequences

- Why it is necessary to adjust observed percent differences to get a distance measure which scales linearly with time?
- This is because we can have multiple and back substitutions at a given position along a lineage.
- All of the correction methods (with names like Jukes-Cantor, 2parameter Kimura, etc) are justified by simple probabilistic arguments involving Markov chains whose basis is worth mastering.
- The same molecular evolutionary models can be used in scoring sequence alignments.

Markov chain

- State space = {A,C,G,T}.
 p(i,j) = pr(next state S_i | current state S_i)
- Markov assumption:

 $p(\text{next state } S_j \mid \text{current state } S_i \& \text{ any configuration of states before this}) = p(i,j)$

Only the *present* state, not previous states, affects the probs of moving to next states.

The multiplication rule


```
pr(\text{state } \frac{\text{after next}}{\text{next}} \text{ is } S_k \mid \text{current state is } S_i)
```

- = $\sum_{i} pr(\text{state } \underline{\text{after next}} \text{ is } S_k, \underline{\text{next state}} \text{ is } S_i | \text{ current state is } S_i)$ [addition rule]
- = $\sum_{j} pr(\text{next state is } S_{j}| \text{ current state is } S_{i}) \times pr(\text{state after next is } S_{k}| \text{ current state is } S_{j})$ [multiplication rule]
- $= \sum_{i} p_{i,i} \times p_{i,k}$ [Markov assumption]
- = (i,k)-element of P^2 , where $P=(p_{ij})$.

More generally,

 $pr(\text{state t steps from now is } S_k \mid \text{current state is } S_i) = i,k \text{ element of } P^t$

Continuous-time version

- For any (*s*, *t*):
 - Let $p_{ij}(t) = pr(S_j \text{ at time } t+s \mid S_i \text{ at time } s)$ denote the stationary (time-homogeneous) transition probabilities.
- Let $P(t) = (p_{ii}(t))$ denote the matrix of $p_{ii}(t)$'s.
 - Then for any (t, u): P(t+u) = P(t) P(u).
- It follows that $P(t) = \exp(Qt)$, where Q = P'(0) (the derivative of P(t) at t = 0).
- Q is called the infinitesimal matrix (transition rate matrix) of *P*(*t*), and satisfies

$$P'(t) = QP(t) = P(t)Q.$$

• Important approximation: when t is small,

$$P(t) \approx I + Qt$$
.

Interpretation of Q

- Roughly, q_{ij} is the **rate** of transitions of i to j, while $q_{ii} = -\sum_{j\neq i} q_{ij}$, so each row sum is 0 (Why?).
- Now we have the short-time approximation:

$$p_{i\neq j}(t+h)=q_{ij}h+o(h)$$

$$p_{i=j}(t+h) = 1+q_{ii}h+o(h)$$

where $p_{ij}(t+h)$ is the probability of transitioning from i at time t to j at time t+h

• Now consider the Chapman-Kolmogorov relation: (assuming we have a continuous-time Markov chain, and let $p_j(t) = pr(S_j \text{ at time } t)$)

$$p_j(t+h) = \sum_i pr(S_i \text{ at } t, S_j \text{ at } t+h)$$

$$= \sum_{i} pr(S_i \text{ at } t) pr(S_i \text{ at } t + h \mid S_j \text{ at } t)$$

$$= p_j(t) \times (1 + q_{jj}h) + \sum_{i \neq j} p_i(t) \times hq_{ij}$$

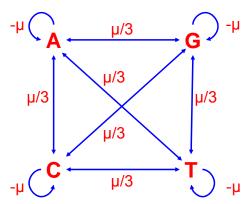
i.e.,
$$h^{-1}(p_j(t+h)-p_j(t))=p_j(t)q_{jj}+\sum_{i\neq j}p_i(t)q_{ij}$$
, which becomes: $P'=QP$ as $h\sqrt{0}$.

Probabilistic models for DNA changes

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

The Jukes-Cantor model (1969)

• Substitution rate:



the simplest symmetrical model for DNA evolution

Transition probabilities under the Jukes-Cantor model

- IID assumption:
 - All sites change independently
 - All sites have the same stochastic process working at them
- Equiprobablity assumption:
 - Make up a fictional kind of event, such that when it happens the site changes to one of the 4 bases chosen at random equiprobably
- Equilibrium condition:
 - No matter how many of these fictional events occur, provided it is not zero, the chance of ending up at a particular base is 1/4.
- Solving differentially equation system P' = QP

Transition probabilities under the Jukes-Cantor model (cont.)

• Prob transition matrix:

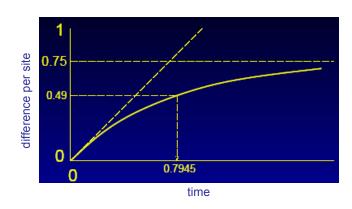
$$P(t) = \begin{array}{ccccc} & A & C & G & T \\ A & r(t) & s(t) & s(t) & s(t) \\ S(t) & r(t) & s(t) & s(t) \\ G & s(t) & s(t) & r(t) & s(t) \\ T & s(t) & s(t) & s(t) & r(t) \end{array}$$

Where we can derive:

$$r(t) = \frac{1}{4} \left(1 + 3e^{-\frac{4}{3}\mu t} \right)$$
$$S(t) = \frac{1}{4} \left(1 - e^{-\frac{4}{3}\mu t} \right)$$

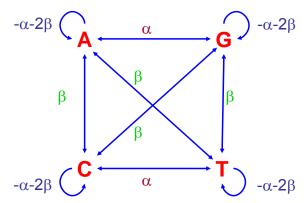
Homework!

Fraction of sites differences



Kimura's K2P model (1980)

• Substitution rate:



- which allows for different rates of transition and transversions.
- Transitions (rate α) are much more likely than transversions (rate β).

Kimura (cont.)

• Prob transition matrix:

$$P(t) = \begin{pmatrix} r(t) & s(t) & u(t) & s(t) \\ s(t) & r(t) & s(t) & u(t) \\ u(t) & s(t) & r(t) & s(t) \\ s(t) & u(t) & s(t) & r(t) \end{pmatrix}$$

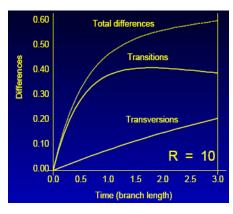
Where
$$s(t) = \frac{1}{4} (1 - e^{-4\beta t})$$

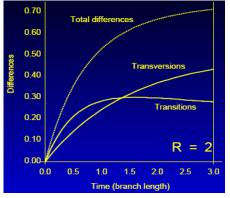
 $u(t) = \frac{1}{4} (1 + e^{-4\beta t} - e^{-2(\alpha + \beta)t})$
 $r(t) = 1 - 2s(t) - u(t)$

• By proper choice of and one can achieve the overall rate of change and Ts=Tn ratio R you want (warning: terminological tangle).

Kimura (cont.)

• Transitions, transversions expected under different R:





Other commonly used models

- Two models that specify the equilibrium base frequencies
 (you provide the frequencies A; C; G; T and they are set up to
 have an equilibrium which achieves them), and also let you
 control the transition/transversion ratio:
- The Hasegawa-Kishino-Yano (1985) model:

to:	A	G	C	T
from:				
\overline{A}	_	$\alpha \pi_G + \beta \pi_G$	$\alpha\pi_C$	$lpha\pi_T$
G	$\alpha \pi_A + \beta \pi_A$	<u> </u>	$lpha\pi_C$	$lpha\pi_T$
C	$lpha\pi_A$	$lpha\pi_G$	_	$\alpha \pi_T + \beta \pi_T$
T	$lpha\pi_A$	$lpha\pi_G$	$\alpha \pi_C + \beta \pi_C$	_

Other commonly used models

• The **F84 model** (Felsenstein)

${ m to:}$ from:	A	G	C	T
\overline{A}	_	$\alpha \pi_G + \beta \frac{\pi_G}{\pi_R}$	$\alpha\pi_C$	$\alpha\pi_T$
G	$\alpha \pi_A + \beta \frac{\pi_A}{\pi_R}$		$lpha\pi_C$	$lpha\pi_T$
C	$lpha\pi_A$	$lpha\pi_G$	_	$\alpha \pi_T + \frac{\beta \pi_T}{\pi_Y}$
T	$\alpha\pi_A$	$\alpha\pi_G$	$\alpha \pi_C + \beta \frac{\pi_C}{\pi_Y}$	

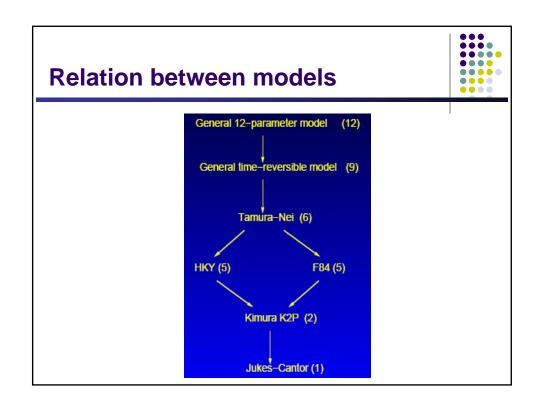
• where $\pi_R = \pi_A + \pi_G$ and $\pi_Y = \pi_C + \pi_T$ (The equilibrium frequencies of purines and pyrimidines)

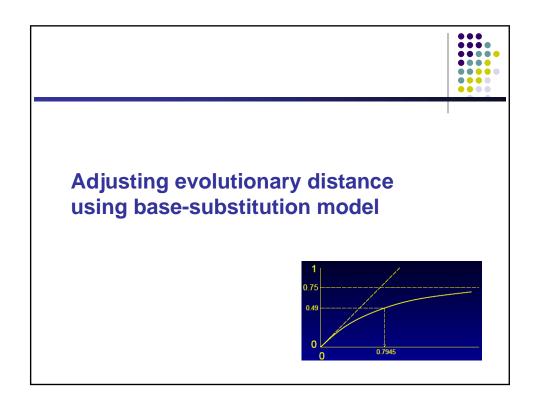
The general time-reversible model

 It maintains "detailed balance" so that the probability of starting at (say) A and ending at (say) T in evolution is the same as the probability of starting at T and ending at A:

	Α	C	G	Т
Α	_	$a\pi_{C}$	$oldsymbol{eta}\pi_{\!\scriptscriptstyle G}$	$\gamma \pi_{T}$
С	$a\pi_{A}$	_	$\delta\pi_{\!\scriptscriptstyle G}$	$arepsilon \pi_{T}$
G	$eta\pi_{\!\scriptscriptstyle A}$	$\delta \pi_{\!\scriptscriptstyle C}$	_	$V\Pi_T$
Т	γπ	$arepsilon\pi_{\!\scriptscriptstyle C}$	$V\pi_{\!\scriptscriptstyle G}$	_

- And there is of course the **general 12-parameter model** which has arbitrary rates for each of the 12 possible changes (from each of the 4 nucleotides to each of the 3 others).
- (Neither of these has formulas for the transition probabilities, but those can be done numerically.)





The Jukes-Cantor model

Common ancestor of human and orang

$$Q = \begin{bmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{bmatrix}$$

t time unit

Human (now)

Consider e.g. the 2nd

position in a-globin2 Alu1.
$$r = (1+3e^{-4\alpha t})/4$$
, $s = (1-e^{-4\alpha t})/4$.

Definition of PAM

• Let P(t) = exp(Qt). Then the A, G element of P(t) is

$$pr(G now | A then) = (1 - e^{-4}\alpha t)/4.$$

- Same for all pairs of different nucleotides.
- Overall rate of change $k = 3\alpha t$.
- PAM = accepted point mutation
 - When k = .01, described as 1 PAM
 - Put $t = .01/3\alpha = 1/300\alpha$. Then the resulting $P = P(1/300\alpha)$ is called the PAM(1) matrix.
- Why use PAMs?

Evolutionary time, PAM

- Since sequences evolve at different rates, it is convenient to rescale time so that 1 PAM of evolutionary time corresponds to 1% expected substitutions.
- For Jukes-Cantor, $k = 3\alpha t$ is the expected number of substitutions in [0,t], so is a distance. (Show this.)
 - Set $3\alpha t = 1/100$, or $t = 1/300\alpha$, so $1 PAM = 1/300\alpha$ years.

Distance adjustment

- For a pair of sequences, $k = 3\alpha t$ is the desired metric, but not observable. Instead, pr(different) is observed. So we use a model to convert pr(different) to k.
- This is completely analogous to the conversion of

 $\theta = pr(recombination)$

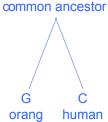
to genetic (map) distance (= expected number of crossovers) using the Haldane map function

$$\theta = 1/2 \times (1 - e^{-2d}),$$

assuming the no-interference (Poisson) model.

Towards Jukes-Cantor adjustment

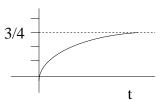
- E.g., 2nd position in a-globin Alu 1
- Assume that the common ancestor has A, G, C or T with probability 1/4.



• Then the chance of the nt differing

$$p_{\neq} = 3/4 \times (1 - e^{-8\alpha t})$$

= 3/4 × (1 - e^{-4k/3}), since k = 2 × 3\alpha t



Jukes-Cantor adjustment

 If we suppose all nucleotide positions behave identically and independently, and n_≠ differ out of n, we can invert this, obtaining

$$\widehat{k} = -\frac{3}{4} \times \log \left(1 - \frac{4}{3} n_{\neq} / n \right)$$

- This is the corrected or adjusted fraction of differences (under this simple model). × 100 to get PAMs
- The analogous simple model for amino acid sequences has

$$\widehat{k} = -\frac{19}{20} \times \log \left(1 - \frac{20}{19} n_{\neq} / n \right)$$

 \times 100 for PAM.

Illustration

1. Human and bovine beta-globins are aligned with no deletions at 145 out of 147 sites. They differ at 23 of these sites. Thus $n_{\neq}/n = 23/145$, and the corrected distance using the Jukes-Cantor formula is (natural logs)

```
-19/20 \times \log(1-20/19 \times 23/145) = 17.3 \times 10^{-2}.
```

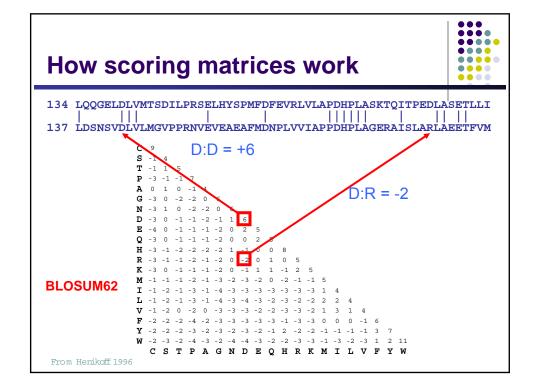
2. The human and gorilla sequences are aligned without gaps across all 300 bp, and differ at 14 sites. Thus $n_{\neq}/n = 14/300$, and the corrected distance using the Jukes-Cantor formula is

$$-3/4 \times \log(1-4/3 \times 14/300) = 4.8 \times 10^{-2}$$
.

Correspondence between observed a.a. differences and the evolutionary distance (Dayhoff et al., 1978)

et al., 1978)		
Observed Percent Difference	Evolutionary Distance in P	AMs
1 5 10 15 20 25 30 35 40 45	1 5 11 17 23 30 38 47 56 67	
55 60 65 70 75 80 85	94 112 133 159 195 246 328	

Scoring matrices for alignment



Statistical motivation for alignment scores

Alignment:

AGCTGATCA...
AACCGGTTA...

Hypotheses:

H = homologous (indep. sites, Jukes-Cantor) R = random (indep. sites, equal freq.)

```
pr(data \mid \mathcal{H}) = pr(AA \mid \mathcal{H})pr(GA \mid \mathcal{H})pr(CC \mid \mathcal{H})...
= (1 - p)^{a} p^{d}, \text{ where } a = \text{\#agreements, } d = \text{\#disagreements, } p = \frac{3}{4}(1 - e^{-8at}).
pr(data \mid \mathcal{R}) = pr(AA \mid \mathcal{R})pr(GA \mid \mathcal{R})pr(CC \mid \mathcal{R})...
= (\frac{1}{4})^{a}(\frac{3}{4})^{d}
\Rightarrow \log\{\frac{pr(data \mid \mathcal{H})}{pr(data \mid \mathcal{R})}\} = a\log\frac{1 - p}{1/4} + d\log\frac{p}{3/4} = a \times \sigma + d \times (-\mu).
```

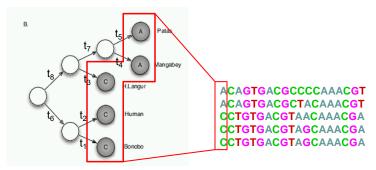
- Since p < 3/4, $\sigma = log((1-p)/(1/4)) > 0$, while $-\mu = log(p/(3/4)) < 0$.
- Thus the alignment score = $a \times \sigma + d \times (-\mu)$, where the match score $\sigma > 0$, and the mismatch penalty is $-\mu < 0$.

Large and small evolutionary distances

- Recall that
 - $p = (3/4)(1-e^{-8\alpha t}),$
 - $\sigma = log((1-p)/(1/4)),$
 - $-\mu = log(p/(3/4))$.
- Now note that if αt ≈ 0,
 - then $p \approx 6\alpha t$, and 1- $p \approx 1$, and so $\sigma \approx log4$, while - $\mu \approx log8\alpha t$ is large and negative.
 - That is, we see a big difference in the two values of σ and μ for small distances.
- Conversely, if αt is large,
 - $p = (3/4)(1-\varepsilon)$, hence $p/(3/4) = 1-\varepsilon$, giving $\mu = -log(1-\varepsilon) \approx \varepsilon$, while $1-p = (1+3\varepsilon)/4$, $(1-p)/(1/4) = 1+3\varepsilon$, and so $\sigma = log(1+3\varepsilon) \approx 3\varepsilon$.
 - Thus the scores are about 3 (for a match) to 1 (for a mismatch) for large distances. This makes sense, as mismatches will on average be about 3 times more frequent than matches.
- the matrix which performs best will be the matrix that reflects the evolutionary separation of the sequences being aligned.

What about multiple alignment

• Phylogenetic methods: a tree, with branch lengths, and the data at a single site.



 See next lecture for how to compute likelihood under this hypothesis

Acknowledgments

- Terry Speed: for some of the slides modified from his lectures at UC Berkeley
- **Phil Green** and **Joe Felsenstein**: for some of the slides modified from his lectures at Univ. of Washington