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Modeling biological sequences o

e Kinds of questions we want to ask
e How to align two sequence to reveal conserved regions?
Is this sequence a motif (e.g., binding site, splice site)?

is this sequence part of the coding region of a gene?
e Are these two sequences evolutionarily related?

e What we will not address (covered last semester)
e How multiple sequences can be optimally aligned
e how sequencing results of a clone library can be assembled
e What is the most parsimonious phylogeny of a set of sequences

e Machine learning : extracting useful information from a
corpus of data D by building good (predictive, evaluative or
decision) models




Modeling biological sequences,
ctd

e We will use probabilistic models of sequences -- not the only
approach, but usually the most powerful, because
e sequences are the product of an evolutionary process which is stochastic in nature,
e want to detect biological "signal" against "random noise" of background mutations,
e data may be missing due to experimental reasons or intrinsically unobservable, and

e we want to integrate multiple (heterogeneous) data and incorporate prior knowledge
in a flexible and principled way,

o
e Computational analysis only generate hypothesis, which must be
tested by experiments
e Site-directed mutagenesis (to alter the sequence content)
e Knockouts/insertions of genes/sites (deletion/addition of elements)
e Functional perturbations (pathway inhibitors, drugs, ...)
e From one-way learning to close-loop learning:

e Active learning: can a machine design smart experiments?
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Writing DNA sequence

e One strand is written by listing its bases in 5' to 3' order

5" ACCGTTACT 3'

e Each strand uniquely determines the complementary strand,

which runs in the opposite direction:

5" ACCGTTACT 3'
3' TGGCAATGA &'

e So the reverse complement of ACCGTTACT is written

TGGCAATGA

e |n general people write one strand and in 5' to 3' order
e This is the ordering that a polymerase or a ribosome scan the sequence

e Establishes a common standard for genome nomenclatures




Gene structure in prokaryotes

Transcription direction

Upstream regulatory Transcription o
region start site Trans Frlptlon
stop site
Gene
mENA

3’ untranslated region
5* untranslated region ~ Coding sequence (ORF) —
begins with start codon (AUG),
ends with stop codon (UAA,
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Gene structure in prokaryotes

e A protein-coding gene consists of the following, in 5" to 3’

order
e Anupstream regulatory region, generally < 50 bp, which turns transcription on
and off.

e Atranscription start site where RNA polymerase incorporates 1st nucleotide
into nascent mRNA.

e A5’ untranslated region, generally < 30bp, that is transcribed into mRNA but not
translated.

e The translation start site marking the start of the coding region. Consists of a
start codon, which causes the start of translation

e The coding region of the gene (typically=1000bp), consisting of a sequence of
codons.

e The translation stop site marking the end of coding region. Consists of a stop
codon, which causes the release of the polypeptide at conclusion of translation.

e A 3 untranslated region, transcribed into RNA but not translated.

e The transcription stop site marking where the RNA polymerase concludes
transcription.
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Gene structure in eukaryotes o

Transcription direction
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Gene structure in eukaryotes

. . o \
e A typical gene consist of the following, in 5’ to 3’ order
e Anupstream regulatory region, often larger and more complex than in
prokaryotes, parts of which may be several thousand bases or more upstream of
transcription start site.

e Atranscription start site.

e A5’ untranslated region, often larger than in prokaryotes, and which may
include sequences playing a role in translation regulation.

e The coding sequence, which unlike the case with prokaryotes, may be
interrupted by non—coding regions called introns. These are spliced out of the
transcript to form the mature mRNA (and sometimes the splicing can occur in
more than one way).

e The translation stop site.

e A3 untranslated region, which may contain sequences involved in translational
regulation.

e A polyadenylation (playA) signal, which indicates to the cell’s RNA processing
machinery that the RNA transcript is to be cleaved and a poly-adenine sequence
(AAAAAA...) tail appended to it

e The transcription stop site.

Alternative splicing

Transcription direction
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Eukaryotic genome structure
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e Genes may be transcribed in either direction, and can overlap

gene 1 gene 3 .
gene 2 gene 4
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nearly 200 complete
genomes have been
sequenced

Evolution
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Sequence conservation implies
functional conservation
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Alignment is the key to

+ Finding important regions

+ Determining function

» Uncovering the evolutionary forces

Sequence-based functional
prediction o

e Sequence similarity is useful in predicting the function of a
new sequence...

e ... assuming that sequence similarity implies structural and
functional similarity.

Query Sequence Response List of

ey Dotgbase [E— similar

New Sequence matches
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Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Sl

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--~-
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings X = XX Xy Y = V1YoV

An alignment of two sequences x and y is an arrangement of x and y by
position, where a and b can be padded with gap symbols to achieve the
same length.

Editing Distance

e Sequence edits: AGGCCTC
e Mutations AGGACTC
e Insertions AGGGCCTC
e Deletions AGG_CTC

e We can turn the edit protocol into a measure of distance by
assigning a “cost” or “weight” S to each operation.
e For example, for arbitrary characters u,v from set A we may define
S(u,u) =0; S(u,v)=1foru#v; S(u,-) = S(-,v) = 1. (Unit Cost)

e This scheme is known as the Levenshtein distance, also called unit
cost model. Its predominant virtue is its simplicity.

e In general, more sophisticated cost models must be used.

e For example, replacing an amino acid by a biochemically similar one
should weight less than a replacement by an amino acid with totally
different properties.

11
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Scoring Function :
e Scoring Function:

Match: +m

Mismatch: —S (a more sophisticated score matrix can be used for proteins)

Gap: -d

Score F = (# matches) x m - (# mismatches) x s - (#gaps) x d

e The Alignment Score of x and y is the score of an optimal
alignment of x and y under a score function S. We denote it
by F(x.y).

e For example, using the score function corresponding to the unit cost
model in our previous example, we obtain the following score:

a: AGCACAC-A or AG-CACACA
b: A-CACACTA ACACACT-A
cost: -2 cost: -4

Here it is easily seen that the left-hand assignment is optimal under the
unit cost model, and hence the alignment score F(a,b) = -2.

Scoring Matrices

e Physical/Chemical similarities

e comparing two sequences according to the properties of their residues may
highlight regions of structural similarity

e The matrix that performs best will be the one that best reflects the
evolutionary separation of the sequences being aligned
e The most commonly used mutation matrices: PAM or BLOSUM

oln
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Below diagonal: BLOSUM®62 substitution matrix

Above diagonal: Difference matrix obtained by
subracting the PAM 160 matrix
entrywise.
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How do we compute the best

alignment?

e A alignment corresponds to a path in the alignment matrix

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

OLOVVVYVYIVIL9991300VILIIIVIVYOIIILIIVI LIV

Example:
Y-

cccccccc

zzzzzzzzzz
::::::::::
::::::::::
..........

::::::::::

..........

Too many possible
alignments:

O( 2M+N)

Dynamic Programming

e The optimum alignment is obtained by tracing the highest
scoring path from the top left-hand corner to the bottom right-
hand corner of the matrix (or the lowest editing-distance path
from bottom right-hand corner to top left-hand corner)

e When the alignment steps away from the diagonal this implies

an insertion or deletion event, the impact of which can be

assessed by the application of a gap penalty

e Dynamic Programming: recursively solve nested problems

each of a manageable size

13
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Dynamic Programming .
e Three possible cases:
1. xalignsto y;
X]......X,-_] /\/, m, 'fX/:YJ
Yi¥is Y FUp)=F(-1 -+
-5, if not
2 x;aligns to a gap
XpwonXip X; Flii= Fli- J
Viej - (= FG-L))-
3 y;aligns to a gap
XpoiX; - FU=Fl j-0-d
YiYit ¥, JI=
[ X X ]
0000
H
Dynamic Programming (cont’'d) o

e How do we know which case is correct?

Inductive assumption:

F(, j-0), F(i-1, )), F(i~1, j-1) are optimal
Then,
F(i-1, j-D) + s (x, }’J)
F(i, p)=max< F(/-1, j)-d
FU,j-D-d
Where s(x, y)=m,if x;=y; -s,if not

14
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Example &
x=AGTA m=1
y=ATA 5 =-1
d=-1
F(Gj) =0 1 2
ALG T Optimal Alignment:
=0 N F(4,3)=2
A — - -
1 ANEERERN AGTA
2 [+ SN N A-TA
\\ t‘\\
3 A
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Alignment is additive &
e Observation:
The score of aligning Xpor Xy
Vi YN
is additive
Say that X1 X Xig Xy
aligns to Y-y Vst YN
The two scores add up:
RANM, fEN) = A1, A1) + AXAATML A1)
FHA1M, LN = Max (A1, A1) + FRAATML M+
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The Needleman-Wunsch Matrix S
X7 e e XM |
= Every nondecreasing

path

from (0,0) to (M, N)

corresponds to
an alignment
of the two sequences

An optimal alignment is composed
of optimal subalignments

o000
The Needleman-Wunsch sels
Algorithm H
1. Initialization.
a. F(0,0) =0
b. F(O,]j) =-jxd
c. F(,0) =-ixd
2. Main lteration. Filling-in partial alignments
a. Foreach i=1...... M
For each j=1..... N
F(i-1,j-1) + s(x, y;) [case 1]
F(i,j) = max { F(@i-1,j)—d [case 2]
F(, j-1)—d [case 3]
DIAG, [ if [case 1]
Pir(i,j) = LEFT,{ if [case 2]
UP, if [case 3]

3. Termination. F(M, N) is the optimal score, and
from Ptr(M, N) can trace back optimal alignment

16
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Performance -
e Time:
O(NM)
e Space:
O(NM)
e Later we will cover more efficient methods
00
4
. . . 00
A variant of the basic algorithm: o

e Maybe it is OK to have an unlimited # of gaps in the beginning
and end:

—————————— CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG-—————————————

e Then, we don’t want to penalize gaps in the ends

e Different types of overlaps

17



The Overlap Detection variant

X et Xm
= Changes:

: N 1. Initialization

For all i, j,

: F(i,0)=0

I e EmsmEmEamERaEEE. YARaRaE F(0,j)=0

] 2 Termination

: max; F(i, N)

: Fopr = Max { _
= max; F(M, j)

(XY
o000
o000
e0o0
: o0
The local alignment problem :
e The problem:
e Giventwostrings X =X,...... X
Y=Y YN
e Find substrings X', y’ whose similarity (optimal global alignment value) is
maximum
e eg. X = aaaaccagccgggyg

y =|cccgggaaccaacc

] Why
e Genes are shuffled between genomes

e Portions of proteins (domains) are often conserved
(A)

Halix 1 Melix2

EETAVHTHETE P ol

E Q@A R
FHAEEVAL
1 v

18



(X X J
0000
e
The Smith-Waterman algorithm 4
Idea: Ignore badly aligning regions
Modifications to Needleman-Wunsch:
Initialization: F(0,j)=F(,0)=0
0
Iteration: F(i, j) = max F(i-1,j)—d
F@,j—1)—-d
Fli—1,1-1)+s(x,y)
(X X ]
esce
. . eo00
The Smith-Waterman algorithm 4

Termination:
1. If we want the best local alignment...
Fopr = max;; F(i, j)

2. If we want all local alignments scoring > t
?7? For all i, j find F(i, j) > t, and trace back

Complicated by overlapping local alignments

19



Scoring the gaps more accurately

e Current model:

v(n)
° Gap of length n
° incurs penalty nxd

e However, gaps usually occur in bunches

e Convex (saturating) gap penalty function: y(n)
v(n): [

foralln,y(n+1)-y(n)<y(n)-y(n—-1)

Convex gap dynamic
programming

Initialization: same

Iteration:
F(i-1,-1) + s(x; ;)
F(,J))  =maxy max, i,F(kj)—v(i-k)
maXy-q_4F(i,K) —v(-k)

Termination: same
Running Time: O(N2M) (assume N>M)

Space: O(NM)




Compromise: affine gaps

e Simple piece-wise linear gap penalty  y(n)

y(n)=d+(n—1)xe e
| | d
gap gap
open extend

e Fancier Piece-wise linear gap penalty v(n)

e Think of how you would compute optimal alignment with this gap
function in O(MN)

Bounded Dynamic Programming

e Assume we know that x and y are very similar

Assumption: #gaps(x,y) <k(N) (say N>M)
X
Then, | implies [i—j|<k(N)
Yi

We can align x and y more efficiently:

Time, Space: O(N x k(N)) << O(N?)

21



Bounded Dynamic Programming

Yi

k(N)

Initialization:
F(i,0), F(0,j) undefined for i, j > k

Iteration:
Fori=1...M

For j = max(1, i — k)...min(N, i+k)

F(i—1,j—1)+s(x,y)
F(i, j) = max{ F(i,j—1)—d, if j > i — k(N)
F(i—1,j)—d,ifj<i+k(N)

Termination: same

Easy to extend to the affine gap case

State of biological databases

http://www.genome.gov/10005141

http://www.cbs.dtu.dk/databases/DOGS/.

| Monotremata
O | Marsupialia

Afrotheria

Xenarthra

Laurasiatheria

Euarchontoglires
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State of biological databases 5
e Number of genes in these genomes:
e Mammals: ~25,000
e Insects: ~14,000
e Worms: ~17,000
e Fungi: ~6,000-10,000
e Small organisms: 100s-1,000s
e Each known or predicted gene has one or more associated
protein sequences
e >1,000,000 known / predicted protein sequences
. . [ X X ]
Some useful applications of sels
alignments o

e Given a newly discovered gene,
e Does it occur in other species?
e How fast does it evolve?

e Assume we try Smith-Waterman:

Our
new

gene

104 The entire genomic database

1010 - 1072

23



. . [ X X ]
Some useful applications of sels
alignments o
e Given a newly sequenced organism,
e Which subregions align with other organisms?
e Potential genes
e Other biological characteristics
e Assume we try Smith-Waterman:
Our newly
sequenced
mammal
3x10° The entire genomic database
1010 - 1012
[ X X ]
0000
[ X XX
. . ::o
Indexing-based local alignment o

e BLAST- Basic Local Alignment Search Tool

query
Main idea:

1. Construct a dictionary of all the words in the query

2. Initiate a local alignment for each word match
between query and DB

. . DB
Running Time: O(MN)
However, orders of magnitude faster than Smith-
Waterman

24



Multiple alignment

\
e The simultaneous alignment of a number of DNA or protein

sequences is one of the commonest tasks in bioinformatics.
e Useful for:

e phylogenetic analysis (inferring a tree, estimating rates of substitution,
etc.)

e detection of homology between a newly sequenced gene and an existing
gene family

e prediction of protein structure
e demonstration of homology in multigene families
e determination of a consensus sequence (e.g., in assembly)

e Can we naively use DP?
e need to deal with k-dimensional table for k sequences ...

Extending the pairwise alignment
algorithms

e Generally not feasible for more than a small number of
sequences (~5), as the necessary computer time and space
quickly becomes prohibitive.

e Computational time grows as N™, where m = number of sequences.
e For example, for 100 residues from 5 species, 1005 = 10,000,000,000 (i.e.,
the equivalent of two sequences each 100,000 residues in length.)

e Nor is it wholly desirable to reduce multiple alignment to a similar
mathematical problem to that tackled by pairwise alignment
algorithms.

e Two issues which are important in discussions of multiple
alignment are:

e the treatment of gaps: position-specific and/or residue-specific gap penalties
are both desirable and feasible, and

e the phylogenetic relationship between the sequences (which must exist if
they are alignable): it should be exploited.

25



Progressive alignment

e Up until about 1987, multiple alignments would typically be

constructed manually, although a few computer methods did
exist.

e Around that time, algorithms based on the idea of progressive

alignment appeared.

e In this approach, a pairwise alignment algorithm is used iteratively,
first to align the most closely related pair of sequences,
then the next most similar one to that pair, and so on.

e The rule “once a gap, always a gap” was implemented, on the grounds
that the positions and lengths of gaps introduced between more similar
pairs of sequences should not be affected by more distantly related

ones.

e The most widely used progressive alignment algorithm is
currently CLUSTAL W.

e Other methods include the profile HMM-based methods

CLUSTAL W

e The three basic steps in the CLUSTAL W approach are
shared by all progressive alignment algorithms:

A. Calculate a matrix of pairwise distances based on pairwise
alignments between the sequences

B. Use the result of A to build a guide tree, which is an inferred
phylogeny for the sequences

C. Use the tree from B to guide the progressive alignment of the
sequences

e We will omit details

26
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Web-based multiple sequence
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alignment o
e Clustalw
° www?2.ebi.ac.uk/clustalw/
° dot.imgen.bcm.tmc.edu:9331/multi-align/Options/clustalw.html
° www.clustalw.genome.ad.jp/
° bioweb.pasteur.fr/iintro-uk.html
. pbil.ibcp.fr
. transfac.gbf.de/programs.html
. www.bionavigator.com
e PileUp
. helix.nih.gov/newhelix
° www.hgmp.mrc.ac.uk/
° bcf.arl.arizona.edu/gcg.html
° www.bionavigator.com
e Dialign
. genomatix.gsf.de/
. bibiserv.techfak.uni-bielefeld.de/
. bioweb.pasteur.fr/intro-uk.html
. www.hgmp.mrc.ac.uk/
e Match-box
° www.fundp.ac.be/sciences/biologie/bms/matchbox_submit.html
e Forreviews: G.J. Gaskell, BioTechniques 2000, 29:60, and
o www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/welcome.html
[ X X ]
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