
10-810: Advanced Algorithms and 
Models for Computational Biology

Differentially Expressed Genes



Data analysis
• Normalization

• Combining results from replicates

• Identifying differentially expressed genes

• Dealing with missing values

• Static vs. time series 



Motivation

• In many cases, this is the goal of the experiment.

• Such genes can be key to understanding what goes wrong / or 
get fixed under certain condition (cancer, stress etc.).

• In other cases, these genes can be used as ‘features’ for a 
classifier.

• These genes can also serve as a starting point for a model for 
the system being studied (e.g. cell cycle, phermone response 
etc.).



Problems
• As mentioned in the previous lecture, differences in expression
values can result from many different noise sources.

• Our goal is to identify the ‘real’ differences, that is, differences 
that can be explained by the various errors introduced during the 
experimental phase.

• Need to understand both the experimental protocol and take 
into account the underlying biology / chemistry 



Hypothesis testing
• A general way of identifying differentially expressed genes is by 

testing two hypothesis
• Let gA denote the mean expression of gene g under condition A (say 

healthy) and gB be the mean expression under condition B (cancer). 
• In this case we can test the following hypotheses:

H0 (or the null hypothesis): gA = gB

H1 (or the alternative hypothesis): gA ≠ gB

• If we reject H0 then gene g has a different mean under the two 
conditions, and so is differentially expressed



P-value
• Using hypothesis testing we need determine our confidence in the

resulting decision
• This is done using a test statistics which indicates how strongly the 

data we observe supports our decision
• A p-value (or probability value) measures how likely it is to see the 

data we observed under the null hypothesis
• Small p-values indicate that it is very unlikely that the data was 

generated according to the null hypothesis



Example: Measurements for one gene in 
40 (20+20) experiments of two conditions



Hypothesis testing: Log likelihood 
ratio test

• If we have a probabilistic model for gene expression we can compute the 
likelihood of the data given the model.

• In our case, lets assume that gene expression is normally distributed with 
different mean under the different conditions and the same variance.

• Thus for the alterative hypothesis we have:

and for the null hypothesis we have:

• We can compute the estimated means and variance from the data (and thus 
we will be using the sample mean and sample variance)
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Example mean

Blue mean: -0.81

Red mean: 0.84

Combined mean: 0.02



Data likelihood
• Given our model, the likelihood of the data under the two hypothesis is:

• We can also compute the ratio of the likelihoods (L(1)/L(0))
• Intuitively, the higher this ratio the more likely it is that the data was 

indeed generated according to the alternative hypothesis (and thus the 
genes are differentially expressed).
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Log likelihood ratio test
• We use the log of the likelihood ratio, and after 

simplifying arrive it:

• T is our test statistics, and in this case can be shown 
to be distributed as χ2 
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Degrees of freedom
• We are almost done …
• We still need to determine one more value in order to use the test
• Degrees of freedom for likelihood ratio tests depends on the 

difference in the number of free parameters
• In this case, our free parameters are the mean and variance
• Thus the difference is …

• In this case, the difference is 1 (two means vs. one)



Example: Log likelihood ratio

T = 2*(64.3/37.1) 
= 3.46

D.O.F = 1

P-value = 0.06



Limitations
• We assumed a specific probabilistic model (Gaussian noise) which

may not actually capture the true noise factors
• We may need many replicates to derive significant results
• Multiple hypothesis testing



Multiple hypothesis testing
• A p-value is meaningful when one test is carried out
• However, when thousands of tests are being carried out, it is hard to 

determine the real significance of the results based on the p-value 
alone.

• Consider the following two cases:

• We need to correct for the multiple tests we are carrying out!

we test 100 genes

we find 10 to be differentially 
expressed with a p-value < .01

we test 1000 genes

we find 10 to be differentially 
expressed with a p-value < .01



Bonferroni Correction 
• Bonferroni Correction is a simple and widely used method to correct 

for multiple hypothesis testing
• Using this approach, the significance value obtained is divided by 

the number of tests carried out.
• For example, if we are testing 1000 genes and are interested in a 

(gene specific)  p-value of 0.05 we will only select genes with a p-
value of 0.05/1000 = 0.00005 = 5*10-5

• Motivation: If

• Then
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Bonferroni Correction
• The Bonferroni Correction is very conservative
• Using it may lead to missing important genes
• Other methods rely on the false discovery rate (FDR) as we discuss 

for SAM



SAM – Significance Analysis of 
Microarray

• Relies on repeats.

• Avoid using fold change alone.

• Use permutations to determine the false discovery rate.



Data

• Many gene were assigned negative values

• Many where expressed at low levels

• Noise is larger for genes expressed at low levels.



Relative difference
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• Where x1 and x2 are the observed means and s(i) is the 
observed standard deviation. 

• S0 is chosen so that d(i) is consistent across the different 
expression levels.



Different comparisons 
of repeated 
experiments.



Identifying differentially expressed 
genes

• Using the normalized d(i) we can detect differentially 
expressed genes by selecting a cutoff above (or below for 
negative values) which we will declare this gene to be 
differentially expressed. 

• However selecting the cutoff is still a hard problem.

• Solution: use the False Discovery Rate (FDR) to choose the 
best cutoff.



False Discovery Rate
• Percentage of genes wrongly identifies / total gene identified.
• What is the difference between this and a p-value ?

P-value: probability under the null hypothesis for 
observing this value



Determining the FDR 
• A permutation based method.
• Use all 36 permutations (why 36 ?).
• For each one compute the dp(i) for all genes.
• Scatter plot observed d(i) vs. expected d(i).



Selecting differentially expressed 
genes  



Extensions
• Can be extended to multiple labels.

• Compute average for each label.

• Compute difference between specific class average and global 
average and corresponding variance.

• As before, adjust variance to correct for low / high level of 
expression. 



Mixture populations
• We may be measuring the transcript levels in a heterogeneous 

(mixture) cell population
• There are a few surprises: 

- genes co-expressed (correlated) in each cell type may appear    
uncorrelated in the mixture

- genes uncorrelated in each cell type may appear perfectly 
correlated in the mixture



Example
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Example
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What about time series ?

• Comparing time points is not always possible (different 
sampling rates).

• Even if sampling rates are the same, there are differences 
in the timing of the system under different conditions.

• Another problem is lack of repeats.



Time series comparison 

Zhu et al, Nature 2000

knockout = deletion 

of gene(s) from the 

sequence



Results for the Fkh1/2 
Knockout

WT

Knockout



Clustering expression data



Goal
• Data organization (for further study)
• Functional assignment
• Determine different patterns 

• Classification
• Relations between experimental conditions 

• Subsets of genes related to subset of 
experiments

Genes

Experiments

Both



Example: co-
expression

For example: grouping together 
genes active in the same 
phase of the cell cycle



Clustering experiments
• For example: clustering genes 

on the basis of how similar 
their effects are if they are 
knocked out.  

• The ``profiles'' associated with 
the genes in this case are
the knock-out responses.



Bi-clustering
• Find subsets of genes and experiments such that the genes in the

subset behave similarly across the subset of the experiments



What you should know
• Statistical hypothesis testing
• Log likelihood ratio test
• Why SAM is successful:

- No need to model expression distribution
- Handles Excel data well


