10-810: Advanced Algorithms and
Models for Computational Biology

Differentially Expressed Genes



Data analysis

 Normalization

e Combining results from replicates

* |dentifying differentially expressed genes
e Dealing with missing values

e Static vs. time series



Motivation

* In many cases, this is the goal of the experiment.

» Such genes can be key to understanding what goes wrong / or
get fixed under certain condition (cancer, stress etc.).

* In other cases, these genes can be used as ‘features’ for a
classifier.

* These genes can also serve as a starting point for a model for
the system being studied (e.g. cell cycle, phermone response
etc.).



Problems

* As mentioned in the previous lecture, differences in expression
values can result from many different noise sources.

» Our goal is to identify the ‘real’ differences, that is, differences
that can be explained by the various errors introduced during the
experimental phase.

* Need to understand both the experimental protocol and take
Into account the underlying biology / chemistry



Hypothesis testing

A general way of identifying differentially expressed genes is by
testing two hypothesis

Let g, denote the mean expression of gene g under condition A (say
healthy) and gz be the mean expression under condition B (cancer).

In this case we can test the following hypotheses:

H, (or the null hypothesis): g, = g5
H, (or the alternative hypothesis): g, # gz

If we reject H,then gene g has a different mean under the two
conditions, and so is differentially expressed



P-value

Using hypothesis testing we need determine our confidence in the
resulting decision

This is done using a test statistics which indicates how strongly the
data we observe supports our decision

A p-value (or probability value) measures how likely it is to see the
data we observed under the null hypothesis

Small p-values indicate that it is very unlikely that the data was
generated according to the null hypothesis



Example: Measurements for one gene in
40 (20+20) experiments of two conditions
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Hypothesis testing: Log likelihood
ratio test

If we have a probabilistic model for gene expression we can compute the
likelihood of the data given the model.

In our case, lets assume that gene expression is normally distributed with
different mean under the different conditions and the same variance.

Thus for the alterative hypothesis we have:

Ya~ N(ll’lA’O-z) Yg ~ N(/UB’GZ)

and for the null hypothesis we have:
2 2
Ya~N(u,0%) yg ~N(u,07)

We can compute the estimated means and variance from the data (and thus
we will be using the sample mean and sample variance)



Blue mean: -0.81
Red mean: 0.84

Combined mean: 0.02
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Data likelihood

Given our model, the likelihood of the data under the two hypothesis is:

1 _(yi_/zl)z 1 _(yi_lzl)z
L(O) _ H g 20 H g 20
A \N2TO g \V 2O
1 _(y‘—u2A>2 1 _(y‘—u23)2
L(l) _ H g 20 g 20
i \N2TOo icg V2O

We can also compute the ratio of the likelihoods (L(1)/L(0))

Intuitively, the higher this ratio the more likely it is that the data was

indeed generated according to the alternative hypothesis (and thus the
genes are differentially expressed).



Log likelihood ratio test

 We use the log of the likelihood ratio, and after
simplifying arrive it:

DY —u) + DY )’

T=2 icA _ icB _
2 =)+ 2 (y -y

T IS our test statistics, and in this case can be shown
to be distributed as y?



Degrees of freedom

We are almost done ...
We still need to determine one more value in order to use the test

Degrees of freedom for likelihood ratio tests depends on the
difference in the number of free parameters

In this case, our free parameters are the mean and variance
Thus the difference is ...

In this case, the difference is 1 (two means vs. one)



Example: Log likelihood ratio

T = 2%(64.3/37.1)
= 3.46

D.OF=1

P_Value — 0.06 1 O 000 o O ®Bo O O@DAKx Gx O W MK X OE




Limitations

We assumed a specific probabilistic model (Gaussian noise) which
may not actually capture the true noise factors

We may need many replicates to derive significant results
Multiple hypothesis testing



Multiple hypothesis testing

A p-value is meaningful when one test is carried out

However, when thousands of tests are being carried out, it is hard to
determine the real significance of the results based on the p-value
alone.

Consider the following two cases:

we test 100 genes we test 1000 genes
we find 10 to be differentially we find 10 to be differentially
expressed with a p-value < .01 expressed with a p-value < .01

We need to correct for the multiple tests we are carrying out!



Bonferroni Correction

Bonferroni Correction is a simple and widely used method to correct
for multiple hypothesis testing

Using this approach, the significance value obtained is divided by
the number of tests carried out.

For example, if we are testing 1000 genes and are interested in a
(gene specific) p-value of 0.05 we will only select genes with a p-
value of 0.05/1000 = 0.00005 = 5*10-

Motivation: If

p(specific T passes|H0)<g
Then 4

p(some T. passes|H,)<«a



Bonferroni Correction

The Bonferroni Correction is very conservative
Using it may lead to missing important genes

Other methods rely on the false discovery rate (FDR) as we discuss
for SAM



SAM — Significance Analysis of
Microarray

» Relies on repeats.
» Avoid using fold change alone.

» Use permutations to determine the false discovery rate.
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 Many gene were assigned negative values

 Many where expressed at low levels
* Noise is larger for genes expressed at low levels.



Relative difference

X (1) = X, (1)
0="Sirs,

» Where x; and x, are the observed means and s(i) is the
observed standard deviation.

» S, is chosen so that d(i) is consistent across the different
expression levels.



Different comparisons
of repeated
experiments.

relative difference d(i)
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ldentifying differentially expressed
genes

» Using the normalized d(i) we can detect differentially
expressed genes by selecting a cutoff above (or below for
negative values) which we will declare this gene to be
differentially expressed.

* However selecting the cutoff is still a hard problem.

 Solution: use the False Discovery Rate (FDR) to choose the
best cutoff.



False Discovery Rate

* Percentage of genes wrongly identifies / total gene identified.
 What is the difference between this and a p-value ?

P-value: probability under the null hypothesis for
observing this value



Determining the FDR

A permutation based method.

Use all 36 permutations (why 36 ?).

For each one compute the d, (i) for all genes.
Scatter plot observed d(i) vs. expected d(i).



difference d(i)
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Extensions

» Can be extended to multiple labels.
 Compute average for each label.

« Compute difference between specific class average and global
average and corresponding variance.

» As before, adjust variance to correct for low / high level of
expression.



Mixture populations

 We may be measuring the transcript levels in a heterogeneous
(mixture) cell population

 There are a few surprises:

- genes co-expressed (correlated) in each cell type may appear
uncorrelated in the mixture

- genes uncorrelated in each cell type may appear perfectly
correlated in the mixture



transcript level
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What about time series ?

« Comparing time points is not always possible (different
sampling rates).

* Even if sampling rates are the same, there are differences
In the timing of the system under different conditions.

» Another problem is lack of repeats.



Time series comparison
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Results for the Fkhl/2
Knockout
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Clustering expression data



Goal

Data organization (for further study)
Functional assignment Genes
Determine different patterns

Classification _
Relations between experimental conditions Experiments

Subsets of genes related to subset of
experiments Both



Example: co-
expression

For example: grouping together
genes active in the same
phase of the cell cycle
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Clustering experiments

* For example: clustering genes
on the basis of how similar
their effects are if they are
knocked out.

 The profiles" associated with
the genes in this case are

the knock-out responses.




Bi-clustering

* Find subsets of genes and experiments such that the genes in the
subset behave similarly across the subset of the experiments




What you should know

o Statistical hypothesis testing

* Log likelihood ratio test

« Why SAM is successful:
- No need to model expression distribution
- Handles Excel data well



