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Reconstructing regulatory
networks: Module based algorithms



Motivation

High-level goal: Use high throughput data to discover
patterns of combinatorial regulation and to understand
now the activity of genes involved in related biological
processes Is coordinated and interconnected.

Unlike methods that represent individual genes, module based
methods group genes. This helps in:

- Reducing dependence on individual measurements which could be
noisy

-Elevated statistical significance

- Allows integration of different data sources




Goal: Discover structure and function of
complex systems in the cell

o |dentify the different components that are invalwe the system.
* Determine how these components are connected.

« Assemble components into networks for differerstegns in the
cell.



Today: Two methods

Probabillistic relational modules (PRMs)

- Factors activity is determined by their expression levels
GRAM

- Expression and binding data

- Factor activity is determined indirectly



Propositional Uncertainty

To model uncertainty we would like to represent a probability
distribution over possible worlds.

To represent the full joint distribution we would need 2"-1parameters
(infeasible)

Insight: the value of most propositions isn't affected by the value of
most other propositions!

More formally, some propositions are conditionally independent of
each other given the value of other propositions



Bayesian Networks

 Use a directed acyclic graph to encode these independence
assumptions

Authorlnstitution JournalRating

AuthorRating PaperRating

PaperCited

 This model encodes the assumption that each variable is
independent of its non-descendents given its parents



Factorization

« If a BN encodes the true independence assumptions of a
distribution, we can use a factored representation for the distribution:

P, %) = Ij PO [ X5e-5%,)

|j P(x |Pai))

« To specify the full joint we need only the conditional probabilities of
a variable given its parents



Bayesian Networks

. ; P(Al=Stanford " P(JR=high
Authorlnstitution ( ) JournalRating (R=ngh)
0.01 0.3
Al JR P(PR=high | Al, JR)
Al P(AR=high | Al) Stanf. high 0.6
Stanf. 01 AuthorRating PaperRating Stanf. low 0.1
other 0.001 other high 0.2
other low 0.01
PR P(PC=true | PR)
PaperCited high 0.5
low 0.01




Bayes Net Shortcomings

 BNs lack the concept of an object

« Cannot represent general rules about the relations between multiple
similar objects



Modeling Uncertainty

 More formally, we define:

— Arelational skeleton, S, to be a set of objects and relations between them
(defined as reference slot values)

— What are the differences in objects that we may see?
— An instance, |, to be an assignment of values to attributes
A PRM defines a probability distribution over possible completions | of a

skeleton S
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PRM Dependency Structure

PRMs assume that the attribute values of objects are each influenced by
only a few other attribute values (as in a BN)

Thus we associate with each attribute X.A a set of parents Pa(X.A)

These are formal parents; they will be instantiated differently for different
objects

These sets of parents (one for each attribute) define the dependency
structure S of the PRM
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Types of Parents

 We define two types of parents for X.A:
— Another attribute X.B of the same class X
* E.g., GO function could depend on GCluster
— An attribute of a related object X.B where B is in a different class
* E.g., expression level could depend on ACluster
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PRM Parameters

As in a BN, for each attribute we define a conditional probability

distribution (CPD) over the values of the attribute given the values of
the parents

More precisely, let U = Pa(X.A) be the set of parents, V(U) be the
possible values of U, and ulJV(U) be some set of of values

Then we can define a distribution P(X.A|u)



Joint Probabillity Distribution

 Now we can use the following factored representation for the joint
probability distribution over possible instances consistent with
skeleton S :

classes ﬂ 6;) = HADP(IXA“Pa(XA))

xUo
structure

parameters

 Where O°(X) denotes the set of objects in skeleton S whose class is
X



Acyclicity

Problem: Distribution is not coherent when dependency structure S
has cycles

Naive approach: Require acyclic class dependency graph

* This would prohibit a dependency of the genotype of a
person (child) on the genotype of a person (parent), even
though it is clearly acyclic

Better: require certain guaranteed acyclic slots
* The parent slot above is guaranteed acyclic

Graph coloring algorithm for checking legality of dependency
structures



Inference In PRMs

Given a skeleton (set of objects and relations), a PRM defines a
distribution over possible instances (assignments of values to
attributes)

Same query types as in BNs

To answer queries, we compile the PRM to its associated BN, and
use BN inference.



Parameter Estimation

« We do maximum likelihood estimation for the BN induced by the
structure given the skeleton

E argmax[L(@ 1,0, S)]
L(6;;1,0,5)=P(|0,S,6;)

= I_l l I I_l P(l Al IPa(x.A))
Xi A(X;) xdO7 (X))

 Parameters are tied for nodes of same class
« As in BNs, the likelihood function can be decomposed and learned

separately
 Asin BNs, can also take a Bayesian approach



Structure Learning

« Similar to BN, we let the search algorithm decide on the parent set

* We must ensure that the dependency structures we learn is acyclic
- No problem, just test each dependency structure before we
consider it



Structure Learning (2)

 We need a scoring function to evaluate the "goodness" of each
candidate hypothesis:

— We use Bayesian model selection, where the score of a
structure S is defined as the posterior probability of the structure
given the data I:

PS|I1,0)OP( |S,o)P(S|o)

— The second component of the score P(S|o) = P(S) is a prior over
structures

e To penalize adding parameters we set log P(S) to be
proportional to the total number of parameters in S



Structure Learning (3)

— The first component of the score is the marginal likelihood:
P(1S,0) = [P( |S,0,6,)P(6s,S)d6s

— If we use a parameter independent Dirichlet prior (over
parameters), this integral decomposes into a product of integrals
each of which has a simple closed form solution

e E.g., uniform Dirichlet prior over parameters



Rich probabilistic networks for gene
expression

 Apply PRMs to gene expression and other data sources.
« Data sources includes:
- Functional assignment for gene (from MIPS)
- Binding site information for known TFs
 Gene classes are latent variables.
» Array classes are known (different class to each array).

Array/Mutated Gene
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Probability model

 Decision tree for each of the
expression levels.

* Decision can be based on expression
levels of other genes or on discrete
values from the other data sources.

« Can use the node in the tree to
determine parents for a given node.

GCluster =10
(of gene)

false true

GCluster=3
(of mutant)

falsa true

ISsues:
e Acyclic graph
e Learning the tree for each gene



Determining significance of results

Use permutation data to determine if the structure observed was
present in the data.

Apply the same algorithm to a randomized version of the data.

Use likelihood of generated model to test the relevance of the
learned structure.



Testing the clusters

» Test the variance of the expression in each cluster.

 Remove functional annotation after initial step to allow for new
annotations for unknown genes.
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From modules to networks

Regulator -

Pre-processing | selection Data selection

Candidate regulators Expression data
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Determine combinatorial control
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Resulting module
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More combinatorial regulation

Amino acid
metabolism

Energy
and cAMP
signaling

DNA and RNA
processing

{36} N36
Nuclear
ABF C

O Module (number}
¢ ORegulator (signaling molecule)

D Regulator (transcription factor)
| Inferred regulation
| Regulation supported in literature
| Enriched cis-regulatory motif
() Experimentally tested regulator




GRAM



Expression and Binding Data

Gene expression data Protein-DNA binding data

Transcription Factor

>

expression = number of binding = connectivity

MRNA copies for a gene



Protein-DNA Binding Data

Gene
Transcription Factor ‘ >
TF, TF, TF, TF,
g, .001 1 .08 v
9, .06 .05 1 5
O3 .34 .001 1 1
ds .78 5 .0003 0.07
Os 0 .0006 3 .001
Os 1 4 5 A1

Renet al, Science 2000|




Protein-DNA Binding Data

Gene
Transcription Factor ‘ >

P=value 0.05
35 365 Iinteractions

Previous work used an error
model for binding data and a
p-value cutoff to determine
binary relationships.

P-value 0.01
12,040 interactions

P=-value 0.005
8,190 interactions

P-value 0,001
3.985 interactions

Lee et al, Science, 2002



Limitations of the Binding Data

« Relationships between TFs and genes (activatqueessors).

« Type of combinatorial regulation.



Limitations of the Binding Data

* Low false positive rate (5%) but also a low trwsitive rate (70%).

1 ROC curves

.34 expre_SSipn_. e p-value < 0.01 4

use gene expression to complement the

binding data

I I L 1 1 1 I 1 1
1] 01 nz 0.3 0.4 0.5 0.6 nr 0.G na 1

False positives



Limitations of Binding Data Alone

| el |

Binding p-values form
a continuum — where
do you draw the cut-
off line?

i

.001 ¢

.01

99 genes bound by Hap4
with a p-value < .01



Limitations of Expression Data
Alone

B.
Hierarchical

clustering of amino
acid synthesis
genes

Expression data alone can'’t effectively distinguish
among genes that have similar expression patterns
but are under the control of different regulatory
networks.



Modules

e Gene Module

— Set of genes that are co-regulated and co-
expressed.

 Functional Module

— Collection of gene modules with related function.




Genetic RequlAtory Modules

(GRAM)
Genome-wide Genome-wide

DNA-binding data expression data

Input data to the algorithm



GRAM Algorithm Overview

For each regulator combination,
look at all genes bound (using a
strict binding p-value).

Find a core gene expression
profile.

Remove genes far away from
core.

Add genes close to the core (with
relaxed p-value threshold).

T

Genome-wide gene

expression analysis

WMl
AAAANALABAL

Gene expression profiles

SO

Genome-wide Ch-IP

location analysis l g

Transcription factor binding p-values

TF1 TF2

TF3 TF4 TF5 TF6 TF7

<pl <pl
<pl «<pi
<pl «<pi
<pl <pl
<pl «<pi
<pl zp1
2pl <pl
<pl zpl

2pl zpl

<pl <pl 2pl1 zpl1 zpl
<p1 <pl zpl1 zpl1 zpil
<pl <pl 2pl1 zpl <pl
<pl <pl 2pl1 =pl1 2pl
<pl <pl 2pl1 2pl1 =2pi
<pl <pl 2pl1 2pl1 2pi
<pl <pl 2pl1 zpl1 zpi
2p1 2pl1 2pl1 zpl1 <pl
<pl zp1 <pl1 z2pl1 z2pl

e

termine core gene set,

calculate center expression profile

-
Core gene set [a,b,cd,e]

Re-calculate combr‘nedk’ Combined p-values
p-value

a | <pl
bl =m
c | <pl

=pl
e | <pl

<pl
g\l =p
[ zpl

i

2p1

Final gene module

G =[ab,cdefgl]

as requlated by
transcription factors
F= [TF1, TF2, TF3, TF4]



GRAM step O:

For each gene i:

Generate all possible subsets of factors that bind to gene i with p-
value < 0.001. Associate the gene with all the TF subsets via
a hash-table.

Result is the set of all possible binding patterns (as indicated by
strict binding p-values), with the corresponding genes mapped to the
patterns.



GRAM Algorithm Step 1: exhaustively
search all subsets of TFs (starting w/ the
largest sets)

For every set of transcription factors
F, the genes in G(F,p,) serve as
candidates for a module regulated by
the factors in F.
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GRAM Algorithm Step 2: find a core
expression profile for the module

~ _

/7 core expression profile

c’ = argmax. |G(F,p,) N B(c,s,)|

-
b
“5
- *'I.
|

We seek a point ¢’ for which as
many genes in the candidate set
are within distance s, of the
point C'.



Finding the core profile (cont.)
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Consider a set of genes bound by the same TFs.

The core profile is a point in expression space that describes a ball
containing the maximal number of genes within a distancer.

This estimate is robust, in the sense that it is insensitive to outliers
(think of a median versus a mean).

To compute it exactly requires an O(2") algorithm (n=# of genes).

Using results from computational geometry, we get an O(n®)
approximation algorithm (with provable error bounds).



Step 3: add/remove genes

2. Remove genes with

/ significantly far
expression profiles

1. Include genes that are
close and are bound by
same TFs (binding p-value

< 0.001)
g, .0004 .00003 .33 .0004

3. Relax the binding threshold/
Expanded set = G(F,p,) N add genes with significantly close
B(c',s,), where p, > p;. expression profiles

< <X < <



GRAM: Final Module

Module #86: Arg80 | Arg81 | Gen4

ARG5,6 acetylglutamate kinase and acetylglutamyl-phosphate reductase
ARG3 ornithine carbamoyltransferase
ARG1 argininosuccinate synthetase

YOR302W CPA1 leader peptide
CPA1 arginine-specific carbamoylphosphate synthase, small chain




GRAM results

106 modules ranging in size from 52 genes to 5.

These modules are controlled by 68 factors antbao®55
genes.

627 out of 1560 unique regulator-gene interact@@86) had
binding p-value > .001



Results:
- Energy/carbohydrate
R I C h metabolism
Yap6

Rox1
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Amino acid met./biosynth. ~ Protein synthesis ¢ Chromosome/histone @ Unknown
@ Glycolysis/metabolism Fermentation @ Lipid/fatty acid biosynth.

Bar-Joseph et al Nature Biotechnology 2003




The Importance of Information Fusion:

Using

.001 ¢

99 genes bound by Hap
with a p-value < .01

x—l_lu o
= » = 'ulla
N |
. )
o .
N e
o
-
»
=

i

Binding

Binding p-values form
a continuum — where
do you draw the cut-
off line?

28 genes were selected by the
GRAM algorithm; all are involved in
respiration. Six of these genes
(PET9, ATP16, KGD2, QCRES,
SDH1, and NDI1) would not have
been identified as Hap4 targets
using the stringent .001 p-value
threshold (p-values range from
.0011 to .0036).



The Importance of Information
Fusion: Using Only Expression

B.

A cluster of amino acid

synthesis genes
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Eleven Significant Activators Found;
Ten Previously ldentified In Literature

Factor | Module function Correlation | Comments

Stel2 | Pheromone response | +0.64 Activator, required for pheromone response

Hap4 | Respiration +0.60 Activator of CCAAT box containing genes

Yapl | Detoxification +0.53 Activator, possibly involved in oxidative stress
response

Nrgl | Carbohydrate transport| +0.50 Previously identified as a repressor

Fkhl | Cell cycle +0.49 Activator of cell cycle genes

Cadl | Detoxification +0.47 Activator, involved in multi-drug resistance

Aro80 | Energy and metabolism +0.40 Activator, regulation of amino acid synthesis

Swi6 | Cell cycle +0.39 Activator of cell cycle genes

Msn4 | Stress response +0.38 Activator, involved in stress response

Fkh2 | Cell cycle +0.37 Activator of cell cycle genes

Hsfl | Stress response +0.36 Activator of heat shock related genes




Validation Ideas

Literature.

Curated databases (e.g., GO/MIPS/TRANSFAC).
Other high throughput data sources.
“Randomized” versions of data.

New experiments.



GRAM Network Validation

Literature:

— Many TF interactions predicted by modules corresponded well to
literature (but what about ones that didn't...)

Curated databases:

— Computed enrichment for genes in modules for MIPS categories
using the hypergeometric distribution.

— Modules belong to diverse array of categories corresponding to
cellular processes such as amino acid biosynthesis,
carbohydrate and fatty acid metabolism, respiration, ribosome
biogenesis, stress response, protein synthesis, fermentation, and
the cell cycle.

“Randomized” data;

— When compared to results generated using binding data alone,
there was 3-fold increase in modules significantly enriched in
MIPS categories.



Predicting Mechanisms of
Transcription Factors Regulation

Binding Predictions

Cluster 9 regs: STB1 YPD | SWI14 YPD

avg corr: 0.62927

YCRO065W HCM1 HCM1 Gl
YDR501W YDR501W YDR501W G1
YGR109C CLB6 CLB6 Gl
YGR221C | YGR221C YGR221C Gl
YIL140W SRO4 SRO4 Gl
YIL141IW YIL141W YIL141W G1
YMR179W SPT21 SPT21 Gl
YNL289W PCL1 PCL1 Gl
YPL256C CLN2 CLN2 Gl

p-value

0.0012
0.00002
0.0013
0.0009
0.008
0.008
0.007
0.000005
0.00007

Combinatorial regulation

Cluster 33 regs: HIR1 YPD | HIR2 YPD | Rsc8
avg corr: 0.81661

YBR009C HHF1 histone H

YBRO10W HHT1 histone H

YDR224C HTB1 histone H2

YDR225W HTA1 histone H2

40.10.03 | chromoso 2.52E-09 44 4

04.05.01.C transcripti 9.44E-06 334 4

04.05.01 | mRNA syI 2.07E-05 406 4
250

[ Rsc8 at HTA1
200~ W TFIIB at HTAL
[ Rsc8 at SOD1

% Binding
(relative to WT)

; ) . swied . .
WT  swidd swi5A swi64d mbpd hirld hir24
mbpA4

Ng et al, Genes Dev. 2002



Connection to Sequence

What is the

percentage of

100

genes bound by

factors with

GRAM algorithm

known motifs

that contain the

motif ?

Data

Motif enrichment
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Sub-Network Discovery

* |dentify genes involved in the system.

 |dentify the factors controlling the system, ahd tmodules
Involved.

e Determine a dynamic model for the activation @& thodules by
the identified factors.

We extend GRAM and combine it with our continuous
representation and alignment algorithms to consauc

dynamic model for a sub-network
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Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules




Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules

Individual requlators:
ovals, connected to
their modules

—— o ——

Dashed line: extends
from module encoding
a regulator to the
regulator protein oval

Lee et al Science 2002




Results for the Fkhl/2
Knockout

1.110223e-16 CWP1

1.443290e-15 CT31

3.437203e-14 OLET

1.630041e-10 EGTZ

J167GZ2e-08 YHR143W

F16482e-08 YMLOSEC

4.4863818-07 CLBZ

OEG419e-07 YMLOTEW

Bar-Joseph et al PNAS 2003
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Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules

Individual requlators:
ovals, connected to
their modules

Dashed line: extends
from module encoding
a regulator to the
regulator protein oval

—— o ——




Projects

« Poster session: May 8™ 1:00p until 2:30p in NSH 1507
« Each group should be ready to present their poster at that time
« Writeups (6-8 pages, no more than 8) are due at the poster session



