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Motivation

• Unlike methods that represent individual genes, module based 
methods group genes. This helps in:
- Reducing dependence on individual measurements which could be 
noisy 
-Elevated statistical significance
- Allows integration of different data sources 

High-level goal: Use high throughput data to discover 
patterns of combinatorial regulation and to understand 
how the activity of genes involved in related biological 
processes is coordinated and interconnected.



Goal: Discover structure and function of 
complex systems in the cell 

• Identify the different components that are involved in the system.

• Determine how these components are connected.

• Assemble components into networks for different systems in the 
cell.



Today: Two methods

• Probabilistic relational modules (PRMs)
- Factors activity is determined by their expression levels

• GRAM
- Expression and binding data
- Factor activity is determined indirectly 



Propositional Uncertainty

• To model uncertainty we would like to represent a probability 
distribution over possible worlds.

• To represent the full joint distribution we would need 2n-1parameters 
(infeasible)

• Insight: the value of most propositions isn't affected by the value of 
most other propositions!

• More formally, some propositions are conditionally independent of 
each other given the value of other propositions



Bayesian Networks

• Use a directed acyclic graph to encode these independence 
assumptions

• This model encodes the assumption that each variable is 
independent of its non-descendents given its parents 
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Factorization

• If a BN encodes the true independence assumptions of a 
distribution, we can use a factored representation for the distribution:

• To specify the full joint we need only the conditional probabilities of 
a variable given its parents
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Bayesian Networks
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Bayes Net Shortcomings

• BNs lack the concept of an object
• Cannot represent general rules about the relations between multiple 

similar objects



Modeling Uncertainty

• More formally, we define:

– A relational skeleton, S, to be a set of objects and relations between them 
(defined as reference slot values)

– What are the differences in objects that we may see?

– An instance, I, to be an assignment of values to attributes
• A PRM defines a probability distribution over possible completions I of a 

skeleton S

0Heat

4Gcluster

0Cell 
cycle

1AA

gene

CCcondition

5Acluster

Zperson

Atype

array

0g3

-2g4

1.4g2

.2g1

expression



PRM Dependency Structure

• PRMs assume that the attribute values of objects are each influenced by 
only a few other attribute values (as in a BN)

• Thus we associate with each attribute X.A a set of parents Pa(X.A)
• These are formal parents; they will be instantiated differently for different 

objects

• These sets of parents (one for each attribute) define the dependency 
structure S of the PRM



Types of Parents

• We define two types of parents for X.A:

– Another attribute X.B of the same class X
• E.g., GO function could depend on GCluster

– An attribute of a related object X.B where B is in a different class
• E.g., expression level could depend on ACluster



PRM Parameters

• As in a BN, for each attribute we define a conditional probability 
distribution (CPD) over the values of the attribute given the values of 
the parents

• More precisely, let U = Pa(X.A) be the set of parents, V(U) be the 
possible values of U, and u⊆V(U) be some set of of values

• Then we can define a distribution P(X.A|u)



Joint Probability Distribution

• Now we can use the following factored representation for the joint 
probability distribution over possible instances consistent with
skeleton S :

• Where Oσ(X) denotes the set of objects in skeleton S whose class is 
X
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Acyclicity

• Problem: Distribution is not coherent when dependency structure S
has cycles

• Naïve approach: Require acyclic class dependency graph
• This would prohibit a dependency of the genotype of a 

person (child) on the genotype of a person (parent), even 
though it is clearly acyclic

• Better: require certain guaranteed acyclic slots
• The parent slot above is guaranteed acyclic

• Graph coloring algorithm for checking legality of dependency 
structures



Inference in PRMs

• Given a skeleton (set of objects and relations), a PRM defines a
distribution over possible instances (assignments of values to 
attributes)

• Same query types as in BNs
• To answer queries, we compile the PRM to its associated BN, and 

use BN inference.



Parameter Estimation

• We do maximum likelihood estimation for the BN induced by the 
structure given the skeleton

• Parameters are tied for nodes of same class
• As in BNs, the likelihood function can be decomposed and learned 

separately
• As in BNs, can also take a Bayesian approach
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Structure Learning

• Similar to BN, we let the search algorithm decide on the parent set

• We must ensure that the dependency structures we learn is acyclic
- No problem, just test each dependency structure before we 

consider it



Structure Learning (2)

• We need a scoring function to evaluate the "goodness" of each 
candidate hypothesis:
– We use Bayesian model selection, where the score of a 

structure S is defined as the posterior probability of the structure 
given the data I:

– The second component of the score P(S|σ) = P(S) is a prior over 
structures

• To penalize adding parameters we set log P(S) to be 
proportional to the total number of parameters in S
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Structure Learning (3) 

– The first component of the score is the marginal likelihood:

– If we use a parameter independent Dirichlet prior (over 
parameters), this integral decomposes into a product of integrals 
each of which has a simple closed form solution

• E.g., uniform Dirichlet prior over parameters
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Rich probabilistic networks for gene 
expression

• Apply PRMs to gene expression and other data sources.

• Data sources includes:
- Functional assignment for gene (from MIPS)

- Binding site information for known TFs
• Gene classes are latent variables.

• Array classes are known (different class to each array).



Probability model 

• Decision tree for each of the 
expression levels.

• Decision can be based on expression 
levels of other genes or on discrete 
values from the other data sources. 

• Can use the node in the tree to 
determine parents for a given node.

Issues:
• Acyclic graph
• Learning the tree for each gene



Determining significance of results

• Use permutation data to determine if the structure observed was 
present in the data.

• Apply the same algorithm to a randomized version of the data.
• Use likelihood of generated model to test the relevance of the 

learned structure.



Testing the clusters

• Test the variance of the expression in each cluster.
• Remove functional annotation after initial step to allow for new

annotations for unknown genes.



From modules to networks



Determine combinatorial control 



Resulting module

Segal et al Nature Genetics 2003



More combinatorial regulation



GRAM



Expression and Binding Data

mRNA

Gene expression data

expression = number of 

mRNA copies for a gene

binding = connectivity

Protein-DNA binding data

Transcription Factor



Protein-DNA Binding Data

Gene
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Protein-DNA Binding Data
Gene

Previous work used an error 
model for binding data and a 
p-value cutoff to determine 
binary relationships.

Transcription Factor

Lee et al, Science, 2002



Limitations of the Binding Data

Gene 2

• Type of combinatorial regulation.

TF 2

• Relationships between TFs and genes (activators, repressors).

TF 1

Gene 1

+ ? - ?



Limitations of the Binding Data
• Low false positive rate (5%) but also a low true positive rate (70%).

use gene expression to complement the 

binding data 



Limitations of Binding Data Alone  

Binding p-values form 
a continuum – where 
do you draw the cut-
off line?

99 genes bound by Hap4 
with a p-value < .01 



Limitations of Expression Data 
Alone

Expression data alone can’t effectively distinguish 
among genes that have similar expression patterns 
but are under the control of different regulatory 
networks.

Hierarchical 
clustering of amino 
acid synthesis 
genes



Modules
• Gene Module

– Set of genes that are co-regulated and co-
expressed.

• Functional Module
– Collection of gene modules with related function.

Modules provide an abstraction which reduces genetic network 

complexity without significant loss of explanatory power, and 

allows us to determine the significance of the model. 



Genetic RegulAtory Modules 
(GRAM)



GRAM Algorithm Overview

• For each regulator combination, 
look at all genes bound (using a 
strict binding p-value).

• Find a core gene expression 
profile.

• Remove genes far away from 
core.

• Add genes close to the core (with 
relaxed p-value threshold).



GRAM step 0:

• For each gene i:
Generate all possible subsets of factors that bind to gene i with p-

value < 0.001.  Associate the gene with all the TF subsets via 
a hash-table.

• Result is the set of all possible binding patterns (as indicated by 
strict binding p-values), with the corresponding genes mapped to the 
patterns.



GRAM Algorithm Step 1: exhaustively 
search all subsets of TFs (starting w/ the 

largest sets)
Arg81Arg80 Leu3 Gcn4

1011g6
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0000g4

1111g3

1101g2

1011g1

Gcn4Leu3Arg81Arg80

For every set of transcription factors 
F, the genes in G(F,p1) serve as 
candidates for a module regulated by 
the factors in F.



GRAM Algorithm Step 2: find a core 
expression profile for the module

c’ = argmaxc |G(F,p1) B(c,sn)|

We seek a point c’ for which as 
many genes in the candidate set 
are within distance sn of the 
point c’.



Finding the core profile (cont.)

• Consider a set of genes bound by the same TFs.
• The core profile is a point in expression space that describes a ball 

containing the maximal number of genes within a distance r.
• This estimate is robust, in the sense that it is insensitive to outliers 

(think of a median versus a mean).
• To compute it exactly requires an O(2n) algorithm (n=# of genes).
• Using results from computational geometry, we get an O(n3) 

approximation algorithm (with provable error bounds).

expression space

r

r
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Step 3: add/remove genes
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Expanded set = G(F,p2) 
B(c’,sn), where p2 > p1.

3.  Relax the binding threshold/ 
add genes with significantly close 
expression profiles

2.  Remove genes with 
significantly far 
expression profiles

1.  Include genes that are 
close and are bound by 
same TFs (binding p-value 
< 0.001)



GRAM: Final Module



GRAM results

• 106 modules ranging in size from 52 genes to 5. 

• These modules are controlled by 68 factors and contain 655 
genes.

• 627 out of 1560 unique regulator-gene interactions (40%) had 
binding p-value > .001



Results:
Rich

Media
Modules

Bar-Joseph et al Nature Biotechnology 2003



Binding p-values form 
a continuum – where 
do you draw the cut-
off line?

99 genes bound by Hap4 
with a p-value < .01 

28 genes were selected by the 
GRAM algorithm; all are involved in 
respiration.  Six of these genes 
(PET9, ATP16, KGD2, QCR6, 
SDH1, and NDI1) would not have 
been identified as Hap4 targets 
using the stringent .001 p-value 
threshold (p-values range from 
.0011 to .0036).

The Importance of Information Fusion:
Using Only Binding  



The Importance of Information 
Fusion: Using Only Expression

A cluster of amino acid 

synthesis genes



Eleven Significant Activators Found; 
Ten Previously Identified in Literature

Activator of heat shock related genes+0.36Stress responseHsf1

Activator of cell cycle genes+0.37Cell cycleFkh2

Activator, involved in stress response+0.38Stress responseMsn4

Activator of cell cycle genes+0.39Cell cycleSwi6

Activator, regulation of amino acid synthesis+0.40Energy and metabolismAro80

Activator, involved in multi-drug resistance+0.47DetoxificationCad1

Activator of cell cycle genes+0.49Cell cycleFkh1

Previously identified as a repressor+0.50 Carbohydrate transportNrg1

Activator, possibly involved in oxidative stress 
response

+0.53DetoxificationYap1

Activator of CCAAT box containing genes+0.60RespirationHap4

Activator, required for pheromone response+0.64Pheromone responseSte12

CommentsCorrelationModule functionFactor



Validation Ideas

• Literature.
• Curated databases (e.g., GO/MIPS/TRANSFAC).
• Other high throughput data sources.
• “Randomized” versions of data.
• New experiments.



GRAM Network Validation

• Literature:
– Many TF interactions predicted by modules corresponded well to 

literature (but what about ones that didn’t…)
• Curated databases:

– Computed enrichment for genes in modules for MIPS categories 
using the hypergeometric distribution. 

– Modules belong to diverse array of categories corresponding to 
cellular processes such as amino acid biosynthesis, 
carbohydrate and fatty acid metabolism, respiration, ribosome 
biogenesis, stress response, protein synthesis, fermentation, and 
the cell cycle.

• “Randomized” data:
– When compared to results generated using binding data alone, 

there was 3-fold increase in modules significantly enriched in 
MIPS categories.



Predicting Mechanisms of 
Transcription Factors Regulation

Cluster 33 regs: HIR1 YPD | HIR2 YPD | Rsc8  
avg corr: 0.81661 
YBR009C HHF1 histone H 
YBR010W HHT1 histone H 
YDR224C HTB1 histone H2 
YDR225W HTA1 histone H2 
40.10.03  chromosome (44 ORFs) 2.52E-09 44 4
04.05.01.04  transcriptional control (334 ORFs) 9.44E-06 334 4
04.05.01  mRNA synthesis (406 ORFs) 2.07E-05 406 4

Combinatorial regulation

WT swi4∆

100

swi5∆ swi6∆
swi6∆
mbp∆mbp∆ hir1∆ hir2∆

Rsc8 at HTA1

TFIIB at HTA1

Rsc8 at SOD1

50

0

150

200

250

Ng et al, Genes Dev. 2002

Cluster 9 regs: STB1 YPD | SWI4 YPD  p-value
avg corr: 0.62927 
YCR065W HCM1 HCM1 G1 0.0012
YDR501W YDR501W YDR501W G1 0.00002
YGR109C CLB6 CLB6 G1 0.0013
YGR221C YGR221C YGR221C G1 0.0009
YIL140W SRO4 SRO4 G1 0.008
YIL141W YIL141W YIL141W G1 0.008
YMR179WSPT21 SPT21 G1 0.007
YNL289W PCL1 PCL1 G1 0.000005
YPL256C CLN2 CLN2 G1 0.00007

Binding Predictions 



Connection to Sequence 
Data

What is the 

percentage of 

genes bound by 

factors with 

known motifs 

that contain the 

motif ?



Results:
Rich

Media
Modules



Sub-Network Discovery
• Identify genes involved in the system.

• Identify the factors controlling the system, and the modules 
involved.

• Determine a dynamic model for the activation of the modules by 
the identified factors. 

We extend GRAM and combine it with our continuous 

representation and alignment algorithms to construct a 

dynamic model for a sub-network



p-value: 10-4 p-value: 0.2 p-value: 0.7 p-value: 10-6

Factors = {F1,F2,F6} Genes = {g1,g2,g4,g13,g14,g15,g22,g24}

Sub-
Networks 
Discovery 
Algorithm
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Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network



Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network

Individual regulators:
ovals, connected to 
their modules

Dashed line: extends 
from module encoding 
a regulator to the 
regulator protein oval

Lee et al Science 2002



Results for the Fkh1/2 
Knockout

WT

Knockout

Bar-Joseph et al PNAS 2003



Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network

Individual regulators:
ovals, connected to 
their modules

Dashed line: extends 
from module encoding 
a regulator to the 
regulator protein oval
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Projects

• Poster session: May 8th 1:00p until 2:30p in NSH 1507 
• Each group should be ready to present their poster at that time
• Writeups (6-8 pages, no more than 8) are due at the poster session


