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Modules
• Gene Module

– Set of genes that are co-regulated and co-
expressed.

• Functional Module
– Collection of gene modules with related function.

Modules provide an abstraction which reduces genetic network 

complexity without significant loss of explanatory power, and 

allows us to determine the significance of the model. 



Genetic RegulAtory Modules 
(GRAM)



GRAM Algorithm Overview

• For each regulator combination, 
look at all genes bound (using a 
strict binding p-value).

• Find a core gene expression 
profile.

• Remove genes far away from 
core.

• Add genes close to the core (with 
relaxed p-value threshold).



Results:
Rich

Media
Modules

Bar-Joseph et al Nature Biotechnology 2003



Binding p-values form 
a continuum – where 
do you draw the cut-
off line?

99 genes bound by Hap4 
with a p-value < .01 

28 genes were selected by the 
GRAM algorithm; all are involved in 
respiration.  Six of these genes 
(PET9, ATP16, KGD2, QCR6, 
SDH1, and NDI1) would not have 
been identified as Hap4 targets 
using the stringent .001 p-value 
threshold (p-values range from 
.0011 to .0036).

The Importance of Information Fusion:
Using Only Binding  



The Importance of Information 
Fusion: Using Only Expression

A cluster of amino acid 

synthesis genes



Eleven Significant Activators Found; 
Ten Previously Identified in Literature

Activator of heat shock related genes+0.36Stress responseHsf1

Activator of cell cycle genes+0.37Cell cycleFkh2

Activator, involved in stress response+0.38Stress responseMsn4

Activator of cell cycle genes+0.39Cell cycleSwi6

Activator, regulation of amino acid synthesis+0.40Energy and metabolismAro80

Activator, involved in multi-drug resistance+0.47DetoxificationCad1

Activator of cell cycle genes+0.49Cell cycleFkh1

Previously identified as a repressor+0.50 Carbohydrate transportNrg1

Activator, possibly involved in oxidative stress 
response

+0.53DetoxificationYap1

Activator of CCAAT box containing genes+0.60RespirationHap4

Activator, required for pheromone response+0.64Pheromone responseSte12

CommentsCorrelationModule functionFactor



Validation Ideas

• Literature.
• Curated databases (e.g., GO/MIPS/TRANSFAC).
• Other high throughput data sources.
• “Randomized” versions of data.
• New experiments.



GRAM Network Validation

• Literature:
– Many TF interactions predicted by modules corresponded well to 

literature (but what about ones that didn’t…)
• Curated databases:

– Computed enrichment for genes in modules for MIPS categories 
using the hypergeometric distribution. 

– Modules belong to diverse array of categories corresponding to 
cellular processes such as amino acid biosynthesis, 
carbohydrate and fatty acid metabolism, respiration, ribosome 
biogenesis, stress response, protein synthesis, fermentation, and 
the cell cycle.

• “Randomized” data:
– When compared to results generated using binding data alone, 

there was 3-fold increase in modules significantly enriched in 
MIPS categories.



Predicting Mechanisms of 
Transcription Factors Regulation

Cluster 33 regs: HIR1 YPD | HIR2 YPD | Rsc8  
avg corr: 0.81661 
YBR009C HHF1 histone H 
YBR010W HHT1 histone H 
YDR224C HTB1 histone H2 
YDR225W HTA1 histone H2 
40.10.03  chromosome (44 ORFs) 2.52E-09 44 4
04.05.01.04  transcriptional control (334 ORFs) 9.44E-06 334 4
04.05.01  mRNA synthesis (406 ORFs) 2.07E-05 406 4

Combinatorial regulation
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Ng et al, Genes Dev. 2002

Cluster 9 regs: STB1 YPD | SWI4 YPD  p-value
avg corr: 0.62927 
YCR065W HCM1 HCM1 G1 0.0012
YDR501W YDR501W YDR501W G1 0.00002
YGR109C CLB6 CLB6 G1 0.0013
YGR221C YGR221C YGR221C G1 0.0009
YIL140W SRO4 SRO4 G1 0.008
YIL141W YIL141W YIL141W G1 0.008
YMR179WSPT21 SPT21 G1 0.007
YNL289W PCL1 PCL1 G1 0.000005
YPL256C CLN2 CLN2 G1 0.00007

Binding Predictions 



Connection to Sequence 
Data

What is the 

percentage of 

genes bound by 

factors with 

known motifs 

that contain the 

motif ?



Results:
Rich

Media
Modules



Sub-Network Discovery
• Identify genes involved in the system.

• Identify the factors controlling the system, and the modules 
involved.

• Determine a dynamic model for the activation of the modules by 
the identified factors. 

We extend GRAM and combine it with our continuous 

representation and alignment algorithms to construct a 

dynamic model for a sub-network



p-value: 10-4 p-value: 0.2 p-value: 0.7 p-value: 10-6

Factors = {F1,F2,F6} Genes = {g1,g2,g4,g13,g14,g15,g22,g24}

Sub-
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Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network



Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network

Individual regulators:
ovals, connected to 
their modules

Dashed line: extends 
from module encoding 
a regulator to the 
regulator protein oval

Lee et al Science 2002



Results for the Fkh1/2 
Knockout

WT

Knockout

Bar-Joseph et al PNAS 2003



Blue boxes: gene modules

Assembly of the 
Cell Cycle 
Transcriptional
Regulatory Network

Individual regulators:
ovals, connected to 
their modules

Dashed line: extends 
from module encoding 
a regulator to the 
regulator protein oval
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Physical networks



Data integration

Gene expression

Protein interactions

Protein-DNA binding



Yeast mating pathway

• A graph depicting 
physical interactions and 
functional annotations.



A mechanistic model of gene 
regulation

• Physical data:
- Yeast binding data 
- DIP database  (PPI)

• Functional data:
- Rosetta compendium 
knockout data



Inferring the mechanistic model 
from observed data

Key question: How do we construct the model from known mechanisms 
and constraints from observed data?

• Decompose data into pairwise items.
• Construct potential functions specifying constraints of each item.
• Combine potential functions by multiplication.



Requirements to explain knock-out data

• There is at least one connecting 
path.



Requirements to explain knock-out data

• There is at least one connecting 
path.

• Edge directions along the path are 
consistent with the knock-out effect.



Requirements to explain knock-out data

• There is at least one connecting 
path.
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protein-DNA edge.



Requirements to explain knock-out data

• There is at least one connecting 
path.

• Edge directions along the path are 
consistent with the knock-out effect.

• The last edge on each path is a 
protein-DNA edge.

• The aggregate sign along the path is 
consistent with the knock-out effect.
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Requirements to explain knock-out data

• There is at least one connecting 
path.

• Edge directions along the path are 
consistent with the knock-out effect.

• The last edge on each path is a 
protein-DNA edge.

• The aggregate sign along the path is 
consistent with the knock-out effect.

• Intermediate genes along the path 
either have knock-out effects on or 
were not tested.

-
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Requirements to explain knock-out data

• There is at least one connecting 
path.

• Edge directions along the path are 
consistent with the knock-out effect.

• The last edge on each path is a 
protein-DNA edge.

• The aggregate sign along the path is 
consistent with the knock-out effect.

• Intermediate genes along the path 
either have knock-out effects or 
were not tested.

• The path length is upper bounded.
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Factor graph formalism

• Factor graph is an undirected bipartite graph where edges represent 
dependency

• The joint likelihood is written using a set of potential functions, one 
for each edge in the graph and possibly for potential functions 
representing node probabilities

• The key challenge is to determine the set of potential functions and 
how to encode them



Associations with binding data

• Assume we have p-value  y for the 
event x (binding of f1 to g1).

• How can we use this value in a 
probabilistic setting? 

• Possible solution: use likelihood ratio:

f1

g1
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x – the event of f binding to g

y – observed p-value



Associations with binding data

• Location data: 
• Given a possible protein-DNA  

interaction ei, the potential function 
φei(xei;yei) is related to the direct 
evidence about this interaction: 

• And similarly for protein interaction.
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Determining the confidence in the 
observed data

• In order to determine the probabilistic term in the potential function 
we use an appropriate error model.

• As a crude approximation, p(yei | xei) can be obtained from the 
binding p-value     

• First, set p( measurement | interaction does not exist) = p-value               
• The other side p( measurement | interaction exists) is set to a fixed 

value. 
• The potential term for the protein interaction case is defined 

analogously.



Associations with knock-out 
expression data

• Given knockout expression data, we 
need to determine whether or not 
the knockout of gene i influenced  
gene j

• The interaction effect is associated 
with the observed data o by:

• k can be explained by cascades of 
molecular interactions, i.e., paths in 
the physical model.

]
)0|(

)1|(
[),(

,,,

,,,
,,,, =

=
=

jijik

jijik
jikjiji kop

kop
okφ



Knockout (cont.)

• Explanation conditions can be expressed as a logic clause of 
variables along the paths connecting a knock-out pair:  

- the knock-out interaction effect (χk ) 
- edge presences (Ek),
- edge directions (Dk), and sign (Sk),

- and path selections (Σk).

• The potential term can also incorporates the situations of multiple 
paths and uncertainties of explanation.



Inference

• Potential functions are combined by multiplication.
• Goal: find the optimal configuration of the variables. 
• This is done using a maximum likelihood approach using a variant of 

belief propagation. 
• Using a graph known as a factor graph, the max-product algorithm is 

applied to obtain a MAP configuration.
• If the network is small, we can apply the max-product recursively to 

obtain all MAP configurations.



Datasets

• 46 genes including 2 transcription factors (STE12 and MCM1).
• Binding p-value threshold 0.001 result in 34 protein-DNA edges (Lee 

et al., 2003).
• 30 protein-protein edges (DIP).
• 164 knock-out pairs from 10 experiments (Hughes et al., 2000).
• Maximal path length set to 5.



Results: yeast mating pathway

• 129 knock-out pairs are connected via valid paths.
• 8 MAP configurations.
• 129 knock-out pairs are explained by all MAP models.
• 106 knock-out pairs are explained by non-trivial inference.
• 2 knock-out pairs whose explanatory paths are not constrained by 

other knock-out pairs



Robustness of the model

• Are prediction outcomes 
sensitive to parameter 
settings?

• Robustness tests on location 
and knock-out p-value cutoffs, 
potential values and path 
length



Common 
features for 

all MAP 
models



Variant features



Variant features



Resolving ambiguities in the model

• Resolving ambiguities in the model requires new experiments
• There are many possible experiments (knockout of every gene)
• How can we chose which one to perform?



Active learning

• Assume we want to teach a computer to distinguish between cats and dogs …

Can you give me some outdoor dog and indoor cat pictures?

Sure!



Active Learning for sampling time 
series data

• On the basis of current model, M, the learner
– predicts the answers Ox to various possible queries qx

– computes which query’s answer will be most beneficial in improving model quality 
(or minimizing the loss)

– Perform the experiment, updates model with the answer

)]([min)(min xO
x MLossEqLoss =



Targeting specific network



Rank order experiments



Using the ranked list

• How should we use the list in the previous table?
• Performing all the experiments at once ignores the dependency 

between these experiments
• Its much better to carry them one at a time
• However, that may cause other problems that are less desirable.



Experiments carried out 



Projects

• Poster session: May 8th 1:00p until 2:30p in NSH 1507 
• Each group should be ready to present their poster at that time
• Writeups (6-8 pages, no more than 8) are due at the poster session


