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Modules

e Gene Module

— Set of genes that are co-regulated and co-
expressed.

 Functional Module

— Collection of gene modules with related function.




Genetic RequlAtory Modules

(GRAM)
Genome-wide Genome-wide

DNA-binding data expression data

Input data to the algorithm



GRAM Algorithm Overview

For each regulator combination,
look at all genes bound (using a
strict binding p-value).

Find a core gene expression
profile.

Remove genes far away from
core.

Add genes close to the core (with
relaxed p-value threshold).
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calculate center expression profile
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Final gene module

G =[ab,cdefgl]

as requlated by
transcription factors
F= [TF1, TF2, TF3, TF4]
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The Importance of Information Fusion:

Using

.001 ¢

99 genes bound by Hap
with a p-value < .01
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Binding

Binding p-values form
a continuum — where
do you draw the cut-
off line?

28 genes were selected by the
GRAM algorithm; all are involved in
respiration. Six of these genes
(PET9, ATP16, KGD2, QCRES,
SDH1, and NDI1) would not have
been identified as Hap4 targets
using the stringent .001 p-value
threshold (p-values range from
.0011 to .0036).



The Importance of Information
Fusion: Using Only Expression
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Eleven Significant Activators Found;
Ten Previously ldentified In Literature

Factor | Module function Correlation | Comments

Stel2 | Pheromone response | +0.64 Activator, required for pheromone response

Hap4 | Respiration +0.60 Activator of CCAAT box containing genes

Yapl | Detoxification +0.53 Activator, possibly involved in oxidative stress
response

Nrgl | Carbohydrate transport| +0.50 Previously identified as a repressor

Fkhl | Cell cycle +0.49 Activator of cell cycle genes

Cadl | Detoxification +0.47 Activator, involved in multi-drug resistance

Aro80 | Energy and metabolism +0.40 Activator, regulation of amino acid synthesis

Swi6 | Cell cycle +0.39 Activator of cell cycle genes

Msn4 | Stress response +0.38 Activator, involved in stress response

Fkh2 | Cell cycle +0.37 Activator of cell cycle genes

Hsfl | Stress response +0.36 Activator of heat shock related genes




Validation Ideas

Literature.

Curated databases (e.g., GO/MIPS/TRANSFAC).
Other high throughput data sources.
“Randomized” versions of data.

New experiments.



GRAM Network Validation

Literature:

— Many TF interactions predicted by modules corresponded well to
literature (but what about ones that didn't...)

Curated databases:

— Computed enrichment for genes in modules for MIPS categories
using the hypergeometric distribution.

— Modules belong to diverse array of categories corresponding to
cellular processes such as amino acid biosynthesis,
carbohydrate and fatty acid metabolism, respiration, ribosome
biogenesis, stress response, protein synthesis, fermentation, and
the cell cycle.

“Randomized” data;

— When compared to results generated using binding data alone,
there was 3-fold increase in modules significantly enriched in
MIPS categories.



Predicting Mechanisms of
Transcription Factors Regulation

Binding Predictions

Cluster 9 regs: STB1 YPD | SWI14 YPD

avg corr: 0.62927

YCRO065W HCM1 HCM1 Gl
YDR501W YDR501W YDR501W G1
YGR109C CLB6 CLB6 Gl
YGR221C | YGR221C YGR221C Gl
YIL140W SRO4 SRO4 Gl
YIL141IW YIL141W YIL141W G1
YMR179W SPT21 SPT21 Gl
YNL289W PCL1 PCL1 Gl
YPL256C CLN2 CLN2 Gl

p-value

0.0012
0.00002
0.0013
0.0009
0.008
0.008
0.007
0.000005
0.00007

Combinatorial regulation

Cluster 33 regs: HIR1 YPD | HIR2 YPD | Rsc8
avg corr: 0.81661

YBR009C HHF1 histone H

YBRO10W HHT1 histone H

YDR224C HTB1 histone H2

YDR225W HTA1 histone H2

40.10.03 | chromoso 2.52E-09 44 4

04.05.01.C transcripti 9.44E-06 334 4

04.05.01 | mRNA syI 2.07E-05 406 4
250

[ Rsc8 at HTA1
200~ W TFIIB at HTAL
[ Rsc8 at SOD1

% Binding
(relative to WT)

; ) . swied . .
WT  swidd swi5A swi64d mbpd hirld hir24
mbpA4

Ng et al, Genes Dev. 2002



Connection to Sequence

What is the

percentage of

100

genes bound by

factors with

GRAM algorithm

known motifs
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Sub-Network Discovery

* |dentify genes involved in the system.

 |dentify the factors controlling the system, ahd tmodules
Involved.

e Determine a dynamic model for the activation @& thodules by
the identified factors.

We extend GRAM and combine it with our continuous
representation and alignment algorithms to consauc

dynamic model for a sub-network
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Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules




Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules

Individual requlators:
ovals, connected to
their modules

—— o ——

Dashed line: extends
from module encoding
a regulator to the
regulator protein oval

Lee et al Science 2002




Results for the Fkhl/2
Knockout

1.110223e-16 CWP1

1.443290e-15 CT31

3.437203e-14 OLET

1.630041e-10 EGTZ

J167GZ2e-08 YHR143W

F16482e-08 YMLOSEC

4.4863818-07 CLBZ

OEG419e-07 YMLOTEW

Bar-Joseph et al PNAS 2003
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Assembly of the
Cell Cycle
Transcriptional
Regulatory Network

Blue boxes: gene modules

Individual requlators:
ovals, connected to
their modules !

Dashed line: extends
from module encoding
a regulator to the
regulator protein oval

—— o ——




Physical networks



Data integration

Protein interactions

Gene expression




Yeast mating pathway

* A graph depicting
physical interactions and
functional annotations.
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A mechanistic model of gene
regulation

Physical data:
- Yeast binding data
- DIP database (PPI)
Functional data:
- Rosetta compendium
knockout data

= knock-out

profein-protein
expression

inferactions FUS)

profein-DNA

IleracBons pcy FARIAGAL AGA2



Inferring the mechanistic model
from observed data

Key question: How do we construct the model from known mechanisms
and constraints from observed data?

« Decompose data into pairwise items.
o Construct potential functions specifying constraints of each item.
« Combine potential functions by multiplication.



Requirements to explain knock-out data

 There is at least one connecting
path.

N
e

® «—O
O 4—0O



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are
consistent with the knock-out effect. ®



Requirements to explain knock-out data

There is at least one connecting

path.

Edge directions along the path are

consistent with the knock-out effect.

The last edge on each path is a /\
protein-DNA edge. ?



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are

consistent with the knock-out effect. " \
The last edge on each path is a /
protein-DNA edge.

The aggregate sign along the path is -
consistent with the knock-out effect.

up



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are

consistent with the knock-out effect. " \
The last edge on each path is a /
protein-DNA edge. down

The aggregate sign along the path is -
consistent with the knock-out effect.

Intermediate genes along the path O
either have knock-out effects on or up
were not tested.

O



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are
consistent with the knock-out effect.

The last edge on each path is a
protein-DNA edge.

The aggregate sign along the path is
consistent with the knock-out effect.

Intermediate genes along the path
either have knock-out effects or
were not tested.

The path length is upper bounded.

down

up

links



Factor graph formalism

« Factor graph is an undirected bipartite graph where edges represent
dependency

* The joint likelihood is written using a set of potential functions, one
for each edge in the graph and possibly for potential functions
representing node probabilities

» The key challenge is to determine the set of potential functions and
how to encode them



Assoclations with binding data

Assume we have p-value Yy for the !
event x (binding of f; to g,). ®

How can we use this value in a
probabilistic setting?

Possible solution: use likelihood ratio:

@ <

J1

p(x|y)
p(~ x| y)

X — the event of f binding to g

y — observed p-value



Assoclations with binding data

 Location data:

e Given a possible protein-DNA
interaction e;, the potential function
0.i(Xi1Yey) IS related to the direct
evidence about this interaction:

:[ p(ye| |Xe| :1)]Xe|
P(Ys | X5 =0)

« And similarly for protein interaction.

@ (X3 Vi)



Determining the confidence in the
observed data

In order to determine the probabilistic term in the potential function
we use an appropriate error model.

As a crude approximation, p(Y, | X,;) can be obtained from the
binding p-value

First, set p( measurement | interaction does not exist) = p-value

The other side p( measurement | interaction exists) is set to a fixed
value.

The potential term for the protein interaction case is defined
analogously.



Associations with knock-out
expression data

« Given knockout expression data, we g, g,
need to determine whether or not
the knockout of gene i influenced Cd g, YN Vo
gene | X! f1 '
« The interaction effectis associated 5 s/ NSy

£

with the observed data o by:

p(ok,i,j |klj =1
p(ok,i,j |klj =0)
« Kk can be explained by cascades of

molecular interactions, i.e., paths in
the physical model.

23 24
]

W,j(ki,j’ok,i,j):[



Knockout (cont.)

Explanation conditions can be expressed as a logic clause of
variables along the paths connecting a knock-out pair:

- the knock-out interaction effect (x, )
- edge presences (E,),

- edge directions (D,), and sign (S,),
- and path selections ().

The potential term can also incorporates the situations of multiple
paths and uncertainties of explanation.



Inference

Potential functions are combined by multiplication.

Goal: find the optimal configuration of the variables.

This is done using a maximum likelihood approach using a variant of
belief propagation.

Using a graph known as a factor graph, the max-product algorithm is
applied to obtain a MAP configuration.

If the network is small, we can apply the max-product recursively to
obtain all MAP configurations.



Datasets

46 genes including 2 transcription factors (STE12 and MCM1).

Binding p-value threshold 0.001 result in 34 protein-DNA edges (Lee
et al., 2003).

30 protein-protein edges (DIP).
164 knock-out pairs from 10 experiments (Hughes et al., 2000).
Maximal path length set to 5.



Results: yeast mating pathway

129 knock-out pairs are connected via valid paths.

8 MAP configurations.

129 knock-out pairs are explained by all MAP models.
106 knock-out pairs are explained by non-trivial inference.

2 knock-out pairs whose explanatory paths are not constrained by
other knock-out pairs



Robustness of the model
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Variant features
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Resolving ambiguities in the model

e Resolving ambiguities in the model requires new experiments
 There are many possible experiments (knockout of every gene)
« How can we chose which one to perform?



Active learning

 Assume we want to teach a computer to distinguish between cats and dogs ...

Can you give me some outdoor dog and indoor cat pictures?

Sure!



Active Learning for sampling time
series data

e On the basis of current model, M, the learner
— predicts the answers O, to various possible queries q,

— computes which query’s answer will be most beneficial in improving model quality
(or minimizing the loss)

— Perform the experiment, updates model with the answer

min(Loss(q,)) = min E[Loss(M )]



Targeting specific network




Table 2

Table 2

Top-ranking knock-out experiments proposed for model discrimination

Gene Function Score Downstream genes Rank Model
HHF1 Histone 52.1429 74 1 2
SOKZ2* Regulator for meiosis and PKA pathway 45.0279 64 2 1
CKA1 Protein kinase of cell cycle 45.0075 64 3 5
AZ Mating response 40.9023 58 4 4

YAP6* Stress response regulator 35.1652 50 5 1, 3
NRG1 Regulator of glucose dependent genes 31.6501 45 6 3
FKH1 Regulator of cell cycle 29.1194 41 7 2
FKHZ2 Regulator of cell cycle 26.7131 38 8 7
SLTZ Protein kinase of cell wall integrity pathway 23.4727 31 9 8
MSN4* Regulator of stress response 21.8224 31 10 1
HAP4* Regulator of cellular respiration 6.3310 9 34 1




Using the ranked list

How should we use the list in the previous table?

Performing all the experiments at once ignores the dependency
between these experiments

Its much better to carry them one at a time
However, that may cause other problems that are less desirable.



Experiments carried out
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Projects

« Poster session: May 8™ 1:00p until 2:30p in NSH 1507
« Each group should be ready to present their poster at that time
« Writeups (6-8 pages, no more than 8) are due at the poster session



