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ARTICLE INFO ABSTRACT

Genome-wide Association Study has presented a promising way to understand the association between human
genomes and complex traits. Many simple polymorphic loci have been shown to explain a significant fraction of
phenotypic variability. However, challenges remain in the non-triviality of explaining complex traits associated
with multifactorial genetic loci, especially considering the confounding factors caused by population structure,
family structure, and cryptic relatedness. In this paper, we propose a Squared-LMM (LMM?) model, aiming to
jointly correct population and genetic confounding factors. We offer two strategies of utilizing LMM? for asso-
ciation mapping: 1) It serves as an extension of univariate LMM, which could effectively correct population
structure, but consider each SNP in isolation. 2) It is integrated with the multivariate regression model to dis-
cover association relationship between complex traits and multifactorial genetic loci. We refer to this second
model as sparse Squared-LMM (sLMM?). Further, we extend LMM?/sLMM? by raising the power of our squared
model to the LMM"/sLMM" model. We demonstrate the practical use of our model with synthetic phenotypic
variants generated from genetic loci of Arabidopsis Thaliana. The experiment shows that our method achieves a
more accurate and significant prediction on the association relationship between traits and loci. We also evaluate
our models on collected phenotypes and genotypes with the number of candidate genes that the models could
discover. The results suggest the potential and promising usage of our method in genome-wide association
studies.
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1. Introduction

Genome-wide Association Study (GWAS) has been used to relate a
number of causal variants and trait variables for a long time and many
relations have been revealed, such as the genetic architecture of global
level traits in plants [1] and mice [2], also risks for human diseases, like
type rheumatoid arthritis [3]. However, it is widely recognized to be
challenging for statistical analysis to understand associations because of
the difficulty raised by small individual effects and many-to-many gene-
trait relationships. Further, confounding relatedness between samples
inherently limits the power to unveil weak effects. It is necessary to
address these challenges at the same time, modeling combinatorial
associations while correcting population and genetic confounding fac-
tors, in order to understand the true genetic architecture of complex
traits.

Despite the achievement made so far with simple methods that
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assess the significance of individual loci independently, these in-
dependent testing methods do not reach genome-wide mapping power
due to the belief of multiple variants contributing to phenotype varia-
tion in an additive manner [4]. The challenge of additive effects of
multiple SNPs has been widely addressed with multivariate regression
of all genome-wide SNPs, with a shrinkage prior or stepwise forward
selection [5], Laplace prior [6] and its extension [7], or other compli-
cated modern priors [8-10].

However, the aforementioned methods easily fall into the trap of
another challenge: the population and genetic structure may induce
spurious correlations between genotype and phenotype. To address this
challenge, Principle Component Analysis that extracts the major axes of
population differentiation from genotype data has been explored [11].
Linear mixed model is another tool that provides a more dedicated
control of modeling population structure with its random effect com-
ponent and it has been shown to greatly reduce the impact of
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population structure [12-20].

Then a natural following question is about combining the above
methods and addressing these two challenges simultaneously. As a re-
sult, Segura et al. proposed a related multi-locus mixed model approach
with the stepwise forward selection [21]. Rakitsch et al. proposed a
method that bridges the advantages of linear mixed models together
with Lasso regression [22]. Additional works proposed to extend pre-
vious LMM-Lasso and incorporate more regularizers to further improve
the performance in modeling combinatorial associations [20,23]. These
methods grant us the chance to consider complex genetic effects while
reducing the impact caused by population structure. However, there
might be other cryptic relatedness that cannot be effectively corrected
by current implementation of LMM.

In this paper, we propose a new way of constructing the Kinship
matrix for a better modeling of cryptic relatedness in addition to po-
pulation structure and family structure with the introduction of squared
LMM (LMM?2). We further extend our idea to SLMM2, LMM,, and
SLMM". In the analysis on synthetic data with generated phenotypic
variants and real genetic variants from Arabidopsis Thaliana, we show
that our model can effectively correct confounders and discover the
associated markers.

The contributions of this paper are threefold:

e We introduce an extension of LMM by raising the power of the
kinship matrix, leading to two direct implementations LMM? and
sLMM? dependent on the testing procedure. We further extend these
two models to even higher power.

e Our proposed models can also be seen as a proof of the concept of
the limitation of current realization of kinship matrix as ZZ7.

e Despite the seemingly simple extension, we offer substantial argu-
ments in both statistical view and genetic view for the necessity of
raising the power of kinship matrix. These arguments are further
validated with simulations and real data experiments.

2. Method
2.1. Linear Mixed Model (LMM)

For an LMM, suppose we have m samples, with phenotypes
¥ = (1.)5,--Y,) and genotypes X = (X,%,...x,,) and for each i = 1,2,...,m,
we have x; = (x; 1% 2,...Xis), i.e., each sample has s markers to be tested.
With linear mixed model, we have:

y=XB+Zu+ € @

where B stands for genetic effect, u stands for random effects
u~N (0,05)), Z stands for population structure, and € stands for ob-
servation noise (¢ ~ 02). Z is not always directly observed from data,
but can be conveniently achieved as Z = X, which is a convention that
is widely used in GWAS research (e.g. [14,24]).

Equivalently, Eq. (1) can be formalized as following:

y ~ NXBo;K + o;1) 2)

where K = ZZT. K is also called kinship matrix.
The vanilla LMM assumes u ~ N (O,U;) to be identically and in-
dependently distributed across Z.

2.2. Squared Linear Mixed Model (LMM?)

This i.i.d assumption of u mentioned above might not be general
enough. For example, the assumption is justifiable when Z encodes the
family structure since there are barely inter-family influences that can
confound the phenotypes. However, when Z encodes pedigree in-
formation, there can be correlations of the random effects introduced
via the underlying relationship of family tree. This is especially true
when we use the genome to denote population structure, i.e when
Z =X, in which case, the existence of LD will make the naive
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assumption even more problematic.

To account for this, we extend LMM by relaxing the i.i.d assumption
of u and propose another assumption that u ~ N (O,o'éM), where the
covariance matrix M describes the correlation induced by confounding
factors. Interestingly, Z7Z, as the covariance matrix, is a reasonable
choice for M. Therefore, our proposed extension of Eq. (2) leads to:

y ~ N(XB.ZogMZ" + o} 1)

which is:

Yy~ NXB.0;ZZ"2Z" + o]I)

and this leads to an elegant result that our model can be represented as:
y ~ N(XB.o;K? + o}

which accounts to squaring the kinship matrix of original LMM.
Therefore, we refer to this model as LMMZ2.

Additionally, considering the confounding factors that caused by
cryptic relatedness that cannot be explained with the above-accounted
relationships like population structure, family structure or genetic
correlation, we explore to raise the power of squared LMM further. As
an extension of squared LMM, we propose a LMM" model that could
automatically learn the order n of kinship matrix from data with like-
lihood maximization. Formally, LMM" is as following:

y ~ N(XBo;K" + o;1)

2.2.1. Statistical advantage

In addition to the convenient derivation showed above, another
natural statistical advantage introduced via higher order kinship matrix
is the ability to distinguish random effects from fix effects. Since Z is set
as X in most cases [14,24]. By setting K = ZZ", we will have

y=XB+Zu+e=XB+Xu+e€

This formulation will lead to the identification problem for the method
to differentiate 8 out of u.

With higher order of kinship matrix, the method now models the
data as:

y=XB+XXNiu+e, Ynz2

Therefore, the method naturally avoid the identification problem be-
tween 8 and u.

2.2.2. Higher order kinship matrix

In addition to the elegant mathematical derivation of LMM? and
extensions to LMM", we continue to discuss the intuitive understanding
of higher order LMM.

As a simple example, we consider a kinship matrix that describes the
pedigree information of individuals as showed in Fig. 1(a). Fig. 1(a)
shows the direct relationship collected. Each node stands for one in-
dividual. The connection between each individual means that the above
individual is the parent of the below one. Obviously, kinship matrix
here may miss some information as it does not consider any implicit
connection. A squared kinship matrix could infer second order re-
lationship, as showed in Fig. 1 (b). Now, sibling information and
grandparental information are modeled. Fig. 1 (c) shows a even higher
order kinship matrix, where further related information can be ac-
counted. This example shows the necessity of raising the order of kin-
ship matrix as higher order kinship matrix can reveal implicit in-
formation.

This example leaves us with two questions: 1) Whether it is always
helpful to raise the order of kinship matrix. 2) Whether the order of
kinship matrix is the higher the better.

We proceed to answer these two questions with another example.
Assuming we have 20 individuals from three populations as showed in
Table 1.
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(©)

Fig. 1. Different order of kinship matrix captures the different information.

H. Wang et al.
(a)
Table 1

A simple example that contains three different populations of individuals, ca-
tegories are decided according to their different percentage of genome inherited
from different continents.

Group ID Group 1 Group 2 Group 3

European 0.1 0.4 0.5

American 0.3 0 0.5
African 0.6 0.4 0
Asian 0 0.2 0

As a start, we simply represent the population of each individual as
a scalar, then Z is a 20 X 1 vector, and the kinship matrix can be cal-
culated as ZZT. Fig. 2 shows the kinship matrix under different orders
and we could see that raising the order of kinship matrix does not gain
any improvement.

Then, we directly use the percentage to represent the group in-
formation, therefore, group information is described with a 20 matrix Z
and kinship matrix is ZZ”. Raising the order of kinship matrix can allow
the model to consider different relationships between different groups,
as showed in Fig. 3.

However, when the kinship matrix is converged to a very high
order, the relationship is not very well captured since Fig. 3(c) cannot
distinguish 2nd and 3rd population well. Therefore, raising the order
infinitely high until it converges may not be the best practice.

At this point, we have mathematically and intuitively explained the
advantages of higher order kinship matrix, which supports the idea of
LMM? and LMM". We now proceed to introduce the idea of SLMM? and
sLMM" after we briefly discuss the idea of SLMM.

2.3. Sparse Linear Mixed Model (sLMM)

To also account for multifactorial association mapping, recent
works proposed a sparse Linear Mixed Model called LMM-Lasso

0 0

10

15

0 5 10 15

(2)

[22,20], where they added a Laplacian shrinkage prior over the fixed
effect 8 and as a result, the majority of genetic effects will be zero.

In detail, instead of traditional likelihood function of LMM, sLMM
solves:

S
s
PBY.X K,07.004) < NIXBogK + o71) [ e 2'@'
j=1

where A is the sparsity hyperparameter of the Laplace prior.

2.4. Squared Sparse Linear Mixed Model (sLMM?)

The sparse Squared-LMM (sLMM?) is a simple extension of SLMM,
with a non-trivial belief that such an extension could effectively correct
confounders caused by population structure and genetic structure si-
multaneously, as extensively discussed in Section 2.2.2.

Instead of u ~ N (O,J;K ), our model believes that the random effect
variable u ~ N (O,ngKZ) and the model becomes:

N
A
p(Bly.X.K%0z,0;4) x N(yIXB,0,K? + 0,1) | | e 25!
j=1

2.5. Ordered-N Sparse Linear Mixed Model (sLMM™)

SLMM" extends sSLMM? by relaxing the order of covariance compo-
nent of u. Therefore u ~ N (O,ngK"). Different from sSLMM? where K2
could be calculated beforehand, the challenge of SLMM" lies on how to
reliably estimate n.

2.6. Parameter estimation

We extend the parameter estimation procedure introduced in [20],
where we first correct the confounders with a null model and then apply
either independent hypothesis testing or combinatorial sparse regularized

]

10 10

(b) (c)

Fig. 2. Different order of kinship matrix captures the same information when kinship matrix does not capture the relationship of different groups. (a) First order
kinship matrix. (b) Second order kinship matrix. (c) Kinship matrix when it is converged.
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Fig. 3. Different order of kinship matrix captures the different information when kinship matrix captures relationship of different groups. (a) First order kinship
matrix. (b) Second order kinship matrix. (¢) Kinship matrix when it is converged.

multivariate regression afterwards. The estimation of n is conducted via a
Grid Search algorithm in the first phase of the algorithm when Brent
search is conducted to search for optimal variance parameters.

An important point is that, raising the power of K does not sig-
nificantly increase the computation load because we can utilize the fact
that the estimation procedure requires eigendecomposition of K, and
trivially raise the order of K by K" = US"VT, where K = USVT is the
eigendecomposition.

3. Results

We perform experiments to compare the performance of raising the
power of kinship matrix. More specifically, we compare the performance
among LMM, LMM? and LMM", we also compare the difference between
sLMM, sLMM? and sLMM". By analyzing the results, we reach the con-
clusion that when single association testing method behaves best and
when combinatorial association method will lead to a better result. For
LMM" and sSLMM", we set n € {3,4,5} in application to avoid the situation
when higher order models only behave similar to vanilla case or squared
case for a better understanding of necessity of even higher power.

We do not consider other LMM methods in addition to the vanilla
LMM because the main contribution of our method is raising the power
of the kinship matrix. Other methods, including [17,19,18], can always
raise the corresponding Kinship matrix to achieve a similar perfor-
mance. In other words, the novelty of our paper can also be understood
as introducing a general framework with the argument that raising the
power of kinship matrix can effectively increase the power of con-
founding correction. However, we do not have to exhaust every LMM
implementation to validate this point. Instead, this paper only concerns
with the experiments regarding vanilla LMM, sLMM and their corre-
sponding higher order counterparts to prove the concept of higher
order kinship matrix.

We compare these models with three different experiments. The
first two experiments are performed on semi-empirical synthetic data
sets, out of which, the first experiment is to show that different order of
models can consider different confounding structure and the second
experiment is a set of repeated experiments on a variety of different
configurations for semi-empirical synthetic data sets. These repeated
experiments are to show that higher order models can consistently
perform better than traditional settings as they consider more in-
formation.

The third experiment is based on real data set. Following the stan-
dard in [22], to handle the non-availability problem of gold standard
data set of genotype-phenotype association relationship, we test our
results with candidate genes. If the discovered SNP belongs to a can-
didate gene for the phenotype, this discovery is seen as a true positive
discovery.

36

3.1. Arabidopsis Thaliana

The Arabidopsis Thaliana data set we obtained is a collection of
around 1300 plants, each with around 215k SNPs [25]. The latitude
and longitude for each of these plants are also available. The candidate
genes are collected from [1], we considered eight candidate gene sets,
which correspond to 28 phenotypes.

3.2. Semi-empirical synthetic data set experiment one

First, we show that to raise the order of Kinship matrix can gain us
the benefit of handling complex confounding structures once they exist.

3.2.1. Synthetic data

To show that, we generate two synthetic data sets based on real SNPs.
Without loss of generalizability, we only consider the SNPs of Chromosome
1, which are denoted as X. There are about 50k SNPs considered
(p = 50,000). 100 causal (N = 100) SNPs are randomly sampled and fixed
effect of causal SNP is uniformly sampled from O to 1, namely:

Cy=sample(1,p)

fe {U(O,l) ifi e Cy
"o otherwise

Two synthetic phenotypes are generated as follows:

(a) With Population Structure: Population structure of plants are
collected by clustering their genome sequences. We cluster these
plants into 100 groups, each group (Group k) is assigned with an
effect, namely:

Vg =€

where k is the index of clustered group and e is the effect sizes that
are sampled from i.i.d, i.e. e ~ N(0,1) ,¥ k Then, the phenotype is
generated as follows:

Yy = XB 3

»=Qa-p)@yr + A=ppy) + 1, € 4

where p, stands for observation noise effect, p; stands for the weight
of fixed effect, so 1—p; can be interpreted as heritability.

(b) With Complex Population Structure: In addition to Case (a), we
introduce higher order group structure, which simulates the fact
when the effect sizes in Case (a) are not i.i.d. but governed by the
group structure. Other than clustering X into groups in Case (a), we
clustered XXT into groups so simulate complex population
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Fig. 4. ROC curve to compare LMM? with LMM (top row) and sSLMM? with SLMM (bottom row) on two different synthetic data sets.

structure. Therefore, we have the phenotypes as following:

wo=st )
Y, =B @y + 00y, + BY)) + P € 6)

where, same as Case (a), s* stands for the kth value of a pre-assigned
vector of complex population effects and p, stands for the weight of
complex population effect, and p, + p/ = p; + pji =p+p =1

We generate y,,y, by setting p, = 0.1,p, = 0.6 and p, = 0.7 across the
data generation process.

3.2.2. Experiment results

The results are showed as a comparison of ROC curve. Here, we
truncate the curve to show the differentiating part of curves, as showed
in Fig. 4.

As the figure shows, for Case (a) where there is only a simple popu-
lation structure, traditional LMM behaves better than our proposed higher
order model. However, for Scenario (b), when we are simulating more
complicated population structure which is more similar to the real dataset
than Case (a), our proposed higher order LMM-LMM2 behaves best as the
data is generated with second order kinship matrix in the figures we show.

3.3. Semi-empirical synthetic data set experiment two

The second experiment is an extension of the first one, and it is
aimed to show that under different combinations of parameters
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governing the generation process of data, our proposed higher order
LMM can consistently outperform previous methods.

3.3.1. Data generation

We generate synthetic data sets following the same way of Case (b)
in the previous experiment, under Eq. (6). Default values of parameters
are set in the same way.

To make a fair comparison between these models, we repeat the
data generation process with different parameters. In addition to these
three parameters (p,.p,,p,), we also consider the number of causal SNPs
sampled N (default value N = 100) as a parameter for data generation.
Together with another parameter of the model K (default value
K = 1000), which indicates the number of SNPs our model reports. We
repeat our experiment many times with different combination of these
five parameters.

The candidate values for each of these parameters are showed in
Table 2. Our experiment falls into five parts. In each part, we adjust one

Table 2
Values of variables used for experiments.
Parameter Values

De 0.2 0.4 0.6 0.8 1.0
Py 0.2 0.4 0.6 0.8 1.0
D 0.2 0.4 0.6 0.8 1.0
N 100 500 800 1000 2000
K 20 50 100 500 2000
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Fig. 5. Curves to show the averaged area under ROC under different settings.

of those parameters while other parameters set to the default value. For
each configuration of parameters, we repeat the experiment five times
and report average area under ROC curve. We plot the curve of these
averaged values along the different parameters of the parameter of
interest.

3.3.2. Results

Results are showed in Fig. 5. As the figure shows, for single asso-
ciation mapping, LMM? also shows some unstable behavior when its
performance is compared to LMM, but in most cases (except experiment
set of the parameter p;), LMM? can outperform LMM. The figure also
shows that LMM" usually works better than LMM and LMM? in single
SNP testing cases. For combinatorial association mapping cases, SLMM?>
outperform sLMM in almost all the cases. SLMM" does not show a stable
performance compared to sLMM, although its performance still exceeds
sLMM in the majority of cases.

It is also interesting to compare the differences between combina-
torial association mapping models and single association mapping
models. As the figure shows, combinatorial association mapping models
(SLMM, sLMM? and sLMM") usually outperforms the corresponding
single association mapping models (LMM, LMM? and LMM"), which
indicates the necessity of introducing combinatorial association map-
ping models to overcome the limitation of traditional hypothesis testing
in GWAS tasks.

3.4. Real dataset experiment

After showing the advantage of higher order LMM over synthetic
data sets, we apply our proposed model real data set of A. thaliana
where both genome information and phenotype information are
available. To show the feasibility of our model compared to traditional
LMM, we collect the candidate genes for each phenotype from [1].

Discarding the results that do not show a difference between ori-
ginal LMM and our proposed model (27 phenotypes in total), Table 3
shows the results of 10 sets of candidate genes and 20 phenotypes in
correspondence. For the meaning of these phenotypes, please refer to
[1].

For Kinship matrix, we choose the group information to be the same
as genome sequence, which leads to a kinship matrix of XX7.

Table 3 shows the true positives of the discoveries of each model,
constraining each model to discover the same number of most sig-
nificant associations. It shows that our proposed method, which raises
the kinship matrix to the second order, behaves the best in both single
SNP testing scenario and combinatorial testing scenario.
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Interestingly, the results show that combinatorial testing scenario
behaves better than its counterparts in a single testing scenario, which
probably shows that most of these associations are a result of combi-
natorial effects contributed by a set of genetic markers, instead of one.

It is also noticeable that, for all these results reported, there are only
five cases where LMM/sLMM behaves better than its squared counter-
part. Out of these five cases, four of them are in the candidate gene set
that is related to Flowering time. The reason we conjecture is that,
whether the effect sizes of association should be explained in a more
complicated way may depend on the phenotype of these associations of
interest. Phenotypes regarding flowering time might be better ex-
plained with traditional 1st order LMM, for the reason that flowering
time may depend more on the environment than genetics relationship
and higher order kinship matrix may dilute the geographical informa-
tion genetics captured.

3.4.1. Results comparison

Besides a numerical comparison of the discovered performance
between these methods, here we select some typical examples to
compare the genes each model discovered. The following associations
discussed are verified with the online data base TAIR [26]."

For example, for the phenotype that describes the visual chlorosis in
plants under 22 °C after five weeks of growth (Row 3 in Table 3), all
three single testing methods discover the same two associated two
genes: AT4G24290 and AT1G74710, while for combinatorial testing,
sLMM discovered one more associated gene AT5G44030 and sLMM?>
discovered one more in addition to what SLMM has discovered, namely
AT1G28380. However, on the other hand, SLMM" did not discover any
of those associations, but it discovered AT4G37000.

For the phenotype that describes leaf roll presence 8 weeks post
germination for plants grown at 10°C (Row 4 in Table 3), LMM and
LMM" discovered the association AT1G09530 and LMM? discovered
one more associated gene (AT3G14110) additionally. On the other
hand, combinatorial association methods discovered completely dif-
ferent sets of genes, sSLMM found AT3G56400 and AT3G02570 and
sLMM? discovered AT1G34210 additionally.

For the phenotype that describes the days from removal from stra-
tification (3 days at 4 °C in the dark) until emergence of first cotyledon
at 16 °C (Row 13 in Table 3), single testing methods did not discovered
any associated genes. SLMM discovered two associated genes, namely
AT2G29630 and AT3G54810 and sLMM? discovered two additional

1 https://www.arabidopsis.org/


https://www.arabidopsis.org/

H. Wang et al.

Table 3
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Experiment Results on real data sets, each model is constrained to report the top K most significant associations discovered. Bold numbers are the highest number at

each row.

Single Testing

Combinatorial Testing

Candidate Genes Phenotype LMM LMM? LMM" sLMM SLMM?> SLMM"
Anthocyanin Anthocyanin 16 4 5 2 0 0 1
Chlorosis LY 0 1 1 0 1 0
Chlorosis 22 2 2 2 3 4 1
Leaf-curl-roll Leaf roll 10 1 2 1 2 3 0
Dormancy Secondary Dormancy 0 0 0 0 1 0
Flowering time LD 3 4 3 4 2 3
SD 3 2 0 1 1 6
FT10 4 5 8 7 7 5
FT16 5 5 4 3 1 6
FT22 2 2 2 6 S5 4
FLC 4 5 4 6 5 5
Pseudomonas-R-Genes avrRpt2 0 0 0 1 2 0
Germination Germ 16 0 0 0 2 4 0
Germ 22 1 1 1 0 1 1
Leaf size After Vern Growth 1 2 1 2 2 0
Senescence FT Duration GH 2 2 2 3 2 0
LC Duration GH 1 1 1 0 0 1
LFS GH 1 0 1 1 1 0
RP GH 1 1 1 0 2 0
Silique Silique 16 0 1 0 0 1 0
Sum 35 41 34 41 45 33

associated genes, namely AT5G51760 and AT2G18790.

These examples all validate the performance of our proposed
squared LMM that, by raising the order of kinship matrix, the model can
typically discover more associated genes in addition to what original
LMM can discover. In fact, except the phenotypes that are related to
flower timing and few other cases, squared models are always capable
of discovering associated genes in addition what original models dis-
cover in both single testing case and combinatorial case.

4. Conclusion

In this paper, we proposed an extension of linear mixed model to
consider more complex confounding factor structures and this im-
provement can be applied to both traditional linear mixed model that
tests the association individually and sparse linear mixed model that
test the combinatorial association.

We first made the argument that raising the order of kinship matrix
can gain many advantages of the model including 1) allowing the model
to consider hidden confounding structures 2) distinguish the statistical
representation power for fixed effect variables and kinship matrix when
kinship matrix is calculated as the covariance matrix of fixed effect
variables 3) can be reformulated into another model that considers that
the random effects are not independently, but also following a covar-
iance matrix. Based on these reasonings, we proposed our model LMM?
for single association testing case and sSLMM? for combinatorial asso-
ciation testing case and further extend these models to LMM" and
sLMM" for comparison.

As our extensive experiment on synthetic data showed, our squared
model can outperform its counterparts for correctly discovering the
causal SNPs on both simulations and real data in most cases. However,
for flowering time-related phenotypes in real data, our proposed model
discovered less associated genes than the traditional linear mixed
model.

Since this model is primarily an improvement over previous models
in the performance of confounding correction. In the future, we plan to
proceed to incorporate more powerful regularizers for multivariate
regression to further improve the performance, like the Precision Lasso
[9], which is used to account for linkage disequilibrium of SNPs. To
further improve the modeling performance of associations, we will also
consider the deep neural network approaches [27]. A neural network
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equivalent of vanilla linear mixed model has already been proposed
[28], but more efforts are necessary to incorporate our higher order
linear mixed model. We will also implement our method into the GWAS
tool box GenAMap [29]° for convenient usage of biologists.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttp://dx.doi.org/10.1016/j.ymeth.2018.04.020.
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