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Abstract. Dimensionality reduction is an important first step in the
analysis of single cell RNA-seq (scRNA-seq) data. In addition to en-
abling the visualization of the profiled cells, such representations are
used by many downstream analyses methods ranging from pseudo-time
reconstruction to clustering to alignment of scRNA-seq data from differ-
ent experiments, platforms, and labs. Both supervised and unsupervised
methods have been proposed to reduce the dimension of scRNA-seq.
However, all methods to date are sensitive to batch effects. When batches
correlate with cell types, as is often the case, their impact can lead to
representations that are batch rather than cell type specific. To over-
come this we developed a domain adversarial neural network model for
learning a reduced dimension representation of scRNA-seq data. The ad-
versarial model tries to simultaneously optimize two objectives. The first
is the accuracy of cell type assignment and the second is the inability
to distinguish the batch (domain). We tested the method by using the
resulting representation to align several different datasets. As we show,
by overcoming batch effects our method was able to correctly separate
cell types, improving on several prior methods suggested for this task.
Analysis of the top features used by the network indicates that by taking
the batch impact into account, the reduced representation is much better
able to focus on key genes for each cell type.

Keywords: Dimensionality Reduction - Single-Cell RNA-seq - Batch
Effect Removal - Domain Adversarial Training - Data Integration.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene
expression programs [14,26]. The ability to profile genes at the single-cell level
has revealed novel specific interactions and pathways within cells [41], differences
in the proportions of cell types between samples [16,42], and the identity and
characterization of new cell types [38]. Several biological tissues, systems, and
processes have recently been studied using this technology [16,42,41].

While studies using scRNA-seq provide many insights, they also raise new
computational challenges. One of the major challenges involves the ability to
integrate and compare results from multiple scRNA-seq studies. There are sev-
eral different commercial platforms for performing such experiments, each with
their own biases. Furthermore, similar to other high throughput genomic assays,
scRNA-seq suffers from batch effects which can make cells profiled in one lab
look very different from the same cells profiled at another lab [37, 36]. Moreover,
other types of high throughput transcriptomics profiling, including microscopy-
based techniques, are also generating single cell expression datasets [39, 7]. The
goal of fully utilizing these spatial datasets motivates the development of meth-
ods that can combine them with scRNA-seq when studying specific biological
tissues and processes.

A number of recent methods have attempted to address this challenge by de-
veloping methods for aligning scRNA-seq data from multiple studies of the same
biological system. Many of these methods rely on identifying nearest neighbors
between the different datasets and using them as anchors. Methods that use
this approach include Mutual Nearest Neighbors (MNN) [11] and Seurat [35].
Others including scVI and scAlign first embed all datasets into a common lower
dimensional space. scVI encodes the scRNA-seq data with a deep generative
model conditioning on the batch identifiers [23] while scAlign regularizes the
representation between two datasets by minimizing the random walk probabil-
ity differences between the original and embedding spaces. While these methods
were successful for some datasets, here we show that they are not always able to
correctly match all cell types. A key problem with these methods is the fact that
they are unsupervised and rely on the assumption that cell types profiled by
the different studies overlap. While this works for some datasets, it may fail for
studies in which cells do not fully overlap or for those containing rare cell types.
Unsupervised methods tend to group rare types with the larger types making it
hard to identify them in a joint space.

Recent machine learning work has focused on a related problem termed
“domain generalization” or “domain adaptation”. Methods developed for these
problems attempt to learn representations of diverse data that are invariant to
technical confounders [24,4]. These methods have been used for multiple ap-
plications such as machine translation for domain specific corpus [3] and face
detection [27]. Several of the methods proposed for domain adaptation rely on
the use of adversarial methods [4,9, 20, 40], which has been proved effective to
align latent distributions. In addition to the original task such as classification,
these methods apply a domain classifier upon the learned representations. The
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encoder network is used for both improving accurate classification while at the
same time reducing the impact of the domain (by “fooling” a domain classifier).
This is achieved by learning encoder weights that simultaneously perform gra-
dient descent on the label classification task and gradient ascent on the domain
classification task.

Here we extend these approaches, coupling them with Siamese network learn-
ing [19] for overcoming batch effects in scRNA-seq analysis. We define a “do-
main” in this paper as a standalone dataset profiled at a single lab using a single
platform. We define “label” as the cell type for each cell in the dataset. Con-
sidering the specificity of the cell types in the scRNA-seq datasets, we propose
a conditional pair sampling strategy that constrains input pair selection when
training the adversarial network. We discuss how to formulate a domain adapta-
tion network for scRNA-seq data, how to learn the parameters for the network,
and how to train it using available data.

We tested our method on several datasets ranging in size from 10 to 39 cell
types and from 4 to 155 batches. As we show, for all of the datasets our domain
adversarial method improves on previous methods, in some cases significantly.
Visualization of the learned representation from several different methods helps
highlight the advantages of the domain adversarial framework. As we show, the
framework is able to accurately mitigate the batch effects while maintaining the
grouping of cells from the same type across different batches. Biological analysis
of the resulting model identifies key genes that can correctly distinguish between
cell types across different experiments. Such batch invariant genes are promising
candidates for a cell type specific signature that can be used across different
studies to annotate cells.

2 Methods

2.1 Problem Formulation

To formulate the problem we start with a few notation definitions. We assume
that the single cell RNA-seq data are drawn from the input space X € RP where
each sample (a cell) x has p features corresponding to the gene expression values.
Cells are also associated with the label y € Y = {1,2,..., K} which represents
their cell types. We associate each sample with a specific domain/batch d € D
that represents any standalone dataset profiled at a single lab using a single
platform. Note that we will use domain and batch interchangeably in this paper
for convenience. The data are divided into a training set and a test set that
are drawn from multiple studies. The domains used to collect training data are
not used for the test set and so batch effects can vary between the training
and test data. In practice, each of the domains only contains a small subset of
the cell types. This means that the distribution of cell types is correlated with
the distribution of domains. Thus, the methods that naively learn cell types
based on expression profile [2,17,21] may instead fit domain information and
not generalize well to the unobserved studies.
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Fig. 1: Architecture of scDGN. The network includes three modules: scRNA encoder
fe (blue), label classifier f; (orange) and domain discriminator fg (red). Note that the
red and orange networks use the same encoding as input. Solid lines represent the
forward direction of the neural network while the dashed lines represent the backprop-
agation direction with the corresponding gradient it passes. Gradient Reversal Layers
(GRL) have no effect in forward propagation, but flip the sign of the gradients that flow
through them during backpropagation. This allows the combined network to simulta-
neously optimize label classification and attempt to “fool” the domain discriminator.
Thus, the encoder leads to representations that are invariant to the different domains
while still distinguishing cell types.

2.2 Domain Adversarial Training with Siamese Network

To overcome this problem and remove the domain impact when learning a cell
type representation we propose a neural network framework which includes three
modules as shown in Figure 1: scRNA encoder, label classifier, and domain dis-
criminator. The encoder module f(x;6.) is used to reduce the dimensions of
the data and contains fully connected layers which produce the hidden features,
where 6, represents the parameters in these layers. The label classifier fi(f.;6;)
attempts to predict the label of input x; whereas the goal of the domain discrim-
inator fq(fe;04q) is to determine whether a pair of inputs x; and xg are from the
same domain or not. Past work for classifying scRNA-seq data only attempted
to minimize the loss function for the label classifier £;(fi(fe; 01)) [22,2]. Here, we
extend these methods by adding a regularization term based on the adversarial
loss of the domain discriminator L4(fa(fe;04)) which we will elaborate later.
The overall loss E on a pair of samples x; and x2 is denoted by:

E(0c,01,0q) = Li(fi(fe(x1:0);601)) — Ma(fa(fe(X1:0e);0a), fa(fe(x2;0e);0a)),

where A can control the trade-off between the goals of domain invariance and
higher classification accuracy. For convenience, we use z; and zs to denote
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the hidden representations of x; and xg calculated from f.(x;6,). Inspired by
Siamese networks [19], we implement our domain discriminator by adopting a
contrastive loss [10]:

Lalfaloai ), Jalez; 00)) = U3 D(fale), fa(sa))’
(1= U) 5 (max{0,m — D(fu(aa), falz2)})’,

where U = 1 indicates that two samples are from the same domain d and U = 0
indicates that they are not, D(-) is the euclidean distance, and m is the margin
that indicates the prediction boundary. The domain discriminator parameters,
04, are updated using back propagation to mazimize the total loss E as men-
tioned in the Introduction while the encoder and classifier parameters, 6, and 6;,
are updated to minimize E. To allow all three modules to be updated together
end-to-end, we use a Gradient Reversal Layer (Figure 1) [9,28]. Specifically,
Gradient Reversal Layers (GRL) have no effect in forward propagation, but flip
the sign of the gradients that flow through them during backpropagation. The
following provides the overall optimization problems solved for the network pa-
rameters:

~ o~

(0, 0;) = argmin E(6,, 9176;)
0c,01

(9/:1) = argmaxE(@Ae, b, 04)
04

In other words, the goal of the domain discriminator is to tell if two samples
are drawn from the same or different batches. By optimizing the scRNA encoder
adversarially against the domain discriminator, we attempt to make sure that the
network representation cannot be used to classify based on domain knowledge.
During the training, the maximization and minimization tasks compete with
each other, which is achieved by adjusting the representations to improve the
accuracy of the label classifier and simultaneously fool the domain discriminator.

2.3 Conditional Domain Generalization Strategy

Most prior domain adaption or generalization methods focused on the cases
where the distribution of labels is independent of the domains [24,4]. In con-
trast, as we show in Results, for scRNA-seq experiments different studies tend
to focus on certain cell types [16,41, 42]. Consequently, it is not reasonable to
completely merge the scRNA-seq data from different batches. To be specific,
aligning the scRNA-seq data from two batches with different sets of cell types
would sacrifice its biological significance and prevent the cell classifier from pre-
dicting effectively. To overcome this issue, instead of arbitrarily choosing positive
pairs (samples from the same domain) and negative pairs (samples from different
domains), we constrain the selection as follows: 1) for positive pairs, only the
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Fig.2: Conditional domain generalization strategy: Shapes represent different labels
and colors (or patterns) represent different domains. For negative pairs from different
domains, we only select those samples with the same label. For positive pairs from the
same domain, we only select the samples with different labels.

samples with different labels from the same domain are selected. 2) for negative
pairs, only the samples with the same label from different domains are selected.
Figure 2 provides a visual interpretation of this strategy. Formally, letting y; and
z; represent the i-th sample’s cell-type label and domain label respectively, we
have the following equations to define the value of U for sample pairs:

U 0, 21 # 20 and y1 = Yo
1, 2z =2z and y; # o

This strategy prevents the domain adversarial training from aligning sam-
ples with different labels or separating samples with same labels. For example,
in order to fool the discriminator with a positive pair, the encoder must im-
plicitly increase the distance of two samples with different cell types. Therefore,
combining this strategy with domain adversarial training allows the network to
learn cell type specific, focused representations. We term our model Single Cell
Domain Generalization Network (scDGN).

3 Results

3.1 Experiment Setups

Datasets To test our method and to compare it to previous methods for aligning
and classifying scRNA-seq data, we used several recent datasets. These datasets
contain between 6,000 and 45,000 cells, and all include cells profiled in multiple
experiments by different labs and on different platforms.
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Table 1: Basic statistics for scQuery, Suerat pancreas, and PBMC datasets

‘ scQuery Seurat pancreas Seurat pbmc
‘data cell type domain \data cell type domain \data cell type domain
training [37697 39 99 6321 13 3 25977 10 8
validation|3023 19 26 - - - - - -
test 3770 23 30 638 13 1 2992 10 1

scQuery: We use a subset of the dataset provided by scQuery, which includes
uniformly processed data from hundreds of studies [2]'. The dataset we use
contains 44,490 samples from 155 different experiments. scQuery assigns cells to
39 types spanning diverse categories ranging from immune cells to neurons to
organ specific cells. We use 99 of the 155 batches for training, 26 for validation,
and 30 for testing. We provide a list of the studies used for each set in the
Appendix A.1. Statistics for the different datasets are shown in Table 1. RPKM
normalization is applied to the 20,499 genes in each sample. Note that while
there are 39 cell-types in the training set, only 19 and 23 of them are included
in the validation and test set. This mimics the application of the methods to
future studies that may not profile all types of cells.

PBMC' : The Peripheral Blood Mononuclear Cells (PBMC) dataset contains
28,969 cells assigned to 10 blood cell types. The data are profiled in 9 batches
(from 8 different sequencing technologies) [5]. We use the data from the 10zChromi-
umv2A platform as test data and the rest as training data. Following the provided
tutorial [1], we use the top 3000 variable genes for the analysis.

Seurat pancreas: The Seurat pancreas dataset is designed for evaluating single
cell alignment algorithms and contains 6321 scRNA-seq samples of human pan-
creatic islet cell produced by four studies. We use the smallest study for the test
data and the other three for training as shown in Table 1. Thirteen canonical
labels of the pancreatic islet cell are assigned to cells in each study. Similar to
the Seurat PBMC dataset, we only used the 3000 most variable genes. To fur-
ther simulate the correlation between cell types and domains for this dataset
we randomly remove the data for 6 of the 13 cell types for each of the train-
ing domains. As a result, we construct 6 synthetic datasets based this strategy
to evaluate the alignment performance of different methods under a high label-
domain correlation setting. The specific cell type information of each dataset is
listed Appendix A.3.

Model Configurations We used the network of Lin et al [22] as the compo-
nents for the encoder and the label classifier in our model. The encoder contains
two hidden layers with 1136 and 100 units. The label classifier is directly con-
nected to the 100 unit layer and makes predictions based on these values. The

! https://scquery.cs.cmu.edu/processed_data/
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domain discriminator contains an additional hidden layer with 64 units and is
also connected to the 100 unit layer of the encoder (Figure 1). For each layer,
tanh() is used as the non-linear activation function. We test several other possible
configurations but did not observe improvement in performance. As is commonly
done, we use a validation set to tune the hyperparameters for learning including
learning rates, decay, momentum, and the adversarial weight and margin pa-
rameters A and m. Generally, our analysis indicates that for larger datasets a
lower weight A and larger margin m for the adversarial training is preferred and
vice versa. More details about the hyperparameters and training are provided in
Appendix A.2.

Baselines We compared scDGN to several prior methods for classifying and
aligning scRNA-seq data. These included the neural network (NN) model of
Lin et al [22] which is developed for classifying scRNA-seq data, CaSTLe [21]
which performs cell type classification based on transfer learning, and several
state-of-the-art alignment methods. For alignment, we compared to MNN [11]
which utilizes mutual nearest neighbors to align data from different batches,
scVI [23] which trains a deep generative model on the scRNA-seq data and
uses an explicit batch identifier to retain conditional independence property
of the representation, and Seurat [35] which first identifies the anchors among
different batches and then projects different datasets using a correction vector
based on the order defined by hierarchical clustering with pairwise distances.
Our comparisons include both visual projection of the learned alignment (Figure
4 and 5) and quantitative analysis of the accuracy of the predicted test cell
types (Table 2). For the latter, to enable comparisons of the supervised and
unsupervised methods, we used the resulting aligned data from the unsupervised
methods to train a neural network that has the same configuration as Lin et
al [22]. For scVI, which results in a much lower dimensional representation,
we used a smaller input vector and a smaller hidden layer. Note that these
alignment methods actually use the scRNA-seq test data to determine the final
dimensionality reduction function while our method does not utilize the test
data for any model decision or parameter learning. To effectively apply Seurat
to scQuery, we remove the batches which have < 100 samples. Also, for those
datasets that the assumption of overlapped cell types is not guaranteed such
as scQuery, we find that the performance of MNN highly depends on the order
of alignment. Therefore, for MNN on the scQuery dataset, we use 10 random
permutations of batch orders and report the average accuracy.

3.2 Overall Performance

As mentioned above, we use the validation set to select the best model when using
the scQuery dataset. For the smaller datasets, we use the model obtained after
250 epochs (all models converged after this number of epochs). Test accuracy
for the different methods is presented in Table 2. We show both mean and
standard deviation of the accuracy for 10 randomly initialized experiments. We
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Table 2: Overall performances of different methods. MI represents the mutual infor-
mation between batch and cell type in the corresponding dataset. The highest test
accuracy for each dataset is bolded.

Experiments| MI |[NN[22]|CaSTLe [21]|MNN [11]|scVI [23]|Seurat [35]|scDGN

scQuery [3.025| 0.255 0.156 0.200 0.257 0.144 0.286
PBMC |0.112| 0.861 0.865 0.859 0.808 0.830 0.868
Pancreas 1 |0.902| 0.720 0.705 0.591 0.855 0.812 0.856
Pancreas 2 [0.733] 0.891 0.764 0.764 0.852 0.825 0.918
Pancreas 3 [0.931| 0.545 0.722 0.722 0.651 0.751 0.663
Pancreas 4 |0.458| 0.927 0.914 0.914 0.925 0.881 0.925
Pancreas 5 [0.849| 0.928 0.882 0.932 0.895 0.865 0.923
Pancreas 6 [0.670| 0.944 0.917 0.946 0.893 0.907 0.950
Average - 0.826 0.817 0.842 0.845 0.840 0.872

also report the performances on different cell types in Appendix B. In addition,
Table 2 presents the Mutual Information (MI) between labels and domains which
corresponds to the difficulty of the dataset. A larger MI indicates that models
that do not account for the domain are likely to fit the domain information rather
than the cell type. For the scQuery dataset, we find the accuracy is low for all
methods indicating that this dataset is relatively difficult. This is corroborated
by the large MI value. For such data we see a clear advantage for the scDGN:
scDGN improves by over 10% over all other methods (p = 5.069 x 10~5 based
on Student’s t-test when compared to the NN baseline which is tied for second
best). The improvements over other single cell alignment methods are even more
significant. scDGN also achieves the best performance on the second largest
dataset, the PBMC dataset. However, given the very low MI for this dataset the
performance of the other methods, including the baseline NN, is almost as good
as the performance of scDGN. The third dataset we test on is the Seurat pancreas
dataset. This is the smallest dataset and so it has the least number of training
samples. Still, of the 6 settings we tested (which differed in the subset of cells
that were excluded from training), we find that scDGN is the top performer in 4
of them, comparable to the top performer for another 1 and in only one setting
(Pancreas 3, with the highest MI) is significantly outperformed by Seurat. Note
that even for the Pancreas 3 data the domain adversarial training helps: using
this the scDGN is able to improve by more than 20% over the baseline NN used
for the label classifier.

3.3 Visualization of the Representation Learned by Alignment and
Classification Methods

To further explore the effectiveness of the batch removal provided by our pro-
posed domain adversarial training with conditional domain generalization strat-
egy, we visualize the 100-dimensional hidden representations learned by NN and
scDGN: Figure 3 presents both PCA and t-SNE plots for several different cell
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Fig. 3: Visualization of learned representations for NN and scDGN: using PCA and
t-SNE Rows: The three datasets we tested the method on. Columns: Methods and cell
types. For each row, data from different batches are distinguished using different colors.
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Fig. 4: PCA visualizations of the representations learned by different models on the full
Pancreas2 dataset. Colors for different cell types and domains are shown in the legend
at the top.

types across the three datasets. Points are colored using their batch IDs in order
to evaluate batch effects. As can be seen, using scDGN we obtain results that
are much better at mixing cells from the different batches when compared to
the baseline NN model. The impact is larger for the pancreas datasets which
have larger MI compared to the PBMC dataset, which helps explain the large
increase in performance for these two datasets.
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Fig.5: PCA visualizations of the representations of certain cell types and batches by
different models for the scQuery dataset. Top two rows: Cell types. Colors represent
different batches. HSC = hematopoietic stem cell. Bottom two rows: Batches. Colors
represent different cell types.

We next extended this comparison and visualized the learned (aligned) rep-
resentations for all methods using data from both the Pancreas2 and scQuery
datasets (Figures 4 and 5). For the Pancreas2 dataset, we visualize the entire
dataset. For scQuery, given the large number of cell types and domains, we
present PCA visualization of a subset of cell types and domains. As can be seen,
in addition to scDGN, Seurat is also able to successfully mix the data from dif-
ferent batches. However, as the results in Table 2 indicate this may come at the
expense of not correctly separating cell types. MNN and scVI are not always
effective at removing batch effects for the cell types. In contrast, scDGN is able
to do both domain mixing and cell type assignment, leading to its better perfor-
mance overall. For example, for the acinar and alpha cell types in the pancreas
dataset (Figure 4), only scDGN | MNN, and Seurat are able to align the data
from different domains. However, MNN and Seurat over-correct the representa-
tion by aligning different cell types from different domains, mixing acinar and
gamma cells. Additional visualizations for other cell types and domains can be
found in Appendix C, where the same advantages of scDGN over other methods
can be consistently observed.

3.4 Analysis of Key Genes

While NNs are often treated as black boxes, recent methods provide useful di-
rections for making them more interpretable [30]. Here we use activation maxi-
mization, which relies on the gradient of the correct category logit with respect
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Table 3: GO analysis results for top 100 scQuery liver genes in the NN method.
term_name ‘term,id Padj ‘ —logg Padj
symbiotic process G0:0044403 |1.16E-08 7.935246875
interspecies interaction between organisms |G0:0044419 |3.14E-08 7.503093471
viral process G0:0016032 |3.69E-08 7.433145019
immune response GO0O:0006955 |2.5491E-06 |5.593613105
multi-organism process GO:0051704 |1.40837E-05 |4.851282542
immune effector process G0:0002252 [4.53533E-05 |4.34339136
response to stress GO0:0006950 |5.56335E-05 |4.254663785
defense response GO:0006952 |6.18759E-05 {4.208478308

Table 4: GO analysis results for top 100 scQuery liver genes in the scDGN method.

term_name ‘term,id Padj ‘ —logg Padj
chylomicron remodeling G0:0034371 |3.04042E-05 |4.517066786
positive reg. of cholesterol esterification G0:0010873 |3.04042E-05 |4.517066786
negative reg. of cellular component organi-|G0O:0051129 |3.94437E-05 |4.404022507
zation

protein-lipid complex remodeling GO0:0034368 |7.34551E-05 |4.133978335
plasma lipoprotein particle remodeling G0:0034369 |7.34551E-05 {4.133978335
protein-containing complex remodeling GO0:0034367 |8.8522E-05 |4.052948555

to the input vector to select the key inputs for each of the models [8,32,33].
Formally, given a particular cell type ¢ and a trained neural network ¢, activa-
tion maximization looks for important input genes z’ by solving the following
optimization problem:

2 = mgx(gb(x) e;),

where e; is the natural basis vector associated with the i-th category. This can
be solved through backpropagation, where the gradient of ¢(z) with respect
to x, which can be viewed as the weight of the first-order Taylor expansion of
the neural network, are calculated to iteratively update the input. We follow a
previous method [32] and initialize the optimization with a zero vector. Given
this setting, we ran the optimization for 100 iterations with learning rate set to 1.
The important genes are selected as those inputs leading to the largest changes
compared with the initialization values. To compare scDGN and NN for certain
cell types, we select the top k genes with the largest changes and perform GO
analysis on these selected genes.

As an example, consider the genes identified for the liver cell type using the
scQuery dataset. We select the top 100 genes for this cell type from NN and
scDGN and present the enriched GO categories on Biological Process with ad-
justed p-value < 1.0 x 10~ in Tables 3 and 4. We also list these genes by order
in Appendix D.1. As can be seen, while a number of significant GO categories
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are identified for the top 100 NN genes, these are generic and not liver specific.
They include general terms related to interactions between organs and immune
response categories that are active in multiple organs and cell types. In sharp con-
trast, the categories identified for scDGN are much more specific and highlight
key pathways that are mainly utilized in the liver. For example, the top category
for the scDGN genes, “chylomicron remodeling”, refers to the main physiological
purpose of chlyomicron remnants: to facilitate the return of bile lipoproteins and
cholesterol to the liver [29]. Specifically, in this pathway chylomicrons (lipopro-
teins) are broken down (remodeled via hydrolysis) and converted to a form called
“chlyomicron remnant” that is taken up by specific receptors that exist primarily
on the surface of liver cells [12]. The second term, “pos. regulation of cholesterol
esterification” refers to cholesterol esterification, a critical step in reverse choles-
terol transport, the process in which excess cholesterol is sent to the liver to be
removed from the body [15, 25]. Furthermore, Cholesteryl Ester Transfer Protein
(CETP) is a key enzyme involved in this process and is highly expressed in liver
cells, and variants of CETP are associated with increased risk of atherosclerosis
[31, 15]. The fifth most significant term, “lipoprotein remodeling” is part of the
two aforementioned processes. The top 100 genes identified by the scDGN in-
clude apoal (main protein component of High-Density Lipoprotein cholesterol),
apoa2, and apocl, all of which encode lipoproteins that are primarily expressed
in the liver [6,18]. These genes were not included in the top 100 genes by the
NN. We present the GO analysis results comparison for several additional cell
types in Appendix D.

4 Discussion

Single cell computational methods that do not account for batch effects are
likely to fit the noise introduced by the batches. Several recent methods have
been proposed for aligning scRNA-seq from multiple studies of the same tissues
or processes. Most of these methods are unsupervised and assume that the cell
types among different batches overlap. However, we show that these methods
would fail on the studies in which cell types do not fully overlap, which is often
the case when dealing with multiple datasets. To overcome this problem we
extend a supervised scRNA-seq cell type assignment method based on NN and
regularize its prediction to be invariant to batch effects.

Our method is based on the ideas of domain adversarial training. In such
training, two competing tasks are used to optimize the representation of scRNA-
seq data. The first focuses on the traditional goal of cell type identification while
the second attempts to construct representations that are not affected by specific
batch or experimental artifacts. This is accomplished by jointly minimizing a loss
function that takes into account both goals, accounting for the weight of each of
the goals using a gradient reversal layer. We also proposed a conditional strategy
to avoid over-correction. We presented efficient learning methods for this setting
and tested it on three large scale scRNA-seq datasets containing experiments
from several different platforms for partially overlapping cell types.
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As we show, our scDGN method is able to correctly identify cell types in the
test (unobserved) datasets. For the largest dataset we tested on which contained
close to 40 different cell types, scDGN significantly outperformed all prior meth-
ods. It also ranked first for the 2nd largest dataset and for all but 1 of the 6 tests
on the third dataset. Importantly, it always outperformed the supervised learning
based method indicating that batch effects should be addressed when designing
such methods for cell type assignments. In addition to accurately assigning cell
types, further analysis of significant genes indicates that by overcoming batch
effects scDGN is better able to focus on relevant sets of genes for various cell
types when compared to prior supervised methods, explaining its improvement
in accuracy.

While scDGN performed best on the data we analyzed, there are a number
of possible issues with this approach. First, it learns a large number of parame-
ters which require large input datasets. However, as we showed, scDGN is able
to perform well even for datasets with a few thousand cells which matches cur-
rent sizes of scRNA-seq datasets. Second, scDGN is based on NNs which are
often seen as a black box, making it hard to interpret the resulting model and
its biological relevance. Recent work provides a number of directions that can
be used to overcome this issue. As we showed, using activation maximization
we were able to identify several relevant cell type specific genes in the learned
network. Future work would include using additional NN interpretation meth-
ods, including LIME [30] or ROAR and KAR [13], to further identify the set of
genes that play the largest role in the decisions the network makes. Third, as
shown in Figure C.13, scDGN sometimes does not mix up the representations
from different batches for all cell types. Considering the visualization results for
NN in Figure C.18 and its competitive performance in Table 2 together, it may
indicate that it is not always necessary to remove batch effects for the model
to achieve high test accuracy. Therefore, it is worthwhile to further study when
the alignment is imperative. Finally, unlike prior scRNA-seq alignment methods
scDGN is supervised. While this is an advantage when it comes to accuracy, as
we have shown, it may be a problem for the new data. We believe that as more
scRNA-seq and other high throughput single cell data accumulate, we would have
labeled data for most cell types which would enable training an scDGN for even
more cell types. As we have shown with the scQuery dataset, for which scDGN
significantly outperformed all other methods, when such data exists scDGN is
able to correctly align experiments and platforms not seen in the training set.

scDGN is implemented in Python with the PyTorch API [34] and users can
obtain the code and sampled data from https://github.com/SongweiGe/scDGN.
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A  Experiment Details

A.1 scQuery Dataset

The studies from which the data are collected for our scQuery dataset are shown
as below:

Training Set: ERP017366, ERP021445, ERP022096, ERP022251, ERP022289,
ERP022298, ERP022654, GSE101487, GSE101984, GSE102159, GSE102332, GSE102346,
GSE102455, GSE102456, GSE103268, GSE103892, GSE104156, GSE104396, GSE105054,
GSE106447, GSE106472, GSE106663, GSE107115, GSE107122, GSE108097, GSE109774,
GSE109796, GSE112033, GSE115070, GSE22182, GSE29087, GSE33979, GSE38198,
GSE42268, GSE42704, GSE42706, GSE45719, GSE52564, GSE57403, GSE57609,
GSE59114, GSE60066, GSE61346, GSE61844, GSE62952, GSE64959, GSE64960,
GSE65160, GSE66343, GSE66390, GSE66582, GSE68981, GSE69761, GSE69970,
GSE70713, GSET1982, GSET72852, GSET72854, GSE72855, GSE72856, GSET75454,
GSET75659, GSE75804, GSE76381, GSE77113, GSE78140, GSE78471, GSE78521,
GSET79306, GSET79374, GSE79380, GSE79578, GSE79812, GSE80155, GSE80168,
GSES80280, GSE80483, GSE81275, GSE84498, GSE87375, GSE89468, GSE90697,
GSE90822, GSE90824, GSE90860, GSE92707, GSE93524, GSE94333, GSE94389,
GSE94579, GSE98048, GSE98664, GSE98816, GSE98969, GSE98971, GSE99235,
GSE99701, GSE99786, GSE99866.

Validation Set: ERP013319, ERP022703, GSE100120, GSE102163, GSE103267,
GSE107053, GSE107527, GSE112642, GSE113043, GSE44183, GSE57393, GSE59127,
GSE65924, GSE68770, GSE71585, GSET1794, GSE71802, GSE74534, GSE78401,
GSE78510, GSET9108, GSE85234, GSE85627, GSE93421, GSE94388, GSE96981.

Test Set: ERP022293, GSE102827, GSE106471, GSE107740, GSE107909,
GSE108291, GSE108478, GSE32190, GSE39522, GSE39523, GSE57249, GSE57391,
GSE59129, GSE60749, GSE65525, GSE65970, GSE67120, GSE68769, GSET5790,
GSE75901, GSET7705, GSE78045, GSE82174, GSE84324, GSE86479, GSE87631,
GSE89900, GSE90047, GSE96986, GSE99058.

A.2 Training Details

For the scQuery, we find that the optimal value of A is 0.02 and m = 17. For
other datasets we use m = 1 except for Pancreas 3 to which we apply m = 3. For
Pancreas 3 we use A = 0.1 and Pancreas 1 and 2 we use A = 0.2. For all other
datasets we use A = 1. The models are implemented in PyTorch and trained on
a machine with GeForce GTX 980 Ti and 32 GB memory. As for the ScQuery
dataset, it takes around 9 and 19 seconds to train NN and scDGN for each epoch
respectively.
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A.3 Seurat Pancreas Datasets
The cell type compositions in our pancreas datasets are shown as below:
CelSeq CelSeq2 SMART-Seq2 Fluidigm
Pancreas 1|gamma, ductal,|gamma, ductal,|macrophage, ac-|All
mast, endothe-|mast, epsilon, alpha,|tivated_stellate,
lial, beta, qui-|delta, acinar schwann, epsilon,
escent_stellate, alpha, delta, acinar
macrophage
Pancreas 2|macrophage, ac-|gamma, ductal,|gamma, ductal,|All
tivated_stellate, mast, endothe-|mast, epsilon, alpha,
schwann, epsilon, |lial, beta, qui-|delta, acinar
alpha, delta, acinar |escent_stellate,
macrophage
Pancreas 3|gamma, ductal,|macrophage, ac-|gamma, ductal,|All
mast, epsilon, alpha,|tivated_stellate, mast, endothe-
delta, acinar schwann, epsilon,|lial, beta, qui-
alpha, delta, acinar |escent_stellate,
macrophage
Pancreas 4|gamma, ductal,|gamma, ductal,|macrophage, ac-|All
mast, epsilon, alpha,|mast, endothe-|tivated_stellate,
delta, acinar lial, beta, qui-|schwann, epsilon,
escent_stellate, alpha, delta, acinar
macrophage
Pancreas 5|macrophage, ac-|gamma, ductal,|gamma, ductal,|All
tivated_stellate, mast, epsilon, alpha,|mast, endothe-
schwann, epsilon,|delta, acinar lial, beta, qui-
alpha, delta, acinar escent_stellate,
macrophage
Pancreas 6|gamma, ductal,|macrophage, ac-|gamma, ductal,|All
mast, endothe- [tivated _stellate, mast, epsilon, alpha,
lial, beta, qui-|schwann, epsilon,|delta, acinar

escent_stellate,
macrophage

alpha, delta, acinar
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B Per Cell-type Performance

Fig.B.1: Test Accuracy of each model on different cell types from scquery dataset.
The darker color represents the better performance. Note that the cell types that are
not contained in the test dataset are not shown in this Table. The value is calculated
by 10 experiments with different initializations for NN-based model to alleviate the
randomness. The average is weighted by the number of the test samples. Note that
scDGN performs the best on average.

# train # test Cell Type NN CaSTLe  MNN scVI Seurat  scDGN
946 91 hematopoietic stem cell 0.2516 0.736264 0.042879 0.3275 0 0. 3593
14 401 type B pancreatic cell 0.08 0.014963 0 0 / 0. 0688
128 11 B cell 0 0 0.5 0 0
106 10 blastoderm cell 0089 0.45 0 0. 2275 0 0.715
956 50 neuron 0.514 0 0.076078 0. 059 0 0. 534
525 45 hematopoietic cell 0. 0289 0 0.016993 0. 0056 0 0

3 516 embryonic cell 0 0 0 0 / 0
3202 1105 embryonic stem cell 0.3707 0.245249 0. 143479 0.1867 0.3705 0.4396
1 49 mesenchymal cell 0 0 0 0 / 0
3598 11 kidney cell 0. 1364 0 0 0.5 0 0.2182
13 423 testis 0 0 0 0 / 0

6 6 tissue 0 0 0 0 / 0
152 6 epithelium 0 0 0 0 0 0
542 40 embryo 0.19 0 0. 139216 0.3125 0 0. 305
6531 251 brain | 0.8705  0.7290840.906588 " 0.9442" 0.1608 | 0.7988
287 13 pancreas 0. 0231 0 0 0 0 0. 0308
1825 14 cortex 0. 1643 0 0 0.1 0 0.0714
882 8 midbrain 0 0 0 0 0 0
1719 145 lung [RONSTN . 089655 [0N053888] 0.1145  0.0295

256 2 heart left ventricle 0 0 0 0. 05 0 0
2876 8 spleen 0. 0875 0.25 0 0. 0812 0 0. 025
1676 529 liver 0.1414 0.035917 0.368917 0.1167 0.0877 0. 1989
2888 6 thymus 0 0 0. 1333 0 0. 4333
29132 3770 Average 0. 255 0. 156 0.2 0. 257 0. 144 0. 286

Fig. B.2: Test Accuracy of each model on different cell types from PBMC dataset.

# train # test Cell Type
4562 288 B

4347 602 CD14+monocyte
692 102 CD16+monocyte
6749 550 CD4+T

7518 1174 CytotoxicT

CaSTLe  MNN scVI Seurat  scDGN

0. 745098
0.8911 0.883636 0.8975
0.7886 0.818569 0.7797

0.8833  0.9036
0.7381  0.794

356 55 Dendritic 0. 618182

186 29 Megakaryocyte

1399 166  Naturalkiller 0.674699 0.6771  0.609  0.5982  0.6723
134 26 Plasmacytoiddendritic 0.8076920.9615" 0.8462 _ 0.9154

0. 861 0. 865 0. 859 0. 808 0.83 0. 868

25943 2992 Average
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Fig. B.3: Test Accuracy of each model on different cell types from pancreasl dataset.

# train # test Cell Type |NN CaSTLe  MNN scVI Seurat  scDGN |
7 1 gamma 0 0
771 36 ductal 0. 833333

8 3 mast 0 b 0

18 18 endothelial 0.444444 0.4 0. 2778
191 239 beta 0. 330544 0.8586  0.9042
161 258 quiescent_stellate 0. 794574 0.8484 0.8279 0.8678
5 1 macrophage 0 0.3
274 21 activated stellate 0.8524 0.8381

4 5 schwann 0 0.02 0. 36 0 0
145 16 epsilon 0.5625 [N 0. 6562

330 25 alpha 0. 64 0. 896 0. 384 0.16 0. 864
22 1 delta 0.9 0.3
42 14 acinar 0.428571 0.4929  0.8643 0.65 0. 4571
1978 638 Average | 0.72 0.591 0. 785 0. 855 0.812 0. 856

Fig. B.4: Test Accuracy of each model on different cell types from pancreas2 dataset.

# train # test Cell Type [NN CaSTLe  MNN scVl Seurat _scDGN__|
330 25 gamma 0. 56 0. 82 0.716 0. 724 0. 794
462 21 ductal

323 18 mast 0. 833333

21 14 endothelial 0. 428571

6 3 beta 0

15 1 quiescent_stellate

5 1 macrophage

1 1 activated stellate

327 36 schwann 0. 805556 0. 8556

3 5 epsilon 0 0.18 0.34

1199 239 alpha 0.648536 0.8833  0.777

74 16 delta 0. 625

469 258 acinar 0. 910853

3235 638 Average 0.891 0.764 0.899

Fig. B.5: Test Accuracy of each model on different cell types from pancreas3 dataset.

# train # test Cell Type [N CaSTLe _ MNN scVl Seurat __scDON__|
7 1 gamma 0 0 0
771 36 ductal

8 3 mast 0.1333 0 0.0667 0.3333 0 0. 0667
18 18 endothelial o 00777758 0© 0.2722  0.2389 0

191 239 beta 0. 4895 - 0.5515 0.6837  0.7042
161 258 quiescent stellate | 0.4814 0.5574 0.3938 | 0.8605 0.5806
5 1 macrophage 0 0 0 0 0
274 21 activated stellate

4 5 schwann

145 16 epsilon

330 25 alpha 0. 556

22 1 delta 0

42 14 acinar 0.5857 0.285714 0.5429  0.7643  0.4429  0.5429
1978 638 Average [ 0.545 0.722  0.564 _ 0.651 _ 0.751 _ 0.663 |
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Fig. B.6: Test Accuracy of each model on different cell types from pancreas4 dataset.

# train # test Cell Type NN CaSTLe  MNN scVl Seurat __scDGN__|
253 25 gamma 0. 64 0. 48 0. 636 0.616 0. 692 0. 664
502 21 ductal

128 18 mast 0.6333 0.666667 0.6333

5 14 endothelial 0.0643 0.214286 0.0643

1 3 beta 0 0 0

1 1 quiescent_stellate 0 0

9 1 macrophage

6 1 activated stellate

444 36 schwann

6 5 epsilon

1851 239 alpha

145 16 delta

753 258 acinar

4104 638 Average

Fig. B.7: Test Accuracy of each model on different cell types from pancreasb dataset.

# train # test Cell Type N CaSTLe  MNN scVl Seurat _ scDGN
18 1 gamma 0 0.2
702 36 ductal 0.9222 0.888889 0.9278 0.9083  0.9194
13 3 mast 0. 2333 0 0.2 0.6667 0.0333
213 18 endothelial 0.9389 0.777778 I8 . 95 0. 95

1008 239 beta

308 258 quiescent_stellate

9 1 macrophage

228 21 activated stellate

1 5 schwann

109 16 epsilon 0.9187 0.3125

253 25 alpha 0. 352 0. 04 0. 46 0. 604 0. 368 0. 468
16 1 delta 0.5 0.7 [ o 0.7
26 14 acinar 0.3429 0.285714 0.3571 0.5429 0.3643 0.3857
2904 638 Average 0.928 0. 882 0.932 0. 895 0. 865 0.923

Fig. B.8: Test Accuracy of each model on different cell types from pancreas6 dataset.

# train # test Cell Type |NN CaSTLe  MNN scVI Seurat  scDGN |
330 25 gamma 0. 768 0. 68 0.772 0. 74 0.84 0. 824
462 21 ductal

323 18 mast 0. 833333

21 14 endothelial 0.3643 0.142857 0.3857 0.5286 0.1214 0.3857
6 3 beta 0 0. 333333 0 0. 0333
15 1 quiescent_stellate

5 1 macrophage 0 0 0.1

1 1 activated stellate 0 0 0

327 36 schwann 0. 8944 0.75 0.9028 0.8889 0.5083

3 5 epsilon 0. 06 0 0. 06 0. 36 0.38

1199 239 alpha

74 16 delta

469 258 acinar 0. 8678

3235 638 Average
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C Representation Visualization

C.1 scQuery

cortex
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lung
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NN MNN scVI scDGN

Fig. C.9: PCA visualization of the representations learned by different models on sc-
Query dataset for certain cell types. The colors are used to distinguish the batches.
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Fig. C.10: PCA visualization of the representations learned by different models on sc-
Query dataset for certain batches. The colors are used to distinguish the cell types.
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C.2 Full Pancreas Datasets
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(A) Pancreasl dataset.
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(C) Pancreas3 dataset.

Fig. C.11: PCA visualization of the representations learned by different models on the
whole Pancreas datasets.
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(F) Pancreas6 dataset.

Fig. C.12: PCA visualization of the representations learned by different models on the
Pancreas datasets.
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C.3 Pancreasl
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(A) Visualization of representation for certain cell types. The colors are used to distinguish the

batches.
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(B) Visualization of representation for certain batches. The colors are used to distinguish the cell
types.

Fig. C.13: PCA visualization of the representations for certain cell types and domains
on Pancreasl dataset.
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C.4 Pancreas2
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(A) Visualization of representation for certain cell types. The colors are used to distinguish the
batches.
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(B) Visualization of representation for certain batches. The colors are used to distinguish the cell
types.

Fig. C.14: PCA visualization of the representations for certain cell types and domains
on Pancreas2 dataset.
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(A) Visualization of representation for certain cell types. The colors are used to distinguish the
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(B) Visualization of representation for certain batches. The colors are used to distinguish the cell
types.

Fig. C.15: PCA visualization of the representations for certain cell types and domains
on Pancreas3 dataset.
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Fig. C.16: PCA visualization of the representations for certain cell types and domains
on Pancreas4 dataset.
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(B) Visualization of representation for certain batches. The colors are used to distinguish the cell
types.

Fig. C.17: PCA visualization of the representations for certain cell types and domains
on Pancreasb dataset.
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Fig. C.18: PCA visualization of the representations for certain cell types and domains
on Pancreas6 dataset.
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D Key gene analysis

D.1 Top 100 Genes for Liver Cell Type?

— NN: ubd, ins2, apoe, hba-al, actb, b2m, hba-a2, mupll, cd74, dnasell3, h2-
d1, mup22, tubala, tmsbix, mupl4, selenop, awl12010, insl, cst3, mup7,
iapp, ccdc152, ftll, mupl3, mupl0, chll, hbb-bt, clec4g, igfbp7, nrep, mupl19,
sh3bgrl3, hbb-bs, mupl, mup18, h2-abl, mupl16, mupl12, rpli8a, c1qb, map1lc3b,
mupld, cclh, hbb-y, rps29, ctsd, ly86, ifitm2, mup9, h3f3b, mup8, nkg7, tmsb10,
mtl, tagln2, ttr, gstml, hba-x, atpifl, lyz2, apocl, lgals1l, mup?2, stmn2, apoa?2,
plpl, calml, gpzx3, prdxl, igfbp4, pri3dl, clqa, apod, tma7, h2-aa, cmssl,
ptma, cd79a, gapdh, plppl, sst, abil, dennd1b, cfil, rgs1, gclm, pitpncl, dppas,
fegr2b, serpl, rpl8, tyrobp, sumol, zfp976, rplpl, gm10591, gm21541, rpsa,
s100a8, pcnp.

— scDGN: mps29, apoe, mupl1, ins2, mup22, dnasell3, selenop, mup10, b2m,
gcg, mup7, h2-d1, mupl14, tmsb10, ccdc152, clec4g, apoa2, hba-al, ttr, mupl3,
myl7, mgp, mupl8, mupl6, mtl, mupls, npmli, mupl9, hba-a2, awl12010,
igfbp7, chll, mupl, actgl, apocl, insl, ly6e, mup9, mup8, ptma, mupl2, mup2,
cst3, fabp3, btgl, iapp, rpl35, apoal, h2-k1, cmssl, mupl7, lgalsi, tmsbjzx,
stmnl, gm13304, ptp4a2, prdzl, gm21541, hmgal, snap25, set, plpl, ccl4,
fabp4, trim30a, gstpl, gm10591, ubc, scgblal, respl8, sumol, fabpl, nrep,
h2-q7, npy, itm2b, hspel, car2, subl, slc25a5, h2afz, ywhah, ccl21b, pomec,
rpl41, cbx3, ctsd, rps27rt, laptms, chchd?2, s100a8, actcl, hba-x, hbb-bt, myly,
eifl, gpihbpl, sodl, gabarapl2, calml.

2 The results in text format are also

available at: https://github.com/SongweiGe/scDGN/blob/master/supplementary
materials/top_genes.twt
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D.2 GO Analysis Results for the Other Cell Types

Table 5: GO analysis results of the genes with respect to embryonic stem cell that are
only recognized by scDGN.

term_name |term_id |Padj |—1og10 Pads

SRP-dependent cotranslational protein targeting|G0O:0006614|1.8109E-06 |5.74210612
to membrane
cotranslational protein targeting to membrane GO:0006613|2.59394E-06|5.58603936
protein targeting to ER G0:0045047|4.44101E-06|5.35251780
establishment of protein localization to endoplas-|GO:0072599(5.72221E-06|5.24243629
mic reticulum
nuclear-transcribed mRNA catabolic process,|G0O:0000184(9.79366E-06|5.00905515
nonsense-mediated decay
protein localization to endoplasmic reticulum GO0:0070972|2.19947E-05|4.65768238

Table 6: GO analysis results of the genes with respect to hematopoietic stem cell that
are only recognized by scDGN.

term_name ‘term,id ‘padj ‘7 logg Padj

protein targeting to ER G0:0045047]0.041444862(1.382529302
cotranslational protein targeting to membrane G0O:0006613[0.026817903|1.571575182
SRP-dependent cotranslational protein targeting|G0O:0006614|0.020030591|1.698306246
to membrane

protein localization to endoplasmic reticulum G0:0070972[0.013637519(1.865264616
translational initiation G0:0006413[0.001555052|2.808254977
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