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Abstract

Synchronization is a key step in data-parallel distributed machine learning (ML).
Different synchronization systems and strategies perform differently, and to achieve
optimal parallel training throughput requires synchronization strategies that adapt
to model structures and cluster configurations. Existing synchronization systems
often only consider a single or a few synchronization aspects, and the burden of
deciding the right synchronization strategy is then placed on the ML practitioners,
who may lack the required expertise. In this paper, we develop a model- and
resource-dependent representation for synchronization, which unifies multiple
synchronization aspects ranging from architecture, message partitioning, placement
scheme, to communication topology. Based on this representation, we build an end-
to-end pipeline, AutoSync, to automatically optimize synchronization strategies
given model structures and resource specifications, lowering the bar for data-
parallel distributed ML. By learning from low-shot data collected in only 200
trial runs, AutoSync can discover synchronization strategies up to 1.6x better than
manually optimized ones. We develop transfer-learning mechanisms to further
reduce the auto-optimization cost – the simulators can transfer among similar
model architectures, among similar cluster configurations, or both. We also present
a dataset that contains nearly 10000 strategy and run-time pairs on a diverse set of
models and cluster specifications.

1 Introduction
Recent advances in deep learning (DL) have benefited greatly from training larger models on larger
datasets. To cope with the associated computational complexity, data-parallel training [19, 5, 37]
has been introduced and reported remarkable successes in scaling up model training to thousands
of GPUs [10] with billions of parameters [7, 28]. Data parallelism partitions and dispatches large
datasets to multiple worker devices, derives gradients for each worker on its independent data split,
and synchronizes gradients of all workers at the end of each iteration.

A variety of strategies and system implementations have been developed to facilitate synchronization
in data-parallel training, such as systems specialized in different communication architectures [27, 37,
29, 5], message encoding methods [21, 35], or parameter partitioning or merging schemes [18, 16].
Achieving desired data-parallel speedup, however, requires the synchronization strategy to fit well
with the statistical and algorithmic properties of the model and the cluster specification. For examples,
bipartite parameter servers work well for models whose sparsity structure creates “hot spots” [4, 19,
18], while collective all-reduce outperforms other communication architectures when the majority of
the distributed communication happens between GPUs [29, 10]. Existing systems struggle to provide
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excellent all-round performance on diverse models due to their oversimplified assumptions about
the synchronization, and rigid application of fix-formed synchronization strategies (e.g., parameter
server (PS) [19, 33] for BytePS [27], Allreduce for Horovod [29]), ignoring the characteristics of
models or clusters. More importantly, different strategies often exhibit sharp performance differences
when applied to different ML building blocks (shallow, deep, sparse, dense, etc.) [37, 18], and the
burden of selecting the right strategy for the model of interest is placed on ML practitioners, who may
not have domain expertise on the trade-offs among these systems. Given the combinatorial number of
choices for various synchronization factors, (e.g., architecture, variable partitioning, and placement
configuration), it is prohibitively costly to manually search for the optimal strategy, and the search
has to be redone every time a new model is developed.
To address these challenges, this paper aims to answer: Can one automate the selection of the optimal
synchronization strategy, given a model and cluster specification? To this end, we identify multiple
synchronization-affecting factors in data-parallel distributed DL. By factorizing the strategy with
respect to each trainable building block of a DL model, we construct a valid and large strategy space
spanned by multiple factors. To efficiently navigate the space and locate the optimal strategy, we build
an end-to-end pipeline, AutoSync. AutoSync leverages domain knowledge about synchronization sys-
tems to reduce the search space, and is equipped with a domain adaptive simulator, which combines
principled communication modeling and data-driven ML models, to estimate the runtime of strategy
proposals without launching real distributed execution. To further reduce practical development cost,
we study the transferability of trained simulators across different models and resource specifications,
which shows promising adaptability to unseen models or cluster configurations.
We evaluate AutoSync on a broad set of models and clusters, and show that there exist ample strategies
in the proposed space that outperform hand-optimized systems by a significant margin. AutoSync
can effectively find strategies that reduce the training time by 1.2x - 1.6x than hand-optimized ones
on multiple, difficult-to-parallelize model architectures (e.g. NCF [13], BERT [7] and VGG16 [30]),
within an acceptable budget. Leveraging transfer learning, AutoSync simulators can be trained on
cheaper trial data collected on smaller models or clusters, and used to derive strategies without
additional training for larger models or costlier clusters. As an additional contribution, we collect a
dataset containing nearly 10000 data points containing (model, resource, strategy) tuples and their
corresponding runtime on real clusters. We share the dataset with the community to encourage
extended studies.1

2 Problem Definition

Background. We represent a DL model using its dataflow graph G = {(VG,θ, VG,o), EG} where VG
are nodes in G including trainable variables VG,θ = {vi}

|VG,θ|
i=1 or computational operations VG,o, and

EG are tensors (edges) transferred between nodes. For simplicity, we use V equivalently with VG,θ to
notate the set of variables. In addition to G, we define a cluster as a device graph D = {VD, ED},
where VD = {dp}|VD|

p=1 represents devices (e.g. CPUs or GPUs), and ED = {bi,j} is a symmetric
matrix with the entry bi,j representing the connectivity (e.g. bandwidth) between di and dj . In
data-parallel training, we replicate G on all devices, and update each trainable variable vi using
the aggregation of the stochastic gradients ∇vi(G, Xp) computed by each worker device dp on its
data partition Xp, following v(t+1)

i ← v
(t)
i + ε

∑P
p=1∇v(t)i (G, Xp), for vi ∈ VG,θ. Since devices

are distributed across the cluster, obtaining the aggregation requires synchronization support, which
collects updates ∇

v
(t)
i

and provides all devices the shared access to a consistent version of v(t+1)
i .

Existing systems aim to optimize some individual factor to expedite synchronization, ignoring that
the optimal of each factor significantly changes with G and D. For ML practitioners, it is challenging
to select appropriate synchronization strategies for their models of interest without domain expertise.

Problem formulation. Alternatively, we pose the strategy selection as an optimization problem, in
which the per-iteration runtime (e.g. time taken to process a batch on all nodes of the entire cluster,
equivalent with system throughput), denoted as f , is minimized given G and D by solving

min
S
f(G,D,S), s.t. C, (1)

1The data and code accompanying this paper are available at https://github.com/petuum/autodist.
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Figure 1: Left: Learning to synchronize framework. Initially, the simulator utilizes domain-agnostic features
(Section 3.1) to explicitly estimate the runtime so to select promising strategies for evaluation (the blue line).
After trials, the real runtime data are feedbacked to train the ML-based simulator to adapt to specific G,D,
enhancing its capability in differentiating high-quality strategies. Gradually, the ML-based simulator takes over
and directs the search (the red line). Right: Illustrations of the RNN and GAT simulators.

where we use S to denote a model and resource dependent representation of the synchronization
strategy, and C as a set of constraints (developed in §3.2). Approaching this problem analytically
needs continuous characterizations of S and f , which are unavailable. In light of the recent advance in
AutoML [39, 36, 3], we define a domain-specific space considering multiple synchronization-affecting
factors, and resort to search-based methods to find near-optimal S∗.
Search space. When constructing the search space, we have the following considerations. First,
instead of optimizing a single factor in a piecemeal fashion as commonly done in existing systems,
we seek a unified space covering multiple synchronization-affecting factors, to capture the subtleties
between them and their dynamics with different G and D via co-optimization. On the other hand,
we want to establish direct correspondences between S and each participating variable of G in
synchronization, so that the strategy can adapt with specific variable-wise mathematical properties.

Hence, we first decompose existing fixed-formed systems/strategies into following orthogonal factors2:
(1) Variable partitioning, represented as pi = [pji ]

ki
j=1 for the variable vi, where ki is the number of

tensor dimensions of vi, and pji represents the partition degree on the jth axis. (2) Variable placement,
defined as {di}mi=1 ⊂ VD which is the set of devices the variable resides. The placement being a
single device means vi is shared across all devices. (3) Synchronization architecture: we define two
types of architecture primitives, namely parameter server (PS) and collective communication (CC),
and their architecture-specific semantics. In PS, we use reduction hierarchy to indicate whether
parameters are transmitted hierarchically (e.g., from a central CPU to multiple GPUs co-located on
the same machine). In CC, we define merge group, where communication primitives assigned with
the same group are merged and communicated via a single message, and device order, specifying
the message passing order across devices (e.g. tree, ring). (4) Message encoding and decoding,
notated as ci for vi, introduces compression or decompression schemes to represent how messages are
processed before (after) communication, enabling optimizations [34, 37, 21] that exploit structures
(e.g., low-rank) exhibited in the messages to reduce message size and fasten network transfer.

Based on these factors, we express the strategy as S = {si}|V |i=1 where si, as a sub-strategy, includes
the discrete choices of above factors for each vi ∈ G. Note that we decide whether to partition
variables or not before any other aspects, so a sub-strategy needs to be generated for each variable
partition. The multiple factors span a combinatorial space whose size grows with the size of G and D.
We next develop the learning to synchronize framework to approximate the optimal strategy S∗.

3 Learning to Synchronize

Despite the large space, solving Eq. 1 poses an additional challenge: searching for S∗ requires
evaluating f for each strategy proposal, which involves distributed execution on clusters and is
prohibitively expensive. To make the search tractable, we present the learning to synchronize
framework, illustrated in Figure 1, with two novel components: runtime simulation of arbitrary
S,G,D (§3.1), and knowledge-guided strategy search (§3.2).

2Since we focus on synchronous training and optimizing system throughput, we exclude optimizations
beyond data-parallel training (e.g., operation partitioning in model-parallel training), or introduce deviation of
parameter updates (e.g., staleness).
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In detail, to reduce real execution, we develop a domain adaptive simulator to estimate f . The
estimation is made possible (without training data) by first designing features agnostic to G,D. The
features describe critical impacting factors on the runtime using predefined modeling, and can be
generalized to any unseen G and D. Then, we enhance them using ML models and various raw
features extracted from specific G,D. In order to direct the search to the subspace where good
strategies may locate, we instantiate constraints C in Eq. 1 using prior knowledge on synchronization
systems. The final framework, named as AutoSync, approaches S∗ alternately. In the initial phase,
the simulator uses the training-free features to propose the initial batch of strategy candidates, which
are executed on real clusters to obtain ground truth runtime. The low-shot data are feedbacked to
train the simulator to adapt to G,D, achieving improved capability in differentiating high-performing
strategies. The process alternates until the optimization budget for real distributed cluster evaluation
is exhausted. We next describe the design of the simulator and the guided search.

3.1 Domain Adaptive Simulator

The simulator takes (G,D,S) as input, and estimates its per-iteration runtime (equivalent with
throughput). Because variable partitioning will alter VG,θ, we first infer the new set of variables V ′G,θ
based on G,S , and let the simulator work with each variable vi ∈ V ′G,θ, which contains variable shards
after partitioning original variables. We define a particular (G,D) target as a domain. When equipped
with domain-agnostic features, the simulator is capable of estimating the runtime of any (G,D)
without training. This is realized by systematic modeling of the runtime in distributed execution.

3.1.1 Predefined Modeling

We model the per-iteration runtime T of parallelizing G on D using two contributing components:
computation time Tcomp, and parameter synchronization time Tsync. Since in data-parallel training
one component usually dominates the other [11], we simply obtain T via T = max(Tcomp, Tsync).
We factorize Tcomp and Tsync w.r.t. variables, similar to S, and estimate Tcomp(vi), Tsync(vi) for each
vi based on its si in S. Tcomp(vi) can be approximated by profiling its corresponding operation
on a single-device. To calculate Tsync(vi), we split V ′G,θ into variables using PS as V PS and using
collective communication as V CC , and derive two analytic forms of Tsync(vi).

For vi ∈ V PS , if we denote the size of the message by vi as ci(mi) where the encoding/decoding
scheme ci ∈ si has been applied on the original size mi, and wi as the number of worker nodes
involved in synchronizing vi, the communication time TPSserver on the server hosting vi, indexed as j, is

TPS
server(vi) =

wi∑
k=1

Id(j, k) ·
ci(mi)

bj,k
· rIpi,k︸ ︷︷ ︸

network transfer

+

wi∑
k=1

Id(j, k) · rIpi,k · φ︸ ︷︷ ︸
network overhead

+ δ︸︷︷︸
GPU kernel latency

, (2)

where ri,k is the number of replicas (e.g. number of GPUs) of G on worker k, Id(j, k) and Ip are
true when server j and worker k locate on different machines and when hierarchical reduction is
used, respectively. φ and δ are network overhead and GPU kernel latency constants. The 1st term
corresponds to sending messages from each worker k to the server j (and vise versa). The 2nd term
captures network overheads that scale linearly with the number of workers, or with the number of
replicas when Ip is false. The 3rd term captures constant GPU memcpy latency.

In addition to the formula, we can construct domain-agnostic features of vi as zPSi =
[network transfer, coefficient of φ, coefficient of δ]. As synchronizing any vi between any pair of
nodes can happen simultaneously and is upper bounded by the multi-flow bandwidth, the communica-
tion bottleneck may be caused by the slowest transmission, or the total time of transmissions. Thus, we
define global features for estimating TPSsync as zPS = max{zPSi for vi ∈ V PS} ⊕

∑
{zPSi for vi ∈

V PS}/|V PS | , where ⊕ is vector concatenation, and max,
∑

are elementwise.

Similarly, for vi ∈ V CC , we can estimate its communication time, and construct the global features
of TCCsync as zCC . Detailed formulas are in the supplementary material. Concatenating zPS and zCC

obtains the set of domain-agnostic features zpre for (G,D,S). We can either use the estimated T to
rank different S, or use the constructed features as inputs to ML models, which we elaborate next.
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3.1.2 Domain-specific Modeling

Once trial data are acquired, we augment zpre using raw features zraw extracted from G,D,S, and
train ML models so as to capture their domain-specific characteristics. For each vi, zrawi vectorizes
attributes including variable placement, synchronization architecture, encoding/decoding type, and
merge group from S , bandwidth and the number of replica devices of each node from D, and variable
size, dimensions, the sparsity of gradients, data types, and information of partitioned shards from G.
Combining zpre and variable-specific raw features zrawi , we adopt three different ML models: (1) a
linear model, (2) a recurrent neural network (RNN), and (3) a graph attention networks (GAT) [38],
to learn from trial data and make more accurate predictions of f .

Linear Model. The linear model, simply written as f̂ = zpre · θ, introduces trainable weights θ and
predicts the runtime f̂ using only global features zpre.

RNN. We use an RNN to model different G with varying numbers of variables, so as to inject zrawi .
The RNN first concatenates zprei with zrawi , and then transforms the combined features via an
MLP. The results are aggregated into |VG,θ| features corresponding to the variables in the VG,θ. A
bidirectional LSTM scans them following the forward-backward propagation order preserved in G. At
last, the prediction f̂ is obtained via an extra MLP (Figure 1, detailed formulas in the supplementary).

GAT. We bring in GAT to model the raw graph structure of G. To do so, we prune G into a
graph Gp = (V pG,θ, E

p
G) with only variable (including partitioned) nodes and edges connecting them.

For each node, similar to RNN, its raw and predefined features are concatenated, and features of
all nodes and corresponding edge information are fed to a GAT for encoding graph structure as:
{zi} = GAT({zrawi ⊕ zprei for vi ∈ V pG,θ}, E

p
G), shown in Figure 1. The node features are then

aggregated into graph-level ones, followed by an MLP to get the runtime estimation f̂ .

3.1.3 Training Objective

Accurately predicting runtime can be challenging due to uncertain factors on a distributed cluster, we
instead train the simulators with the pair-wise logistic ranking loss [1, 3]:

n∑
i=1

n∑
j=1

I(fi + σI1(Pi, Pj) > fj) log(1 + exp(f̂j − f̂i)) (3)

where fi, fj are ground truth runtime, I is an indicator function, and n denotes the number of training
examples. Note that we augment the original ranking loss with a penalty term σI1(Pi, Pj), where σ
is a non-negative threshold, Pi is the total number of partitions in Si, and I1(x, y) outputs 1 when
x > y, -1 when x < y, and 0 otherwise. This term additionally considers inherent partitioning
overheads, and alleviates the bias toward heavily partitioning variables.

3.2 Knowledge-guided Search

The search uses the simulator to evaluate a strategy, and proposes candidates with low predicted
runtime f̂ . It then selects a small number of qualified candidates from a large set of proposals for
trial execution, as shown in Figure 1. We implement two search algorithm variants: random search
and genetic algorithm (GA) [6].

Knowledge constraints. As the strategy space is exponentially large, it is inefficient to grid search
the entire space. We instantiate the constraints C in Eq. 1 using two system design principles to
restrict the exploration within promising regions. (1) Load balancing constraint clb: which is vital
to alleviate the communication bottleneck. When deciding the placement for each vi ∈ V PS , clb
enforces to sample the placement from a multinomial distribution over all participating nodes in
D, where each node’s probability of being chosen correlates to its current communication load and
maximum bandwidth, so that nodes with higher available bandwidth are more likely to be sampled.
This allows generating randomized solutions while approximately maintaining a balanced status
across all nodes. (2) Adjacent merging constraint cam: the fusion of collection operations should
correspond to the model forward-backward propagation order in G, as merging two operations in
the head and tail of the model would prevent low-level scheduling overlapping communication and
computation. cam is introduced to ensure variables adjacent to each other in G are more likely to be
grouped together. We show the clb and cam empirically improve search efficiency and quality in §5.1.
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Select evaluation candidates. Similar to AutoTVM [3], we select the final set of candidates, that
have minimized weighted sum of f̂ and internal similarity, for distributed execution. The similarity
can be estimated by either comparing strategy representation or the hidden outputs of simulators. We
defer the details of how to select candidates and how to estimate the similarity between strategies to
the supplementary material.

3.3 Low-cost Optimization using Transfer Learning
Performing end-to-end strategy optimization from scratch for a target domain Gt,Dt on large clusters
or large models is costly, especially if Gt will be only trained once (one-shot training). For unseen
Gt,Dt, we consider transferring simulators trained on the data from a source domain Gs,Ds. This
would be advantageous if the source domain data already exist, or any of Gs and Ds is small so their
trial run data is cheap to collect. The transferability is made possible by our feature design – the
predefined features are universal due to its domain-agnostic nature. The per-variable raw features
are extracted from G, S, and D, where G is the generic low-level dataflow graph representation,
capable of expressing all NN models; S, based on D, is generated from a strategy space invariant
to models as well. Hence, the feature components of different (G,D,S)i are invariant, leaving the
only variability as the the length of features, caused by the different number of variables in different
G, which, however, is absorbed by models like GAT and RNN that operate on inputs with variable
lengths. §5.2 validates the effectiveness of the transferable feature representation.

4 Related Work

ML for systems. There is a surge of interest in applying ML to solve system problems. Mirhoseini
al. [25, 24] develops reinforcement learning (RL) frameworks to decide the placement of nodes in
dataflow graphs. Paliwal et al. [26] combines RL and genetic algorithms (GA) to minimize the
execution cost of NN graphs for compilers. AutoTVM [2] builds an ML-based pipeline to generate
operator implementations better than hand-designed. AutoSync belongs to this line of work: it uses
ML to optimize data-parallel synchronization and addresses the unique challenges therein.

Synchronization system autotuning. Many data-parallel ML systems demonstrate certain levels of
autotuning capability. Horovod [29] and ByteScheduler [27] introduce adjustable knobs and credit
size, respectively, and use Bayesian optimization (BO) [8] to autotune their values. Parallax [18]
develops a 3-parameter linear model, learned via trial data, to find the best partitioning for sparse
variables in PS. This work focuses on autotuning one or two hyperparameters of a specific strategy;
AutoSync contrasts them by co-optimizing a generic and holistic representation of synchronization.
Among them, the closest to ours is AutoTVM [3]. We draw insights from AutoTVM, but address a
fundamentally different problem – data-parallel auto-distribution of ML training on clusters – which
requires the problem-specific design of strategy representations, features, runtime simulations, etc.

Automatic ML parallelization. Automating the parallelization of ML programs is an ultimate goal in
distributed ML. FlexFlow [16, 17] proposes the SOAP representation to express partitioning schemes
of NN layers, and an MCMC-based algorithm to search for optimal partitioning configurations.
TOFU [32] concerns the partitioning to finer-grained computational operations in DL dataflow graphs.
They intersect with Autosync as data parallelism (which AutoSync focuses on) can be equivalently
represented as partitioning all the layers/operations along their batch dimension. However, beyond
partitioning, AutoSync models many other synchronization-affecting factors, such as communicating
architectures, sharding, and merging schemes, etc., which differentiates us from this line of work.

5 Evaluation

Implementations. We generate strategies on top of TensorFlow 2.0, and resort to it for distributed
execution [9]. We treat f as system performance, and conduct synchronous training3 on 10 models
with standard settings suggested by MLPerf [22], including an enlarged dense (x16x32) version of
the neural collaborative filtering (NCF) [13], Transformers [31] and BERT variants [7], and various
CNNs [12, 30, 15]. We managed to train all models to the suggested accuracy, hence skip the
comparisons on convergence.

3In this paper, we do not consider synchronization-affecting factors that would alter the algorithm or result as
in the original single-node code, such as lossy compression [21], staleness [14], etc.
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Experiment setup and baselines. We conduct experiments on two clusters (D): (1) Cluster A
is an in-house cluster with 11 nodes, each equipped with a TITAN X GPU and 40GbE Ethernet
switch; (2) Cluster B is based on AWS, consists of 4x g4dn.12xlarge nodes, each with 4 NVIDIA
T4 GPUs and 50GbE full bandwidth.We introduce two strong hand-optimized synchronization
systems as external baselines. (1) Horovod [29]: which uses AllReduce (AllGather) to synchronize
dense (sparse) gradients of all model variables, and utilizes BO to autotune collective operation
fusion. (2) PS: a manually optimized PS with multiple optimizations [20, 37, 18, 27] incorporated,
such as maintaining load balance across servers by partitioning and placement [20], autotuning
credit size [27], and reducing network transfer via hierarchical reduction, etc. We use them as
collective- and PS-based baselines, respectively. Note that both methods use the same TF and NCCL
version for distributed execution and communication with AutoSync, preventing variations caused by
systems. Throughout our research, we have collected around 10,000 data points containing (G,D,S)
input tuples and their ground truth runtime on 11 models and 14 clusters. More details about the
system implementations, model and cluster settings, baseline performance, and the public dataset are
described in the supplementary material.

5.1 End-to-end Results and Ablation Studies

Comparing model instantiations. To compare the linear model, RNN and GAT, we
construct datasets using trial data collected on 6 different settings, and train them as
simulators, respectively. We report their ranking accuracy on held-out test sets in Ta-
ble 1 (the standard deviation of the results is within ±2% across 3 runs). RNN,
by leveraging raw features, outperforms the linear model mostly. GAT, though addi-
tionally modeling the graph structure of G, does not demonstrate substantial advantages.

Setting Linear RNN GAT
NCF-dense, A 0.771 0.894 0.810
NCF-dense, B 0.826 0.913 0.830

VGG-16, A 0.868 0.796 0.753
VGG-16, B 0.833 0.839 0.692

BERT-base, A 0.758 0.746 0.775
BERT-base, B 0.807 0.867 0.760
BERT-large, A 0.780 0.847 0.771
BERT-large, B 0.796 0.755 0.784

Table 1: Comparisons of different model in-
stantiations of the simulator.

We hypothesize that GAT might need more data for train-
ing, which are unavailable in our budgeted search. We
hence use RNN by default in the rest of the paper.

Search algorithm comparisons. We compare two
search algorithms random search (RS) and GA on op-
timizing strategies for (VGG-16, A) with a budget of 200
trials. Table 2 reports the statistics of the per-iteration
time of the 200 strategies found. GA by nature maintains
a better average quality and lower variance than RS, but
tends to overfit with the simulator’s (inaccurate) predic-
tion, resulting in worse quality on the best found strategy.
We therefore prefer RS as the default algorithm than GA
for AutoSync strategy optimization.

Stats RS GA
Mean (s) 1.07 0.67
Std. (s) 0.63 0.03
Min. (s) 0.60 0.64
Max. (s) 2.34 0.79

Table 2: The per-iteration time
statistics of 200 strategies found
by RS and GA on (VGG16, A).

Auto-optimization results. We use AutoSync to optimize the
strategies of NCF-dense (122M), VGG16 (138M), and BERT-large
(340M). They cover 3 different NN families but are all considered
“difficult-to-parallelize” workloads because of having >100M param-
eters. We compare two AutoSync variants with external baselines:
(1) AutoSync(-s) where the simulator is disabled for searching. It
randomly explores 30K strategies and selects 200 candidates that
have minimized similarity (§3.2). (2) AutoSync: the full AutoSync
with the budget of real evaluation on clusters as 200. To obtain the
runtime f , we run 10 warm-up iterations, then another 40 iterations
of training, whose runtime is averaged as the groundtruth. Figure 2 compares the best found strategy
in 200 trials by two variants with the two manually optimized baselines. In 4 out of 6 settings,
AutoSync(-s), without a simulator, discovers strategies up to 1.4x faster than the best one in PS
and Horovod. With the simulator, AutoSync finds strategies 1.2x to 1.6x faster than baselines. To
interpret the speedup, practically BERT-large needs 2M steps [23] of training to its reported accuracy
with batch size 128 (batch size 8 on 16 GPUs). A 1.2x speedup reduces the training time by 7 days,
and saves approximately $2200 AWS credits per training job on Cluster B. Moreover, in practice
a model needs to be retrained when being applied to unseen data, but a trained simulator can be
repeatedly used across jobs. Comparing AutoSync to AutoSync(-s): besides higher quality, the
simulator guides the search to solutions sooner, e.g. on (BERT-large, A), AutoSync locates strategies
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Figure 2: Comparing AutoSync, AutoSync(-s), AutoSync(-s,-k) on (left axis) the improvement (higher
is better) of the best found strategy over baseline, (right axis) the percentage of strategies better than baseline
(higher is better), w.r.t. the number of trials conducted in 200 trials. The baseline (1x) is the better one of PS and
Horovod). A curve is skipped from the plot if it is too below the baseline. The average over 3 runs is reported,
the std of hit rates are in ±3%− 7% and that of improvements over baseline at trial 200 are in ±.04− .1.

1.25x faster than PS in about 50 trials, and 1.2x using only 30 trials on Cluster B. Similar patterns are
observed in other settings as well.

Search space evaluation. We define the metric hit rate – for each auto-optimization run, the hit rate
at trial k is calculated as percentage of strategies explored up to trial k that are above hand-optimized
baselines. We calculate the hit rates independently for each run and report the average percentage at
k of 3 runs in the right axis of Figure 2. Except on (NCF-dense, B), AutoSync(-s) reports positive
hit rates and the rate is acceptable on (VGG16, B) (42.0%) and (BERT-large, B) (28.5%). When
augmented with a simulator, AutoSync frequently hits better strategies, especially on more complex
models VGG16 and BERT-large (> 70%). This verifies that factoring the strategy w.r.t. each variable
and co-optimizing multiple factors form a promising space with a profound set of strategies better
than manually optimized.

Knowledge constraints. Figure 2 contrasts another variant, AutoSync(-s,-k), where the knowl-
edge constraints in §3.2 are removed from AutoSync(-s). AutoSync(-s,-k) mostly visits strate-
gies below hand-optimized baselines, especially on complex models with a larger search space – on
BERT-large all strategies by AutoSync(-s,-k) are far below baselines hence are skipped in the
plots. Incorporating system design principles as knowledge is key to make the search manageable.

Setting Full Raw
only

Predefined
only

NCF-dense, A 0.894 0.894 0.883
NCF-dense, B 0.913 0.907 0.873

VGG16, A 0.796 0.785 0.734
VGG16, B 0.839 0.837 0.816

BERT-large, A 0.847 0.848 0.850
BERT-large, B 0.755 0.746 0.735

Table 3: Studies on feature importance (pairwise
ranking accuracy is reported). The std is within
±2% (3 runs).

Feature importance. We ablate zraw and zpre and
reveal their individual effect in Table 3. Specifically,
we train RNN simulators with: (1) only predefined
features zpre, (2) only raw features zraw, (3) the
full features, under 6 (G,D) settings, and compare
their ranking accuracy on test sets. Using full features
achieves the best accuracy, demonstrating that the pre-
defined and raw features may contain complementary
information. On the other hand, the predefined fea-
tures can be beneficial at the initial phase of search
as it is possible to directly rank strategies using them
without training.

5.2 Transferring Trained Simulators

Transferability studies. Different from §5.1, we train RNN simulators using trial data from a
source domain Gs,Ds to rank the strategies in unseen target domains Gt,Dt, without any additional
training, and report the ranking accuracy in Table 4. In general, we note that: (1) Models with

8



0 25 50 75 100
# Trials

1.0

1.2

1.4

1.6

Im
pr

ov
em

en
t (

x)

Target: VGG16, B

Improvement (x)
Horovod
PS
From (VGG16, A)
AutoSync(-s)
AutoSync

0 25 50 75 100
# Trials

0.9

1.0

1.1 Target: BERT-base, A

Improvement (x)
Horovod
PS
From: (BERT-3L, A)
AutoSync(-s)

0 25 50 75 100
# Trials

0.9

1.0

1.1

1.2

Target: BERT-base, B

Improvement (x)
Horovod
PS
AutoSync(-s)
From (BERT-3L, A)
From (BERT-base, A)
From (BERT-3L, B)

Figure 3: Transferring trained simulators from different source domains to 3 target domains, compared to
untransferred AutoSync- and AutoSync with a budget of 100 trials. The average of three runs is reported.

similar architectures exhibit higher transferability. With fixed D, transformer [31] based models
transfer between each other pretty well, with the lowest accuracy at 0.76; the transferability is slightly
compromised whenD is changed, due to increased domain distance. This hints we can use a simulator
trained for smaller BERT models to optimize the strategy of a larger BERT model. (2) Models with
similar distributions of the size of variables demonstrate transferability. For instances, the NCF-dense
model, though only with 10 variables, can transfer to BERT-base with a decent accuracy 0.7904;
VGG-16, as a CNN, ranks strategies of BERT-base better (0.7298) than that of ResNet101 (0.56);
both VGG16 and BERT-base have uneven communication loads caused by several extremely large
variables. (3) When G is fixed, transferability is observed across D. In practice, we might pretrain a
simulator using in-house cheap clusters (e.g. cluster A), and deploy the simulator for training jobs on
more expensive and larger-scale clusters.

Source→ Target Accuracy
(BERT-3L, A)→ (BERT-3L, B) 0.8672

(Transformer, A)→ (BERT-base, A) 0.7674
(BERT-3L, A)→ (BERT-base, A) 0.7591
(BERT-3L, B)→ (BERT-base, B) 0.8100

(NCF-dense, A)→ (BERT-base, B) 0.7904
(VGG16, A)→ (BERT-base, B) 0.7298

(BERT-3L, A)→ (BERT-base, B) 0.6992
(BERT-base, A)→ (BERT-base, B) 0.6852

(VGG16, B)→ (BERT-base, B) 0.6774
(Transformer, A)→ (BERT-base, B) 0.6672
(BERT-3L, A)→ (Transformer, A) 0.8866

(Transformer, B)→ (Transformer, A) 0.8305
(Transformer, A)→ (Transformer, B) 0.8171

(BERT-3L, A)→ (Transformer, B) 0.808
(NCF-dense, A)→ (NCF-dense, B) 0.7694

(VGG16, A)→ (VGG16, B) 0.7966
(BERT-3L, A)→ (VGG16, B) 0.5583

(ResNet50, A)→ (ResNet101, A) 0.6057
(VGG16, A)→ (ResNet101, A) 0.5600
(VGG16, A)→ (ResNet50, A) 0.7156

(VGG16, A)→ (DenseNet121, A) 0.7596
(ResNet101, A)→ (ResNet101, B) 0.7187
(DenseNet121, A)→ (ResNet50, B) 0.5266

(VGG16, A)→ (InceptionV3, A) 0.7857

Table 4: The target domain test accuracy under different
transfer learning settings.

End-to-end results on transfer learning. We
now transfer trained simulators to guide end-
to-end optimizations. We deliberately target
difficult-to-parallelize models and expensive
clusters: (BERT-base, A), (BERT-base, B), and
(VGG16, B). We set a smaller budget of 100 tri-
als, and do not use any data from target domains
for model selection or additional finetuning. Fig-
ure 3 illustrates the optimization progress. On
(VGG16, B), surprisingly, a well-trained simu-
lator from (VGG16, A) can find strategies 1.5x
faster as soon as in 5 trials. On (BERT-base, B),
we experiment with 3 source domains and notice
that the domain distance might impact the end-
to-end results: source (BERT-3L, B) achieves
better quality and efficiency than (BERT-base,
A). We defer a more thorough study of the trans-
ferability to future studies. Overall, we manage
to transfer simulators trained on “cheap” do-
mains to find good strategies in only a few trials
in “expensive” domains. Besides the reduction
on the number of trials, transferring a simulator
effectively decreases the wall-clock time taken
in auto-optimization as it bypasses simulator
training, which is advantageous for scenarios
where single-shot model training happens often.

6 Conclusion
The proposed AutoSync constructs a novel search space of synchronization-affecting factors and
learns to optimize synchronization strategies on variable-level towards better training performance.
When guided by an ML-based simulator and proper prior knowledge, AutoSync is able to find
synchronization strategies up to 1.6x better than those manually optimized, even with only 200 trial
run training data for the simulator. A dataset accompanying the proposed framework containing
10000 strategy, model, cluster, and runtime tuples will be made available to facilitate future research
in automating the parallelization of ML programs.
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Broader Impact

The proposed AutoSync alleviates the burden on ML researchers and practitioners in choosing
appropriate synchronization strategy for efficient distributed training, enables substantial speed up of
ML prototyping and training, and reduces the cost of their operational workloads using distributed
computing. Further, AutoSync is transferable to unseen model and cluster settings by the design of
domain-agnostic features. By this, finding a good synchronization strategy for a large-scale ML model
such as BERT [7] and GPT [28] or on a relatively expensive cluster only requires developing runtime
simulators using data collected from a streamlined model on handy clusters, saving substantial
experimental efforts and budgets. We will release and open-source our code and a new dataset to
benefit the research community, to democratize high-performance ML systems, and make them
accessible to non-ML-educated software developers and society at large. Since such needs are
prevalent across many disciplines beyond computing and information science – such as industrial
and manufacturing, healthcare, biology, social science, and finance – our deliverables are expected to
have a catalytic impact.
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