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–  Support Vector Machines (SVM) 
•  Max-margin learning 

•  Corresponds to a hinge loss with L2 R 

Classical Predictive Models 
•  Input and output space: 

•  Predictive function         :    

•  Examples: 

•  Learning:  

  where       represents a convex loss, and          is a regularizer preventing overfitting  

–  Logistic Regression 
•  Max-likelihood (or MAP) estimation 

•  Corresponds to a Log loss with L2 R 
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From Unstructured to Structured 
Prediction 
  Binary classification: black-and-white decisions 

  Multi-class classification: the world of technicolor 

  can be reduced to several binary decisions, but... 
  often better to handle multiple classes directly 
  how many classes? 2? 5? exponentially many? 

  Structured prediction: many classes, strongly 
interdependent 
  Example: image segmentation (number of classes exponential  

 to the # of segments) 
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Example I: Dependency Parsing of 
Sentences 

Challenge:  
Structured outputs, and globally constrained to be a valid tree 
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Example II: Text Summarization 
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Example III: Web-Data Extraction 

{image} {name, price} 

{name} {price} {name} {price} 

{image} {name, price} 

{desc} 

{Head} {Tail} {Info Block} 

{Repeat block} {Note} {Note} 
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Example IV: Topic Discovery/Extraction 
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  Conditional Random Fields 
(CRFs) (Lafferty et al 2001) 
–  Based on a Logistic Loss (LR) 
–  Max-likelihood estimation (point-

estimate) 

  Max-margin Markov Networks 
(M3Ns) (Taskar et al 2003) 
–  Based on a Hinge Loss (SVM) 
–  Max-margin learning (point-estimate)  

•  Markov properties are encoded in the 
feature functions  

•  Input and output space: 
•  Convex loss function 

Structured Prediction Graphical Models 
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 Challenges:  
•  SPARSE “Interpretable” prediction model 
•  Prior information of structures 
•  Latent structures/variables 
•  Time series and non-stationarity  
•  Scalable to large-scale problems (e.g., 104 or larger input/output dimension) 

  Conditional Random Fields 
(CRFs) (Lafferty et al 2001) 
–  Based on a Logistic Loss (LR) 
–  Max-likelihood estimation (point-

estimate) 

  Max-margin Markov Networks 
(M3Ns) (Taskar et al 2003) 
–  Based on a Hinge Loss (SVM) 
–  Max-margin learning (point-estimate)  

Structured Prediction Graphical Models 
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Main Claims 

EMNLP 2012� 11 

Outline 
  Sparse Structured Input-Output Models 

  … supervised learning 
  … convex optimization and log loss 
  … Frequentist-style shrinkage via regularization 

  Sparse Topic Models 
  … unsupervised learning 
  … non-convex and likelihood-driven 
  … Bayesian-style posterior inference  

  Sparse and Discriminative Topic Models? 
  … toward jointly explorative and predictive learning 
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Word counts Class Label 

X y 

1 x = 

x = β 

Feature strength 

? 

Basic text classification 
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Class Label 

Many non-zero coefficients:  
Which words are truly significant? 

1 x = 

Feature strength 

β∗ = argmin
β

(y −Xβ)T (y −Xβ)

Basic text classification 
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Word counts 
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Sparsity: In a mathematical sense 
  Consider least squares linear regression problem: 
  Sparsity means most of the beta’s are zero. 

  But this is not convex!!! Many local optima, computationally 
intractable. 

…
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L1 Regularization (LASSO) (Tibshirani, 1996)  
  A convex relaxation. 

  Still enforces sparsity! 

Constrained Form Lagrangian Form 
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x = 1 

Lasso for Sparse Regression 

Many zero associations (sparse results), 
but what if the problem has “structures”? 

+ |βj | 

Lasso 
Penalty for 
sparsity 

Feature strength 

β∗ = argmin
β

(y −Xβ)T (y −Xβ)

Class Label 
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Word counts 

Input Structure: the WordNet 
  The “network” of synsets  

in NL 
  Nodes (synsets) 

represent distinct concept  
  Links represent 

conceptual-semantic and 
lexical relations 

  Hidden knowledge and 
structure among concepts 

  Prior knowledge 
  Context 

Statistical challenge 
How to find  

important words to a predictor or a topic 
from a graph? 
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Output Structure: Task Hierarchy 
  E.g., the tree hierarchy in the DMOZ repository of the PASCAL 

Large Scale Hierarchical Text Classification challenge�

Statistical challenge 
How to train 

multiple labelers that are “related” 
by a tree? 
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(0/1,  0/1,  0/1,  0/1,  0/1)  

Sparse Structured Input/Output Lasso 
for Multi-task Learning 

Plant Animal 

x = 

 predicative strength        
 between  
 feature j and label i: βj,i 

+ 
β∗ = argmin

β
(y −Xβ)T (y −Xβ) λ

J�

j=1

|βj |

Multi-Class Label Feature strength 

How to combine information across multiple 
features/classes to increase the power? 

20 EMNLP 2012�

Word counts 
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(0/1,  0/1,  0/1,  0/1,  0/1)  

Sparse Structured Input/Output Lasso 
for Multi-task Learning 

Plant Animal 

x = 

+ We introduce  
Structured fusion and/or group norm penalties 

 predicative strength        
 between  
 feature j and label i: βj,i 

+ 
β∗ = argmin

β
(y −Xβ)T (y −Xβ) λ

J�

j=1

|βj |

Multi-Class Label Feature strength 
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Word counts 

Tree-Guided Group Lasso  

•  Low height 
•  Tight correlation 
•  Joint selection 

•  Large height 
•  Weak correlation 
•  Separate selection 

h

h

•  In a simple case of two concepts 

Fe
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[Kim and Xing, ICML 2009] 22 EMNLP 2012�
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L1 penalty 
•  Lasso penalty 
•  Separate selection 

L2 penalty  
•  Group lasso 
•  Joint selection 

h

Elastic net 

Select the child 
nodes jointly or 
separately? 

Tree-Guided Group Lasso  
•  In a simple case of two concepts 

Tree-guided group lasso 

Fe
at

ur
es

 
…
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h2 

h1 

Select the child 
nodes jointly or 
separately? 

•  For a general tree 

Tree-Guided Group Lasso  

Tree-guided group lasso 

    Joint 
selection 

Separate 
selection 24 EMNLP 2012�
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Previously, in Jenatton, Audibert 
& Bach, 2009 
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Graph-Guided Fused Lasso 

  Fusion Penalty: | βjk   - βjm | 
  For two correlated concepts (connected in the network), the 

association strengths may have similar values. 
  Fusion effect propagates to the entire network  
  Association between features and subnetworks of concepts 

Feature j 

concept m 

concept k 

Strength between feature j 
and concept k: βjk 

Strength between feature j and 
concept m: βjm 

… 

[Kim and Xing, PLOS G 2009] 26 EMNLP 2012�
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Full GM-based Loss Functions 
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Optimization 

Interior-point Method (IPM)  
for Second-order Cone 
Programming  (SOCP)  
or Quadratic Programming 
(QP) 

2nd-order, computationally  
heavy 

Block Coordinate Descent 
Cannot be easily be 
applied. Hard to compute  
the subgradient 

Optimize         at one time 

Original 
Problem: 

Existing Methods: 

argmax
β

≡ L({xi,yi};β) + Ω(β)

28 EMNLP 2012�
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New Optimization Framework 
  Main Difficulties: 

  Complex loss                    , (e.g., GMs with intractable factors or loopy graphs) 
  Intractable inference 

  Complex shrinkage        , (e.g., overlapping group penalties)   
  Non-differentiable, non-separatable 

  Our approaches: 
  Alternating Direction Dual Decomposition (AD3) [Martins et al, ICML 2011] 
  Proximal Gradient [Chen et al, AOAS 2012] 

  Hierarchical Group Threshholding [Lee and Xing, 2012, submitted] 

  Large number of training examples 
  Parallel computation 
  Map-Reduce on computing gradient 

  Map: calculate gradient on single example 
  Reduce: gather gradients computed by all map procedures, and calculate the sum 

  New multi-core framework ..�

L({xi,yi};β)

Ω(β)

29 EMNLP 2012�

Alternating Directions Dual 
Decomposition 

  Convergent to the primal and dual solutions (Glowinski and Le Tallec, 1989) 
  O(1/ε) iterations suce for ε-accurate objective (He and Yuan, 2011) 
  Solution is always sparse (only O(|N(α)|) nonzeros) 
  Active set methods: seek the support of the solution by adding/removing components; very 

suitable for warm-starting (Nocedal and Wright, 1999) 

[Martins, Figueiredo, Aguiar, Smith, Xing, ICML 2011] 
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Smooth Proximal Gradient Descent 
Original 
Problem: 

Approximation 
Problem: 

Gradient of the 
Approximation: 

[Chen et al and Xing, UAI 2011, AOAS 2012] 

Separating overlapping 
constraints   

Smoothing non-
differentiable objective 

31 EMNLP 2012�

Convergence Rate 
Theorem: If we require                                     and set             , the  
number of iterations is upper bounded by:  

Remarks: state of the art IPM method for for SOCP converges at a rate  

Time complexity (Per-iteration):  vs. 

32 EMNLP 2012�
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  Too many groups in real problems: 

  Recall that even SPG has a  
 complexity of 

  And an optimization procedure must 
  minimize our objective function, and 
  induce correct sparsity patterns 

  Hierarchical group-thresholding:  
  an algorithmic approach to directly reduce search space of sparsity, while 

optimizes the exact loss 

What if the structure becomes too complex ? 

Lasso penalty: within group sparsity  Input structure: group selection 
of correlated features 
Output structure: group selection of 
features across multiple predictors Easily hundreds of thousands of group constraints!  
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Hierarchical Group-Thresholding 
  DAG for Sparsity Patterns 

  All sparsity patterns of a 2x2 matrix: 

  A DAG of inclusion relation relationships of sparsity 

  Hierarchical Group-Thresholding 
  Initialize B using ridge regression 
  Step 1: Traversing DAG, check the optimality condition of the zero pattern  

 at each node. If the condition holds, set zero 
  Step 2: Update non-zero regression coefficients using coordinate descent 

[Lee  and Xing, Submitted 2012] 
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What if the function is non-linear? 
Group Sparse Additive Models [Ying, Chen, Xing, ICML 2012] 
  Assume G is a partition of {1, · · · , p}, i.e., the groups in G do not 

overlap. 
  The optimization problem is       

         
          

        
  where 

  Non-trivial to solve due to 
  correlation structure of component functions within the group 
  non-smoothness of functional group penalty 

Group Sparse Additive Models

• Assume G is a partition of {1, · · · , p}, i.e., the groups in G do not overlap.

• The optimization problem is

min
f

L(f) + λΩgroup(f),

where

Ωgroup(f) =
�

g∈G

�
|g|�fg� =

�

g∈G

�
|g|

��

j∈g

E
�
f2
j (Xj)

�
.

• Non-trivial to solve due to

– corrlation structure of covariates within the group
– non-smoothness of functional group penalty

6

Group Sparse Additive Models

• Assume G is a partition of {1, · · · , p}, i.e., the groups in G do not overlap.

• The optimization problem is

min
f

L(f) + λΩgroup(f),

where

Ωgroup(f) =
�

g∈G

�
|g|�fg� =

�

g∈G

�
|g|

��

j∈g

E
�
f2
j (Xj)

�
.

• Non-trivial to solve due to

– corrlation structure of covariates within the group
– non-smoothness of functional group penalty

6
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Toward Human-Level Intelligence 
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Output Coding 

  Every class is now represented by a bit-string 
  Coding: a codeword is assigned to each class 
  Decoding: given test data, look for most similar class codeword 

  Predict bit by bit through binary or ternary classifier – this is 
much easier than the 1 vs C-1 classifier 

  Decoding the bit-string – error correcting 

M 1 2 3 … … K 

1 1 1 1 0 0 0 

2 -1 0 0 1 1 0 

… 0 -1 0 -1 0 1 

C 0 0 -1 0 -1 -1 

[Zhao and Xing, 2012, submitted] 37 EMNLP 2012�

Learning the Coding Matrix 
  Accuracy of base binary classifiers for bit-prediction 

  Use category hierarchy for a measure of separability 
  Large intra-partite similarity + small inter-partite similarity 

  Strong error-correcting ability 
  Maximize distance between rows of coding matrix 

  Fault tolerance  
  Introduction of ignored classes: {-1,0,+1} instead of {-1,+1} 

M 1 2 3 … … K 

1 1 1 1 0 0 0 

2 -1 0 0 1 1 0 

… 0 -1 0 -1 0 1 

C 0 0 -1 0 -1 -1 

38 EMNLP 2012�
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Probabilistic Decoding 
  Output code can have real semantic meaning 

  E.g., encoding a tree path in a label taxonomy 
  Probabilistic decoding:  

  bit i depend on bit j probabilistically 
  Define prior                using tree hierarchy 

  Graph coloring: all nodes participating in i-th bit prediction are colored (red for 
positive, black for negative) 

  Task: what is the probability of node k being colored red? 

39 EMNLP 2012�

Multi-Way Classification Accuracy 
  DMOZ repository in PASCAL Hierarchical Text Classification challenge 

DMOZ small DMOZ large 

[Zhao and Xing, Submitted 2012] 40 EMNLP 2012�
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Discovering Sociolinguistic 
Associations on Twitter 

[Eisenstein, Smith, and Xing. ACL 2011] 41 EMNLP 2012�

Demographic multi-prediction 

[Eisenstein, Smith, and Xing. ACL 2011] 

… … 

42 EMNLP 2012�



22 

Sociolinguistic Associations 

[Eisenstein, Smith, and Xing. ACL 2011] 43 EMNLP 2012�

Dependency Parsing 

[Martins, Smith, and Xing. ACL 2009, Martins, EMNLP 2010, 2011] 

Datasets from CoNLL-2006 and CoNLL-2008 shared tasks 

44 EMNLP 2012�
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Outline 
  Sparse Structured Input-Output Models 

  … supervised learning 
  … convex optimization and log loss 
  … Frequentist-style shrinkage via regularization 

  Sparse Topic Models 
  … unsupervised learning 
  … non-convex and likelihood-driven 
  … Bayesian-style posterior inference  

  Sparse and Discriminative Topic Models? 
  … toward jointly explorative and predictive learning 
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Generating a document 
Prior 

θ  

z  

w  β   
Nd  

N  

K  
€ 

− Draw θ from the prior
   For each word n 

- Draw zn  from multinomial θ( )

- Draw wn | zn , β1:k{ }  from multinomial βzn( )  

  Prior over topic Vector 
  Latent Dirichlet Allocation (LDA) 
  Correlated priors (CTM) 
  Hierarchical priors 

  Topics 
  Unigram, bigrams, etc 

  Document structure 
  Bag of words 
  Multi-modal 
  Side information 

Modeling Semantics: e.g., Topic 
Models 

46 EMNLP 2012�
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Modeling and Inference Complexity 
  What if we want to combine 

latent topics with additional 
facets, such as geography in 
a unsupervised fashion? 

  Additional latent variables 
decide which facet is 
responsible for each token 
(e.g. Ahmed and Xing 2010). 

  That's twice as many latent 
variables per document! 

47 EMNLP 2012�

Compact modes needed on mobile 
devices  

48 EMNLP 2012�



25 

Sparse Additive Generative Models 

versus  

49 EMNLP 2012� J. Eisenstein, A. Ahmed, E.P. Xing. ICML, 2011 

Model Compression on Text 

50 EMNLP 2012�
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Sparse Topical Coding 

J. Zhu, & E.P. Xing. UAI, 2011 

non-negative codes topical bases 

reconstruction loss 

truncated aggregation 

sparse codes 

  Goal: design a non-probabilistic topic model that is amenable to 
  direct control on the posterior sparsity of inferred representations 
  avoid dealing with normalization constant when considering supervision or rich features 
  seamless integration with a convex loss function (e.g., svm hinge loss) 

  We extend sparse coding to hierarchical sparse topical coding 
  word code θ 
  document code s 

51 EMNLP 2012�

  Complex objective 
  Non-convex, but often bi-convex 
  Often additional non-negativity constraints other than sparsity 

  Hierarchical sparse coding 
  Greedy algorithm for the non-convex L0 “pseudo-norm”:  

  select the element with maximum correlation with the residual 
  known as “matching pursuit” (Mallat & Zhang, 1993) 

  For the convex L1 norm, many algorithms: 
  Soft-thresholding with coordinate descent (Friedman et al., 2007; Zhu & Xing, 2011) 
  Proximal methods (Nesterov, 2007; Jenatton et al., 2010, Chen et al 2011) 
  Active-set methods (Roth & Fischer, 2008) 
  Online/stochastic variants  
  … 

  Dictionary (topic) learning 
  projected gradient descent 
  any faster alternative method can be used 

Algorithms on Sparse Latent Space 
Models 

52 EMNLP 2012�
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Comparisons 

LDA vs. STC 
[Zhu and Xing, UAI 2011] 
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Sparse word codes 
  Sparsity ratio: percentage of zeros 

•  NMF: non-negative matrix factorization 
•  MedLDA (Zhu et al., 2009) 
•  regLDA: LDA with entropic regularizer 
•  gaussSTC: use L2 rather than L1-norm 

54 EMNLP 2012�
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Outline 
  Sparse Structured Input-Output Models 

  … supervised learning 
  … convex optimization and log loss 
  … Frequentist-style shrinkage via regularization 

  Sparse Topic Models 
  … unsupervised learning 
  … non-convex and likelihood-driven 
  … Bayesian-style posterior inference  

  Sparse and Discriminative Topic Models? 
  … toward jointly explorative and predictive learning 

55 EMNLP 2012�

Predictive Subspace Learning with Supervision 
  Unsupervised latent subspace representations are generic but 

can be sub-optimal for predictions 
  Many datasets are available with supervised side information 

  Can be noisy, but not random noise (Ames & Naaman, 2007) 
  labels & rating scores are usually assigned based on some intrinsic property of the data 
  helpful to suppress noise and capture the most useful aspects of the data 

  Goals: 
  Discover latent subspace representations that are both predictive and 

interpretable by exploring weak supervision information 

  Tripadvisor Hotel Review (
http://www.tripadvisor.com) 

  LabelMe 
http://labelme.csail.mit.edu/ 

  Many others 

Flickr (http://www.flickr.com/) 
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MLE versus Max-margin Learning 
  Likelihood-based estimation 

–  Probabilistic (joint/conditional 
likelihood model) 

–  Easy to perform Bayesian learning, 
and incorporate prior knowledge, 
latent structures, missing data 

–  Bayesian or direct regularization 
–  Hidden structures or generative 

hierarchy  

•  Max-margin learning 
–  Non-probabilistic (concentrate on input-

output mapping) 
–  Not obvious how to perform Bayesian 

learning or consider prior, and missing data 
–  Support vector property, sound theoretical 

guarantee with limited samples 
–  Kernel tricks 

•  Maximum Entropy Discrimination (MED) (Jaakkola, et al., 1999)   
–  Model averaging 
–  The optimization problem (binary classification) 

57 EMNLP 2012�

  Structured MaxEnt Discrimination (SMED): 

  Feasible subspace of weight distribution: 

  Average from a distribution of M3Ns 

MaxEnt Discrimination Markov Network 
(Zhu et al, ICML 2008, Zhu and Xing, JMLR 2009)�

58 EMNLP 2012�
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Maximum Entropy Discrimination LDA 
(MedLDA) 
  Bayesian sLDA: 

  MED Estimation: 
  MedLDA Regression Model 

  MedLDA Classification Model 

predictive accuracy�
model fitting �

59 EMNLP 2012� (Zhu et al, ICML 2009, JMLR 2012)�

Document Modeling 
  Data Set: 20 Newsgroups 
  110 topics + 2D embedding with t-SNE (var der Maaten & Hinton, 2008)�

MedLDA� LDA�
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Document Modeling �
comp.graphics�

politics.mideast�

61 EMNLP 2012�

Classification 
  Data Set: 20Newsgroups 

–  Binary classification:  “alt.atheism”  and “talk.religion.misc” (Simon et al., 2008) 
–  Multiclass Classification: all the 20 categories 

  Models:  DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al., 2009)), LDA
+SVM (baseline), MedLDA, MedLDA+SVM 

  Measure: Relative Improvement Ratio�

62 EMNLP 2012�
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Regression 
  Data Set: Movie Review (Blei & McAuliffe, 2007) 
  Models: MedLDA(partial), MedLDA(full), sLDA, LDA+SVR 
  Measure: predictive R2  and per-word log-likelihood 

63 EMNLP 2012�

Time Efficiency 
  Binary Classification 

  Multiclass: 
—  MedLDA is comparable with LDA+SVM 

  Regression: 
—  MedLDA is comparable with sLDA�

64 EMNLP 2012�
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Supervised STC 

  Joint loss minimization 

  coordinate descent alg. applies with closed-form update rules 
  No sum-exp function; seamless integration with non-

probabilistic large-margin principle 

65 EMNLP 2012� (Zhu and Xing, UAI 2011)�

Classification accuracy 
  20 newsgroup data: 

66 EMNLP 2012�
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Summary: Margin-based Learning Paradigms 

Structured prediction 

Structured prediction 

Bayes learning 

Bayes learning 
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Conclusion and Challenges: Learning 
Sparse Structured Input/Output 
Models 

EMNLP 2012� 68 

convergence, sample complexity, asymptotic 
consistency/sparsistency, error bounds, etc  

multi-core, distributed file system, 
shared memory, cloud    
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Thanks! 
Reference:  
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