
System & algorithm co-design for distributed
machine learning: theory and practice

Eric Xing
epxing@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Acknowledgement:
Wei Dai, Qirong Ho, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Yaoliang Yu, Hao Zhang, Xun Zheng

James Cipar, Henggang Cui,
and, Phil Gibbons, Greg Ganger, Garth Gibson

Machine Learning:
-- a view from outside

2

Elements of Modern AI/ML

Data

Task

Model

Algorithm

Implementation

System

Platform
and Hardware

• Network switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• ARM-powered
 devices
• Mobile devices
• GPUs

• RAM
• Flash
• SSD

• IoT device
networks (e.g.
Amazon EC2)

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

3

From 1m to 100m Events (and more)

1 machine
1000 Hadoop machines

Want to run code on 100m users, in
real-time

=> 100m users = 100 * 1m users

So if using 1000 Hadoop machines…
=> should support 100m users in

0.6min!

1m users >100m users
Scaling up AI/ML programs:
from workstation to
production cluster

1-machine prototype, state-of-the-art
code

=> supports 1m users in 6min

In fact, took >1 week to finish! 4

for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax
~✓

⌘ L({xi,yi}Ni=1 ; ~✓) + ⌦(~✓)

Model ParameterData

This computation needs to be parallelized!

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

5

Some Trends in AI & ML
Larger AI & ML Models are Better for Big Data
� Text Extraction: 1B to 1T params
� Deep Learning: 1B+ params
� Rec. Systems: 10M to 100M params
� Today’s Model Sizes: >GBs

Efficiency & Correctness
� Need distributed computing
� Need to sync across cluster!

Hadoop, Spark use joins (e.g. RDD join) to sync
� Parameter shuffle takes >90% of execution time

Dq(D)

D q(D)

6

�1

�2

�1 �2

�1 �2

Sync

A sequential program A parallel program

⌘

� but assuming an ideal system, e.g.,
� zero-cost sync,
� zero-cost fault recovery
� uniform local progress
� …

Low bandwidth,
High delay

Unequal
performance

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

?

Usually, worry …

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

S
e

c
o

n
d

s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

Parallelization Strategy

7

Analysis of Efficiency …
� Statistical, computation, data, optimization …

� A typical algorithmic behavioral analysis

� A distributed implementation:

(`+ r)(wt)� (`+ r)(w)  kw0 �wk2

2⌘t

9

ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic 10

Properties of ML Programs [Xing et al., 2015]

� ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

� Error tolerance: often robust against limited
errors in intermediate calculations

� Dynamic structural dependency:
changing correlations between model parameters
critical to efficient parallelization

� Non-uniform convergence: parameters
can converge in very different number of steps

� Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

� How do design optimal architectures fit for the above? 11

System
Design

Algorithm
Design

� System design should be tailored to the unique
mathematical properties of ML algorithms

� Algorithms can be re-designed to better exploit the system
architectures

System/Algorithm Co-design

12

Toward a General Purpose
Architecture via sys/alg co-design
ML program equations tell us “What to Compute”.

But…

1. How to Distribute?

2. How to Bridge Computation and Communication?

3. What to Communicate?

4. How to Communicate?

~✓t+1 = ~✓t +�f
~✓(D)

13

~✓t+1 = ~✓t +�f
~✓(D)

Data Parallel

�~✓(D1)

�~✓(D2) �~✓(D3)

�~✓(Dn)

D ⌘ {D1,D2, . . . ,Dn}

Di?Dj | ✓, 8i 6= j

Model Parallel

�~✓1(D)

�~✓2(D) �~✓3(D)

�~✓k(D)

~✓i 6? ~✓j | D, 9(i, j)

Data- and Model-Parallel ML
Programs

~✓ ⌘ [~✓ T
1 , ~✓ T

2 , . . . , ~✓ T
k]T

Dq(D)D q(D)

14

System/Algorithm Co-design

1. How to Distribute:
Scheduling and Balancing workloads

15

Example: Model Distribution

min
�

ky �X�k22 + �
X

j

|�j |

�

A huge number of parameters
(e.g.) M > 100 million

XyN

M

M

Model

=

b0 b1b2 b3

b4 b5

b6 b8b7 b9

b10 b11

G0

G1

• How to correctly divide
computational workload
across workers?

• What is the best order to
update parameters?

Lasso via coordinate descent:

16

� Concurrent updates of may induce errors�

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

�(t)
1 S(xT

1 y � xT
1 x2�

(t�1)
2 ,�)

Decreases iteration progress

Need to check x1
Tx2

before updating
parameters

Model Dependencies

17

Parallel Coordinate Descent
[Bradley et al. 2011]

� Shotgun, a parallel coordinate descent algorithm
� Choose parameters to update at random
� Update the selected parameters in parallel
� Iterate until convergence

� When features are nearly independent, Shotgun scales
almost linearly
� Shotgun scales linearly up to workers, where ρ is spectral

radius of ATA
� For uncorrelated features, ρ=1; for exactly correlated features ρ=d
� No parallelism if features are exactly correlated!

P  d

2⇢

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]

18

A Structure-aware Dynamic Scheduler
(Strads) [Lee et al., 2014] [Kim et al, 2016]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Load-balanced Tasks

Sync.
barrier

Strads System
• Priority Scheduling

• Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

(1) Partition Data + Model into Tasks

(2) Schedule & Prioritize Tasks onto Workers

(3) Balance Task Load on each Worker

SAP

19

Avoid Dependency Errors via
Structure-Aware Parallelization (SAP)
[Lee et al., 2014] [Kim et al, 2016]

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Smart model-parallel execution:
q Structure-aware scheduling
q Variable prioritization
q Load-balancing

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Simple programming:
q Schedule()
q Push()
q Pull() 20

SAP Scheduling: Faster, Better
Convergence across algorithms
� SAP on Strads achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

Lasso MF LDA

21

SAP gives Near-Ideal
Convergence Speed [Xing et al., 2015]

� Goal: solve sparse regression problem
� Via coordinate descent over “SAP blocks” X(1),	X(2),	…,	X(B)

� X(b) are data columns (features) in block (b)
� P parallel workers, M-dimensional data
� ρ = Spectral	Radius[BlockDiag[(X(1))TX(1),	…,	(X(t))TX(t)]]; this block-diagonal

matrix quantifies max level of correlation within all SAP blocks X(1),	X(2),	…,	X(t)

� SAP converges according to

where t is # of iterations

� Take-away: SAP minimizes ρ by searching for feature subsets X(1),	X(2),	
…,	X(B) w/o cross-correlation => as close to P-fold speedup as possible

Gap between current
parameter estimate and optimum

SAP explicitly minimizes ρ, ensuring
as close to 1/P convergence as possible

22

System/Algorithm Co-design

2. How to Bridge Computation and Communication:
Bridging Models and Bounded Asynchrony

23

Data-Parallel
Proximal Gradient under SSP

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate
Update

ALL
params

Input
Data

Input
Data

Input
Data

� Model (e.g. SVM, Lasso …):

� Algorithm:
� Update

� sub-update

� Data parallel:
� Data D too large to fit in a single worker, divide among P workers

data D, model a

stale sub-updates Δ() received
by worker p at iteration tproximal step wrt g

sub-update

gradient step wrt f

24

The Bulk Synchronous Parallel
Bridging Model [Valiant & McColl]

� Perform barrier in order to communicate parameters
� Mimics sequential computation – “serializable” property
� Enjoys same theoretical guarantees as sequential execution

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

Input
Data

Input
Data

Input
Datasplit Update local copy

of ALL params

Update local copy
of ALL params

aggregate
Update

ALL
params

Input
Data

Input
Data

Input
Data

25

The Bulk Synchronous Parallel
Bridging Model [Valiant & McColl]

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

� Numerous implementations since 90s (list by Bill McColl):
� Oxford BSP Toolset (‘98), Paderborn University BSP Library (‘01), Bulk Synchronous Parallel

ML (‘03), BSPonMPI (’06), ScientificPython (’07), Apache Hama (’08), Apache Pregel (‘09),
MulticoreBSP (’11), BSPedupack (‘11), Apache Giraph (’11), GoldenOrb (‘11), Stanford GPS
Project (‘11) …

The success of the von Neumann model of sequential computation
is attributable to the fact it is an efficient bridge between software
and hardware… an analogous bridge is required for parallel
computation if that is to become as widely used – Leslie G. Valiant

26

But There Is No Ideal Distributed
System!

� Two distributed challenges:
� Networks are slow
� “Identical” machines rarely perform equally
Result: BSP barriers can be slow

Low bandwidth,
High delay

Unequal
performance

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

27

Hogwild! Algorithm
� Hogwild! algorithm: iterate in parallel for each core

� Sample e uniformly at random from E
� Read current parameter xe; evaluate gradient of function fe
� Sample uniformly at random a coordinate v from subset e
� Perform SGD on coordinate v with small constant step size

� Atomically update single coordinate, no mem-locking
� Hogwild! takes advantage of sparsity in ML problems
� Enables near-linear speedup on various ML problems
� Excellent on single machine, less ideal for distributed

� Atomic update on multi-machine challenging to implement;
inefficient and slow

� Delay among machines requires explicit control… why? (see
next slide) 28

The cost of uncontrolled delay
– slower convergence [Dai et al. 2015]

� Theorem: Given lipschitz objective ft and step size ηt,

� where
� Where L is a lipschitz constant, and εm and εv are the mean

and variance of the delay

� Intuition: distance between current estimate and optimal
value decreases exponentially with more iterations
� But high variance in the delay εv incurs exponential penalty!

� Distributed systems exhibit much higher delay variance,
compared to single machine 29

The cost of uncontrolled delay
– unstable convergence [Dai et al. 2015]

� Theorem: the variance in the parameter estimate is

� Where
� and represents 5th order or higher terms, as a function of

the delay εt

� Intuition: variance of the parameter estimate decreases
near the optimum
� But delay εt increases parameter variance => instability

during convergence
� Distributed systems have much higher average delay,

compared to single machine
30

A Stale Synchronous Parallel
Bridging Model [Ho et al., 2013]

Stale Synchronous Parallel (SSP)
• Fastest/slowest workers not allowed to drift >s iterations apart

Iteration0 1 2 3 4 5 6 7 8 9

Worker 1

Worker 2

Worker 3

Worker 4

Staleness Threshold s = 3

Consequence
• Fast like async, yet correct like BSP
• Why? Workers’ local view of model parameters “not too stale” (≤s iterations old)

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

BSP

Async

Force stop worker 1 until
worker 2 catches up

31

Parameter Server Architecture
● Bösen: a bounded-asynchronous distributed key-value store

o Data-parallel programming via distributed shared memory (DSM) abstraction
o Managed communication for better parallel efficiency & guaranteed convergence

Bösen

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

Single
Machine
Parallel

Distributed
with Bösen

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

32

SSP Data-Parallel
Async Speed, BSP Guarantee

� Massive Data Parallelism
� Effective across different algorithms

Lasso Matrix Fact.LDA

33

Theorem: Given L-Lipschitz objective ft and step size ht,

where

SSP Data Parallel Convergence Theorem
[Ho et al., 2013, Dai et al., 2015]

Let observed staleness be
Let staleness mean, variance be ,

Explanation: the distance between true optima and
current estimate decreases exponentially with more
SSP iterations. Lower staleness mean, variance ,
improve the convergence rate.

34

Model-Parallel
Proximal Gradient under SSP
� Model (e.g. SVM, Lasso …):

� Model parallel
� Model dimension d too large to fit in a single worker
� Divide model among P workers

� Algorithm:

� worker p keeps local copy of the full model (can be avoided for linear models)

data D, model a

staleness

workers can skip updateson worker p

gradient step wrt f

proximal step wrt g

35

SSP Model-Parallel
Async Speed, BSP Guarantee

� Massive Model Parallelism
� Effective across different algorithms

2x speedup

Curves overlap – no
compromise to quality

Lasso: 1M samples, 100M features, 100 machines

36

SSP Model Parallel Convergence Theorem
[Zhou et al., 2016]

Theorem: Given that the SSP delay is bounded, with
appropriate step size and under mild technical conditions,
then

In particular, the global and local sequences converge to the
same critical point, with rate O(t-1):

1X

t=0

kx(t+ 1)� x(t)k < 1
1X

t=0

kxi(t+ 1)� xi(t)k < 1

Finite length

Explanation: Finite length guarantees that the algorithm
stops (the updates must eventually go to zero).
Furthermore, the algorithm converges at rate O(t-1) to the
optimal value; same as BSP model parallel. 37

System/Algorithm Co-design
3. What to Communicate:
Trading-off computing and communication

38

Matrix-Parameterized Models (MPMs)

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

Loss function Regularizer

Distance Metric Learning, Topic Models, Sparse
Coding, Group Lasso, Neural Network, etc.

Matrix parameter W

39

Big MPMs

Multiclass Logistic
Regression on Wikipedia

#classes=325K

Feature dim. = 20K

Distance Metric Learning
on ImageNet

Latent dim. = 50K

Feature dim. = 172K

Topic Model on WWW

Dic. Size= 1M

Feature dim. = 1M

Neural Network of
Google Brain

#neurons in layer 0 = 40K

#neurons in
layer 1 = 33K

6.5B 8.6B

50B 1.3B

Billions of params = 10-100 GBs, costly
network synchronization

What do we actually need to communicate?

40

Full Updates
� Let matrix parameters be W. Need to send parallel worker

updates ΔW to other machines…
� Primal stochastic gradient descent (SGD)

� Stochastic dual coordinate ascent (SDCA)

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

W
bWafW ii

¶
¶

=D
),(

ii azW)(D=D

41

Pre-update:
the Sufficient Vectors [Xie et al., UAI 2015]

� Full parameter matrix update ΔW can be computed as
outer product of two vectors uvT -- the sufficient vectors
(SV)
� Primal stochastic gradient descent (SGD)

� Stochastic dual coordinate ascent (SDCA)

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

T (,)
()

i i
i

i

f Wa bW uv u v a
Wa

¶
D = = =

¶

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

T
i iW uv u z v aD = = D =

42

More on Sufficient Vectors
� Other Cases

� Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

� Contrastive divergence algorithm in Restricted Boltzmann Machine

� What about communicating the
lightweight SV updates (u,v),
instead of the expensive
full-matrix ΔW updates?

∆𝑊 = 𝑢(𝑢 − 𝑣)!−𝑣𝑢!

∆𝑊 = 𝑢"𝑣"! − 𝑢#𝑣#!

43

A computing & communication
tradeoff
� Full update:

� Pre-update

� Stochastic algorithms
� Mini-batch: C samples

Training examples

Individual update
matrices

Aggregated
update matrix Sum

Training
examples

Sufficient
vectors 𝑢!, 𝑣! 𝑢", 𝑣" 𝑢#, 𝑣# 𝑢$, 𝑣$

Cannot be aggregated

Matrix Representation 𝑂(𝐽𝐾)

SV Representation 𝑂(𝐽 + 𝐾 𝐶)
44

Storage advantage
� Store SFs in memory to represent parameters
� Space complexity

� Memory Management

MR

SVR
𝑂(𝐽𝐾)

𝑂(𝑡(𝐽 + 𝐾))
Advantageous
when 𝒕 is small

Properties of SVs Memory Management

• GPU texture memory
• Provide high performance

read only cache

• Dynamic allocation of
memory blocks

• Read only

• Dynamically growing

45

Why is SFB faster?
� Faster than PS and Spark

� Near-linear scalability

Because SFB has faster iterations
(less communication)

… while keeping the same iteration quality as PS

SFB communication up to 100x smaller
than PS and Spark

46

Theoretical guarantees?

47

System/Algorithm Co-design

4. How to Communicate:
What Topologies to use?

48

Parameter Storage and
Communication Paradigms

� Centralized: send parameter W itself from server to worker
� Advantage: allows compact comms topology, e.g. bipartite

� Decentralized: always send changes ΔW between workers
� Advantage: more robust, homogeneous code, low communication (?)

Server

Worker

Send change
ΔW Send W itself

Worker

Worker

Send change
ΔW

Centralized Storage Decentralized Storage

Send change
ΔW

49

Topologies:
Master-Slave versus P2P?

� Master-slave
� Used with centralized storage

paradigm
� Disadvantage: need to

code/manage clients and servers
separately

� Advantage: bipartite topology is
comms-efficient

� Popular for Parameter Servers:
Yahoo LDA, Google DistBelief,
Petuum PS, Project Adam,
Li&Smola PS, …

� P2P
� Used with decentralized

storage
� Disadvantage (?): high comms

volume for large # of workers
� Advantage: same code for all

workers; no single point of
failure, high elasticity to resource
adjustment

� Less well-explored due to
perception of high
communication overhead? 50

Synchronization of Parameter
Replicas

� Sync directly on W:
� High communication cost

� Sync via SVs:
� Reduce network traffic in the worker-to-server direction
� Server-to-worker traffic remains high since W cannot be represented as SVs

parameter server Transfer SVs instead of ΔW

51

Synchronization of Parameter
Replicas

� A Cost Comparison

parameter server Transfer SVs instead of ΔW

Size of one message Number of messages NetworkTraffic

P2P SV-Transfer 𝑂(𝐽 + 𝐾) 𝑂(𝑃!) 𝑂((𝐽 + 𝐾)𝑃!)

Parameter Server 𝑂(𝐽𝐾) 𝑂(𝑃) 𝑂(𝐽𝐾𝑃) 52

� Random Partial Broadcasting
� Each machine randomly selects Q<<P machines

to send messages (instead of full broadcast)
� Message cost reduced: from O(P2) to O(PQ),

scales linearly with machine count P!

� SV Selection
� Select a subset of “representative” SVs to

communicate

(
!"#

$

𝑉(!) − 𝑉'
(!) 𝑉'

(!) (
𝑉(!)

)

How to reduce traffic in P2P?

53

Convergence Speed

54

Scalability

55

Convergence Guarantee
� Assumptions

� Bridging model
� Staleness Synchronous Parallel (SSP) with staleness parameter 𝑠
� Bulk Synchronous Parallel is a special case of SSP when 𝑠 = 0

� Communication methods
� Partial broadcast (PB): sending messages to a subset of 𝑄 (𝑄 < 𝑃 −
1) machines

� Full broadcast is a special case of PB when 𝑄 = 𝑃 − 1
� Additional assumptions

56

Convergence Guarantee
� Results

57

Convergence Guarantee
� Take-home message:

� Under full broadcasting, given a properly-chosen learning rate,
all local worker parameters 𝑊+, eventually converge to
stationary points (i.e. local minima) of the objective function,
despite the fact that SV transmission can be delayed by up to 𝑠
iterations.

� Under partial broadcasting, the algorithm converges to a
𝑂(𝐿𝐺(𝑃 − 𝑄)) neighbourhood if 𝐶 ⟶ ∞.

58

� Hybrid communications:
Parameter Server + Sufficient
Factor Broadcasting
� Parameter Server: Master-Slave

topology
� Sufficient factor broadcasting:

P2P topology

� For problems with a mix of
large and small matrices,
� Send small matrices via PS
� Send large matrices via SFB

Hybrid Updates: PS + SFB

59

� Example: AlexNet CNN model
� Final layers = 4096 * 4096 matrix (17M parameters)
� Use SFB to communicate

� 1. Decouple into two 4096 vectors: u, v
� 2. Transmit two vectors
� 3. Reconstruct the gradient matrix

Hybrid example: CNN [Zhang et al., 2015]

60

� Example: AlexNet CNN model
� Convolutional layers = e.g. 11 * 11 matrix (121 parameters)
� Use Full-matrix updates to communicate

� 1. Send/receive using Master-Slave PS topology

Hybrid example: CNN [Zhang et al., 2015]

61

Hybrid CNN and Managed
Communications [Zhang et al., 2015]

� Hybrid comms eliminate up to 50% of comms bottlenecks in CNNs
� Use managed comms [Wei et al., 2015] for further 33% comms bottleneck

reduction

� Good Science: Count machines, not GPUs; Measure performance, not throughput
� Greatest comms bottleneck is between machines, not GPUs (one machine can have 8

GPUs)
� e.g. Tensorflow blog reports perfectly-linear scaling up to 8 GPUs, but not how many

machines were used (other important but missing info: top-1 or top-5 accuracy? Accuracy
measured on train or test data?)

Caffe TensorFlow

50% comms
bottleneck
reduction40% waiting

time
reduction

62

ILSVRC2015 winner
params: 60.2M

ILSVRC2013 winner
params: 60.2M

ILSVRC2013 winner
params: 143M
Most-adopted feature
Extraction network

ILSVRC2013 winner
params: 229M
Extended to 22K categories

Just demoed

Extremely Large DL
problem, TensorFlow

cannot scale at all

Poseidon Scalability

63

Poseidon scalability (Limited
Bandwidth)
� Scenario:

� Training Large Models
� Limited network bandwidth

parameters 143M 229M5M

64

Summary
1. How to Distribute?

� Structure-Aware Parallelization
� Work Prioritization

2. How to Bridge Computation and Communication?
� BSP Bridging Model
� SSP Bridging Model for Data and Model Parallel

3. What to Communicate?
� Full Matrix updates
� Sufficient Factor updates
� Hybrid FM+SF updates (as in a DL model)

4. How to Communicate?
� Managed comms – interleave comms/compute, prioritized comms
� Parameter Storage: Centralized vs Decentralized
� Communication Topologies: Master-Slave, P2P, Partial broadcast

65

Other system issues:
� Broadcast schemes

� Tailored to system configurations
� Hardware-level

� CPU-to-CPU, GPU-to-GPU
� InfiniBand, Ethernet

� Software-level
� BSP, SSP
� Full broadcast, partial broadcast

� Fault Tolerance
� SV-based checkpoint: save SVs generated in each clock onto disk

� Light-weight in disk IO
� No waste of compute cycles
� Fine-grained (any clock) rollback

� Omni-Hardware
� Each operator has a CPU and GPU implementation
� Kernel fusion

� Elasticity
� Adding/removing machines do not interrupt current execution

66

In Closing: Toward New System
for ML/AI

67

Elements of Modern AI

Data

Task

Model

Algorithm

Implementation

System

Platform
and Hardware

• Network switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• ARM-powered
 devices
• Mobile devices
• GPUs

• RAM
• Flash
• SSD

• IoT device
networks (e.g.
Amazon EC2)

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

68

Sys-Alg Co-design Inside!

Data

Task

Platform
and Hardware

Our “VML”
Software Layer

Model

Algorithm

Implementation

System

69

Spark Hand-
Crafted
System

PetuumOS

Ti
m

e
ta

ke
n

(m
in

ut
es

)

Speedup vs

Up to 200x faster on some
ML algorithms

Up to 20x faster deep learning
vs TensorFlow

Number of GPU computers

Sp
ee

du
p

• Fast and Real-Time
• Orders of magnitude

faster than Spark and
TensorFlow

• As fast as hand-crafted
systems

• Any Scale
• Perfect straight-line

speedup with more
computing devices

• Spark, TensorFlow can
slow down with more
devices

• Low Resource
• Turning a regular cluster

into a super computer:
• Achieve AI results with much

more data, but using fewer
computing devices

• Google brain uses ~1000
machines whereas Petuum
uses ~10 for the same job

Better Performance

70

A Petuum Vision

Data

Task

Platform
and Hardware

Model

Algorithm

Implementation

System

• Network switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• ARM-powered
 devices
• Mobile devices
• GPUs

• RAM
• Flash
• SSD

• IoT device
networks (e.g.
Amazon EC2)

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

• Omni-Source
 (Any Data)

• Omni-Lingual
 (Any Programming Language)

• Omni-Mount
 (Any Hardware)

71

Acknowledgements

Garth Gibson Greg Ganger

Jin Kyu Kim Seunghak Lee Jinliang Wei

Wei Dai Pengtao Xie
Xun Zheng

Abhimanu
Kumar

Phillip Gibbons James Cipar
Qirong Ho Hao Zhang Yaoliang YuAurick Qiao

72

