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Elements of Modern Al/ML
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Model « Graphical Models + Large-Margin * Deep Learning + Sparse Coding
» Nonparametric * Regularized + Spectral/Matrix » Sparse Structured
Bayesian Models Bayesian Methods Methods I/0O Regression
Algorlthm + Stochastic Gradient + Coordinate * L-BFGS + Gibbs Sampling * Metropolis-
Descent / Back Descent Hastings
propagation
Implementation
» Mahout » Mllib » MxNet » Tensorflow
(MapReduce) (BSP) (Async)
System
Hadoop Spark MPI RPC GraphLab
Platform * Network switches  + Network attached  + Server machines + RAM - loT device « Virtual
and Hardware * Infiniband storage + Deskiops/Laptops * Flash networks (e.g. machines

* Flash storage * ARM-powered +SSD  Amazon EC2)
devices
* Mobile devices
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1m users

From 1m to 100m Events (and more)

~1 machine =

Scaling up Al/ML programs:
from workstation to
production cluster

>100mgasers

1-machine prototype, state-of-the-art
code
=> supports 1m users in bmin

Want to run code on 100m users, in
real-time
=>100m users = 100 * 1m users

So if using 1000 Hadoop machines...
=> should support 100m users in
0.6min!

In fact, took >1 week to finish! O
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An ML Program

0

Solved by an iterative convergent algorithm

—

argmax = L({x;,yi}Y, ; 0) + Q(6)

Model Data Parameter

for (t =1toT) ¢
doThings()

g+t = g(6', A9(D))
)

doOtherThings( f
}

\ This computation needs to be parallelized!

>
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Some Trends in Al & ML

Larger Al & ML Models are Better for Big Data
o Text Extraction: 1B to 1T params =
* Deep Learning: 1B+ params
Rec. Systems: 10M to 100M params
» Today’s Model Sizes: >GBs

Efficiency & Correctness
* Need distributed computing
* Need to sync across cluster!

Hadoop, Spark use joins (e.g. RDD join) to sync
o Parameter shuffle takes >90% of execution time
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oThings()

parallelUpdate(x,6)
Parallelization Strategy =G

doOtherThings()

Usually, worry ...
A sequential program A parallel program

51 51 Ba

!
B

Unequal % A
i . performance s /M
e but assuming an ideal system, e.g., >

e zero-cost sync,

Seconds
=z xz22¢g

e zero-cost fault recovery Low bandwidth,
. High delay
e uniform local progress

K = T EE
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Analysis of Efficiency

o Statistical, computation, data, optimization ...

(C+7)(w') =

» A distributed implementation:

YahooLLDA data throughput

25 machines

39.7 M/s (1x)

50 machines

78 M/s (1.96x)

100 machines

151 M/s (3.8%)

(L+7)(w) <

11

x 10

(
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objective val

* Atypical algorithmic behavioral analysis
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ML Computatlon vs. Classical

Computing Programs

for (t =1 to T) ¢
doThings()

r BN ~ 014! = g(6", As6(D))
i< doOtherThings ()

}

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic

~
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Properties of ML Programs pxngeta. 2015

e MLis
algori

e Err
errc

e Dyr
cha
criti

e Noi
can

e Wher
guare

» How do design optimal architectures fit for the above?
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System/Algorithm Co-design

System ﬁ Algorithm
Design d Design

o System design should be tailored to the unique
mathematical properties of ML algorithms

» Algorithms can be re-designed to better exploit the system
architectures
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Toward a General Purpose
Architecture via sys/alg co-design

ML program equations tell us “What to Compute”.
AUt (9t+1 — 4! —+ Af@(p)
ut...

1. How to Distribute?

2. How to Bridge Computation and Communication?

e

3. What to Communicate?

4. How to Communicate?
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Data- and Model-Parallel ML
Programs




System/Algorithm Co-design

1. How to Distribute:
Scheduling and Balancing workloads
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Example: Model Distribution

Lasso via coordinate descent:

min |y — XAl + A ) 161

J

A huge number of parameters
(e.g.) M > 100 million

<

 How to correctly divide
computational workload
across workers?

 What is the best order to
update parameters?

1)
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Sequential updates

b1

!
B

Concurrent updates

b1

Model Dependencies

e Concurrent updates of 5 may induce errors

B

b1

()

%S(le_

Decreases iteration progress

B

7

Need to check x;Tx,

before updating
parameters

X{Xgﬁét_l)

M)

9




r or Statistical Artificial InteLligence & INteg

Parallel Coordinate Desce

[Bradley et al. 2011]

» Shotgun, a parallel coordinate descent algorithm
» Choose parameters to update at random

» Update the selected parameters in parallel
e lterate until convergence

» When features are nearly independent, Shotgun scales
almost linearly

» Shotgun scales linearly up to P < ; workers, where p is spectral
radius of ATA P

» For uncorrelated features, p=1; for exactly correlated features p=d
* No parallelism if features are exactly correlated!

(6x:,0%;)
N
N

/~ Source:
" °X/ [Bradley et al., 2011]

&> X,

Uncorrelated features Correlated features

o
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/ Strads System

(1) Partition Data + Model into Tasks

(2) Schedule & Prioritize Tasks onto Workers

| SAP

(3) Balance Task Load on each Worker

| |
( I (
wiert ([0 D@D D=
| s ﬁ
Worker 2 } | ] 1 |
> | - > —
Worker 3 ] ]: ] : 4::>
( ( 1
Worker 4 ! ] ] :>
\\ . A \\ ) )
Round 1 Round 2 Round 3 Round 4

Load-balanced Tasks

—

Sync.
barrier

A Structure-aware Dynamic Scheduler
(StradS) [Lee et al., 2014] [Kim et al, 2016]

* Priority Scheduling

{8} ~ <55§-t_”)2 +

* Block scheduling

Va Vs
U; < 11)
Us g
Us ngl)

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed

learning, AISTATS 2014]
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Avoid Dependency Errors via
Structure-Aware Parallelization (SAP)

[Lee et al., 2014] [Kim et al, 2016]

S
data

partition

\_/

R

model

partition
~—

worker

e
data
partition
~—

R

model
partition

~ N

worker

— 5
data

partition

\_/

R

model

partition
\/

worker

O Smart model-parallel execution:

O Structure-aware scheduling
U Variable prioritization
O Load-balancing

schedule() {
// Select U vars x[]j] to be sent
// to the workers for updating

;ééurn (6,4 B W 1] S ] i B0 )
}

push (worker = p, vars = (x[j_1],...,x[3_U])) {
// Compute partial update z for U vars x[j]
// at worker p
return z

}

pull (workers [pl, vars = (X[JF_1), .o X5 U)
updates [z o
// Use partial updates z from workers p to
// update U vars x[j]. sync() is automatic.

O Simple programming:
O Schedule()

Q Push
Q Pzﬁ()o @/
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SAP Schedullng Faster, Better
Convergence across algorithms

 SAP on Strads achieves better speed and objective

100M fegtures 980 rar?ks 2 5M vocab, 5K topics
9 machines machines 9 32 machines
.25 DB s x 10
—STRADS N —STRADS
---Lasso-RR ) ---GraphLab
(0]
=
15]
9
o]
@]
—STRADS
---YahooLDA
0 500 1000 ' 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds x 10*
Lasso MF LDA

@
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o

}

Objective
o
o

©
TS

SAP gives Near-ldeal
Convergence Speed wngeta, 2015 ° = ™

e Goal: solve sparse regression problem

* Via coordinate descent over “SAP blocks” X(*), X2, ..., X(®)
X®) are data columns (features) in block (b)
e P parallel workers, M-dimensional data

e p = Spectral Radius[BlockDiag[(X(V)TX(1), ..., (X(W)TX®¥]]; this block-diagonal
matrix quantifies max level of correlation within all SAP blocks X(¥), X(2), ..., X(®

e SAP converges according to

Gap between current SAP explicitly minimizes p, ensuring
parameter estimate and optimum as close to 1/P convergence as possible

A A
4 A\ [ , \ -
: i oM) '1 1
; (t b "
E |F(X®) - F(X*)| < ——porpmgy =© (ﬁ)
M

where t is # of iterations

» Take-away: SAP minimizes p by searching for feature subsets X(¥, X(2),
..., X®) w/o cross-correlation => as close to P-fold speedup as possible @/




System/Algorithm Co-design

2. How to Bridge Computation and Communication:
Bridging Models and Bounded Asynchrony
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Data Parallel

* Model (e.g. SVM, Lasso ..

acRd
e Algorithm:

o Update a(t) := prox,

——

e Data parallel:

1

Input

split

min L(@ D). where L(a.D)

data D, model a

)

(22(8) = (1) X016

proximal step wrt g

= f(a.D)

Proximal Gradient under SSP

+g(a)

sub-update
A

Recor (] (a7 (1), Dpf)>

stale sub-updates A() received
by worker p at iteration ¢

sub-update  A(a’(t),D,) = Yf(af)(t), ng

gradienlt step wrt f

.| Update local copy

Data
‘d

1

Input

of ALL params

aggregate

e Data D too large to fit in a single worker, divide among P workers

Update local copy

Data

of ALL params

-

Update
ALL




/@ SLTIE AT m N
The Bulk Synchronous Parallel
Brldglng Model [Valiant & McColl]

7,
Thread 1 -» L
v)
Thread 2 “
Thread 3 -‘
.S‘pcn"l?Z

—l

split Input Update local copy

ate
Data of ALL params i
Input ' pdate
Data ALL
—————
Input Update local copy

Data p “] of ALL params

o Perform barrier in order to communicate parameters
* Mimics sequential computation — “serializable” property
* Enjoys same theoretical guarantees as sequential execution @/

o
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The Bulk Synchronous Parallel
Brldglng Model [Valiant & McColl]

cd LN . B

mress2 ) ) X
Sl Ll L e
i b

The success of the von Neumann model of sequential computation
is attributable to the fact it is an efficient bridge between software
and hardware... an analogous bridge is required for parallel
computation if that is to become as widely used — Leslie G. Valiant

* Numerous implementations since 90s (list by Bill McColl):

* Oxford BSP Toolset (‘98), Paderborn University BSP Library (‘01), Bulk Synchronous Parallel
ML (‘03), BSPonMPI ('06), ScientificPython ('07), Apache Hama ('08), Apache Pregel (‘09),
MulticoreBSP ('11), BSPedupack (‘11), Apache Giraph (’11), GoldenOrb (‘11), Stanford GPS

Project (‘11) ...
\ o
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But There Is No Ideal Distributed
System!

 Two distributed challenges:
* Networks are slow
» “ldentical” machines rarely perform equally

Result: BSP barriers can be slow

Unequal /\//vﬁ m "
performance /\/ﬂ,‘jﬂlj ‘JMm\/_ ﬁ{l\rmmﬂ Compute vs Network
LDA 32 machines (256 cores)
8000 -
. 7000 1 B Network waiting time
Low bandwidth, 6000 - |
High delay o 5000 - m Compute time

S 4000 -

8 3000 -

n

2000 -
1000 -

N S 9
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* Hogwild! algorithm: iterate in parallel for each core
* Sample e uniformly at random from E
* Read current parameter x.; evaluate gradient of function f,
o Sample uniformly at random a coordinate v from subset e
» Perform SGD on coordinate v with small constant step size

» Atomically update single coordinate, no mem-locking
e Hogwild! takes advantage of sparsity in ML problems

 Enables near-linear speedup on various ML problems

e Excellent on single machine, less ideal for distributed

* Atomic update on multi-machine challenging to implement;
inefficient and slow

e Delay among machines requires explicit control... why? (see

\ next slide) @
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" The cost of uncontrolled delay
— slower convergence ...z

 Theorem: Given lipschitz objective f; and step size n;,

" : 2
= [R;\] — \/lT ((TL2 - FT - ‘2(7L2Fm> > 7‘]

T2
<expy —frT1— = -
26q1€y|+ 30L%(25 + 1) PT

e where RIX] = X, fi(#) — f(a¥)
» Where L is a lipschitz constant, and €,, and €, are the mean
and variance of the delay

* [ntuition: distance between current estimate and optimal
value decreases exponentially with more iterations
e But high variance in the delay €, incurs exponential penalty!

» Distributed systems exhibit much higher delay variance,
compared to single machine

~

o
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The cost of uncontrolled delay
— unstable convergence p. ...

e Theorem: the variance in the parameter estimate is
Var ;4,1 = Vary — 2n.cov(xy, EA g¢]) + O(ne&yr)

+ Oz pt) +
e Where cov(vi,vs) := E[v{ vo]—E[v] |E[v;]

e and O; represents 5th order or higher terms, as a function of
the delay ¢,

* Intuition: variance of the parameter estimate decreases
near the optimum
e But delay ¢, increases parameter variance => instability
during convergence

» Distributed systems have much higher average delay,
compared to single machine

~

o




/4 N( % N\

Lat or Statistical Artificial InteLlige

A Stale Synchronous Parallel
Bridging Model weau.mm  “ust i i

Staleness Threshold s =3

Worker 1 : : ' >: vvvvv ) =) —)
: : L e [ —) —)
N o I.._’ :’.I
Worker 2 : : I :
Worker 3 E Async
: )
! = I N E— ) E— )
Worker 4 I : ~ ) ) m) ) )
I ! - ) m) )
%
0 1 2 3 4 5 6 7 8 9 Iteration
Stale Synchronous Parallel (SSP)
» Fastest/slowest workers not allowed to drift >s iterations apart
Consequence
» Fast like async, yet correct like BSP
k Why? Workers’ local view of model parameters “not too stale” (=<s iterations old) @/
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. (one or more
machines)
Worker 3 Worker 4

Worker 1 Worker 2

7

Bosen

Single

Machine
Parallel

Distributed
with Bosen

Parameter Server Architecture

e Bosen: a bounded-asynchronous distributed key-value store
o Data-parallel programming via distributed shared memory (DSM) abstraction
o Managed communication for better parallel efficiency & guaranteed convergence

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

Updatevar(i) {
old =
delta = f(old)

Staleness Threshold 3

—>
i i | |
(et I e
i i 1 1
Thread 2 i i | H
Thread 3 E
oo |
Thread 4 E |
I
+ + + + + + + + + —>
0 1 2 3 4 5 6 7 8 Iteration

7000 T

6000

econds

@ 3000 +

2000

1000

4000 T

B Network waiting time

u Compute time
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-1.00E+09

-1.05E+09

Log-Likelihood

-1.25E+09

o

-9.00E+08 T

-9.50E+08 T

-1.10E+09 7

S1L1SE+09

-1.30E+09 ~
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SSP Data-Parallel

Async Speed, BSP Guarantee

LDA Lasso

LDA on NYtimes Dataset

-1.20E+09

Objective functi ti
LDA 32 machines (256 cores), 10% docs per iter L::((; :‘(:eml:(l";:i'n::l(‘l;?irlshl:ia(ll:;e -—=RBSP (stalc 0)
0 200 400 600 800 1000 1200 1400 1600 1800 2000  4.80E-O1 #-stale 10
/._/P_.-¢
T
o— 4.70E-01 “*stale 20
- © 4.60E-01 “stale 40
+ 1 i 4 i
/ 1/ / O +.50E-01 T—mrT 5"\— ~stale 80
// oy '\
0/ / TBSP (stale 0) 1 D 4 4or.01 \ \
q -] \‘ﬂ\ *
/ / stale 32 £.30E-01 1 N\ : 5
t 1 4 1 —&35vnc > *?—.—Q—..
= 4.20E-01 : } | |
0 500 1000 1500 2000 2500 3000 3500 4000
Seconds
Seconds

» Massive Data Parallelism
» Effective across different algorithms

1.40E+09
1.20E+09
1.00E+09

$

£ 8.00E+08

Q
£ 6.00E+08
o

4.00E+08 7

2.00E+08
0.00E+00

Matrix Fact.

Objective function versus time
MF 32 machines (256 threads)

~*=BSP (stale 0)

“stale 7

1000

Seconds

1500 2000
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SSP Data Parallel Convergence Theorem
[Ho et al., 2013, Dai et al., 2015]

Let observed staleness be 7Vt
Let staleness mean, variance be 1, = E[y], o, = var(y)

Theorem: Given L-Lipschitz objective f; and step size h,,
R[X] O(F? +|u|L?) 2
- > 7| < ex |
P ¢ i \/T 2T | S exXp 0(‘7_]TU~; i L-Q-SPT)

where .
o " e \ — L (InT+1
RIX] = X1, fi(@) — f(a*) nr = TEGIED = o(T)

Explanation: the distance between true optima and
current estimate decreases exponentially with more
SSP iterations. Lower staleness mean, variance i~ , 0~
improve the convergence rate.
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‘Model-Parallel
Proximal Gradient under SSP

* Model (e.g. SVM, Lasso ...):
min £(al|D), where £(a, D)= f(a.D) + g(a)

d
a€R®  yata D, model a

* Model parallel
* Model dimension d too large to fit in a single worker

e Divide model among P workers & = (ai,as,....ap)
e Algorithm: [Vp | a,(t + 1) = a,(t) +7p(t) (al (1))
on worker p workers can skip updates
= ap(0) + Z To(k) - Fp(a”(t))
staleness
(local) aP(t) = ( (Tf(z‘)) e, ap Tg(t)))

(global) a(t) = (ai(t), ..., ap(t)).

gradient step wrt f
L

al (t+1) i= Fy(al(1)) = prox;, (ap(t) =1V, f(@"(1)) = ap(?)

proximal step wrt g

o worker p keeps local copy of the full model (can be avoided for linear models) @/
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SSP Model-Parallel
Async Speed, BSP Guarantee

Lasso: 1M samples, 100M features, 100 machines

X 10° Objective vs Seconds x10° Objective vs Iteration
T T T T T T T 14 T T T T T T
s=0
12\ s=1
s=3
@ (oD
= =8 s=5
- 5 s=7
= > 8}
2 L
() O
b <)
o =
[ o 6r
Curves overlap — no
4t compromise to quality
e
3 i i i i i i i 1 Il 2 | | | 1 1 1
100 200 300 400 500 600 700 800 900 100( 0 5 10 15 20 25 30 35
seconds number of iterations

* Massive Model Parallelism
» Effective across different algorithms

o




SSP Model Parallel Convergence Theorem
[Zhou et al., 2016]

Theorem: Given that the SSP delay is bounded, with
appropriate step size and under mild technical conditions,

thjn . > Finite length
Y lat+1) —a@))<oo > [laf(t+1) —a"(t)] < o

t=0 t=0

In particular, the global and local sequences converge to the
same critical point, with rate O(t1):

L (% Z:l/;:l a(l‘)) —1nf £ S-O (f—l)

[ SR

Explanation: Finite length guarantees that the algorithm | [

stops (the updates must eventually go to zero). \
Furthermore, the algorithm converges at rate O(r!) to the \\\;\.:“""' |

optimal value; same as BSP model parallel.




System/Algorithm Co-design

3. What to Communicate:
Trading-off computing and communication
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Matrix-Parameterized Models (MPMs)

Matrix parameter W

-~

min %ifi(Wai;bi)JrLW)

/ Regularizer

Loss function

input layer
hidden |afer 1 hidden layer 2

Distance Metric Learning, Topic Models, Sparse

Coding, Group Lasso, Neural Network, etc.
Iayier1
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B} network synchronization
Big MPMs
What do we actually need to communicate?
Multiclass Logistic Distance Metric Learning
Regression on Wikipedia on ImageNet
Feature dim. = 20K Feature dim. = 172K
\ \
( \ ( |
orn oLrn .
O.9D } #classes=325K -V } Latent dim. = 50K
Topic Model on WWW Neural Network of
Google Brain
Feature dim. = 1M #neurons in layer 0 = 40K
\ \
( | ( |
caD #neurons in
VD Dic. Size= 1M =38 layer 1 = 33K

N )
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Full Updates

* Let matrix parameters be W. Need to send parallel worker
updates AW to other machines...

» Primal stochastic gradient descent (SGD)

1 N
min — (Wa.;b.)+h(W
in 7 2 S(Wasb) + h()

AW = 8f(Wal.,bl.) u Re;;l\i:ﬂ Re:/l\i,czaZ “
aW & Shared W,
X States A
w
» Stochastic dual coordinate ascent (SDCA) | [
AWL| |w
min iif* (—Z )+ h* (i ZAT) Wy e,
z N*= i i N
AW =(Az;)a,
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Pre update
the Sufficient Vectors et uaizos

e Full parameter matrix update AW can be computed as
outer product of two vectors uyv! -- the sufficient vectors
(SV)

» Primal stochastic gradient descent (SGD)

1 N
min — Wa.;b))+h(W
in s 2 Si(Wasb) + h)

of Wanb) | _

AW =uv' u= =a,
o(Way)

» Stochastic dual coordinate ascent (SDCA)

1 & . L1
min — (—z Y+ h (—ZA4"
] N;m I (S ZAT)

AW =uw'" u=Az, v=a,
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More on Sufficient Vectors

e Other Cases
* Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm
AW = u(u —v)T—vu'

o Contrastive divergence algorithm in Restricted Boltzmann Machine

AW = uvi —u,vlt

 What about communicating the

lightweight SV updates (u,v), ——--—-<Z4
instead of the expensive : :Zé}, Wll _,ull,vl :

full-matrix AW updates? w1
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A computing & communication

tradeoff

e Fullupdate:  Training examples B_‘ﬂ] Iﬂﬂ @ @
l

+ l
R | g ot s

Aggregated \ I\A »/]

update matrix

101 101 101 101
examples on on on on

} } } l

Sufficient
vectors Uy, U1 Uz U Uz, U3 Uy, Uy
\ )
Y
Cannot be aggregated
e Stochastic algorithms
» Mini-batch: C samples Matrix Representation 0(JK)
SV Representation 0((J +K)C)

~

)
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Storage advantage

o Store SFs in memory to represent parameters
e Space complexity

MR 0(JK) Advantageous
SVR when t is small
o(t(J + K)

e Memory Management

Properties of SVs Memory Management

* Read only ) « GPU texture memory

* Provide high performance
read only cache

« Dynamically growing ) « Dynamic allocation of
memory blocks

N o
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Why is SFB faster?

o Faster than PS and Spark Because SFB has faster iterations
(less communication)
ESpAa(;k N Gopal 7%PS W SFB 7PS M SFB 7PS m SFB 5 SFB 5 SFB L5 SFB
v "
% | 7y 7] g 235 | § 150 235
£ 2 §20 7 £ /7?///; :2‘15 510000 - . 15 A
) ‘ o 7 v 10 ,:////2 $ = [}
E 10 E10 - —t 7 2195 % 5000 - 2195
£ £ . ,_O%m g 55000 iws
1 28 1 28 1 2 I ——— 4 1F—¥5 gLs
020000 40000 60000 3 0 20000 40000 60000 0 5000 10000 15000
] . ... while keeping the same iteration quality as PS
* Near-linear scalability
+-Linear -~ SFB " “#-Linear -#- SFB ” +-Linear -#- SFB » ESpark ZPS m SFB _ 7PS M SFB
—_— -]
30 N L , & 1500 - E 1500
§ 1000 5 1000 -
-— (=] 7
g 500 1 ?? : 500 Z Z
S 30k 100k 325k S 10k 30k 50k

Number of Classes in MLR Latent Dimension in DM\@




CINGS

Laboratory for Statistical Artificial InteLligence & N grative Cmnnms

Theoretica

| guarantees?




System/Algorithm Co-design

4. How to Communicate:
What Topologies to use?
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Parameter Storage and
Communication Paradigms

Centralized Storage Decentralized Storage

Worker

Send W itself

Worker Worker

o Centralized: send parameter W itself from server to worker
e Advantage: allows compact comms topology, e.g. bipartite
» Decentralized: always send changes AW between workers
* Advantage: more robust, homogeneous code, low communication (?) @
/

o
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o

worker 1

ML App

!S cal Artificial Intel lige

Topologres
Master-SIave versus P2P?

Model partition

Model partition

servir 1

= ==

server 2

worker 2

worker 1

Wl ﬁ - | ,

worker 3

’MLApp [ Modelcopy 1 o | MLABD ‘ Modelcopy

worker 2

L
= =

worker 4

* Master-slave
e Used with centralized storage
paradigm

e Disadvantage: need to
code/manage clients and servers
separately

e Advantage: bipartite topology is
commes-efficient

. P2P

* Used with decentralized
storage

e Disadvantage (?): high comms
volume for large # of workers

e Advantage: same code for all

workers; no single point of
failure, high elasticity to resource

adjustment

)
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Synchronization of Parameter
Replicas

parameter server Transfer SVs instead of AW

Model Model

. A Model Model
Replica 1 Replica 2 Replica 1 Replica 2
W1 WZ W1 Wz

AW,
! SST:t':: W Shared W
w AW, w States {os, Vs

w
<« AW, =u, Qvy AW, =u, @ v,
AWz = uz @ vz WOID W ®ew) 4 AW, + AW, + AW,
Aws| |w
Model ;
Model
Ws Replica 3

Replica 3 ]

* Sync directly on W:
e High communication cost
 Sync via SVs:
* Reduce network traffic in the worker-to-server direction
\ o Server-to-worker traffic remains high since W cannot be represented as SVs @/




/@ GUIRE D | A

=S
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Synchronization of Parameter
Replicas

parameter server Transfer SVs instead of AW

Model Model

. 8 Model Model
Replica 1 Replica 2 Replica 1 Replica 2
Uq, U1
| w, W, 21 w2
AW. Uy, U
1 Shared W AW, =u, ®v, ’ ’
States AW AW, =1, @, Uy, V1 AW, =u, ®v,
W 2 VVI( \\\\\\ ) %VV]("I‘“+AI/VI+AVVS u3, 173 AVV3 =Ll3®v3
w Uusz, U3 Uy, Uy W™ D ¢ AW, + AW,
Model
AWs| | W W3 Replica3
Model
W; Replica 3 AW, =u, ®v,
AW, =1, ®v,
W;"U") “«— W;”m + AW, + AW,
» A Cost Comparison
Size of one message Number of messages Network Traffic
P2P SV-Transfer 0(] + K) O(Pz) 0((] + K)PZ)

Parameter Server 0(JK) O(P) O(JKP)
N ©
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How to reduce traffic in P2P?

 Random Partial Broadcasting
e Each machine randomly selects Q<<P machines
to send messages (instead of full broadcast)

B Deterministic MRandom
30

o
S 20 -
= 10 1
0~ 1

MLR LST™M

o

Relative increase of
time (%)

» SV Selection S |
e Select a subset of “representative” SVs to il% :
communicate 505 -

§ . 5 25 50 75 1001

K
.I.
k) (1) (k
Z HV(R) _y® (VL'( )) 70
=1

2
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Convergence Speed

WSpark  WGopal  WTensorFlow  fleyiraCT W Bosen MOrpheus

3 _ = MTensorFlow ®MXNet MOrpheus
©  WBosen  MMXNet MOrpheus £ o 40
£ v 60 £
; 40 'g o 30 b
+ 40 - )
§ 20 - v § 20
& $ 20 - @ 10 -
S A §° 0- 2 W
Number of CPU machines ¥ Number of CPU machines Number of GPU machines

N >:)
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Scalability

<+Linear *Orpheus <+Linear -*-Orpheus
40 3 4 M Linear
B Spark
o 30 % a g
= 304 B Gopal
o)
9 20 B 18 W TensorFlow
Q
e 10 T B Bosen
1 : B MXNet
0 ‘ r 0 - ‘ T : ‘ ! M FlexiFaCT
0 10 20 30 40 0 10 20 30 40 50
Number of CPU machines in MLR Number of GPU machines in LSTM MLR TM LSTM ®Orpheus

N ©
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Convergence Guarantee

e Assumptions
e Bridging model
Staleness Synchronous Parallel (SSP) with staleness parameter s
Bulk Synchronous Parallel is a special case of SSP when s = 0

e Communication methods

Partial broadcast (PB): sending messages to a subsetof Q (Q < P —
1) machines

Full broadcast is a special case of PBwhen Q =P — 1
o Additional assumptions

Assumption 1. (1) For all j, f; is continuously differentiable and F' is bounded from below; (2)
VF, VF, are Lipschitz continuous with constants L and L, respectively, and let L = Zle Ly,
(3) There exists G, o? such that for all p and c, we have (almost surely) HUP(WL II‘))H < Gn and
E[ S Zjelp V(W)= VE,(W) H% <o
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Convergence Guarantee

e Results

Theorem 1. Let Assumption 1 hold, and let {W3}, p = 1,..., P, {W¢} be the local sequences
and the auxiliary sequence, respectively.

Under full broadcasting (i.e., Q = P — 1) and set the learning rate n := 1. = O(,/ m), we
have

o liminf E||VEF(W€)|| = 0, hence there exists a subsequence of VF(WF¢) that almost surely

CcC— 00
vanishes;

e lim max, [[W¢ — W¢| = 0, i.e., the maximal disagreement between all local sequences and
CcC— 00

the auxiliary sequence converges to 0 (almost surely);
o There exists a common subsequence of {W3} and {W*} that converges almost surely to a sta-

tionary point of F, with the rate Illlél E|l 25:1 VE,(WS)[5 <0 (1 /%)

Under partial broadcasting (i.e., Q < P — 1) and set a constant learning rate n = m,

where C'is the total number of iterations. Then we have

mink (| S5, VEMWIE] <0 (160 - @) + gt ).

CG(P - Q)
Hence, the algorithm converges to a O(LG(P — Q)) neighbourhood if C' — oc.

>
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Convergence Guarantee

» Take-home message:

e Under full broadcasting, given a properly-chosen learning rate,
all local worker parameters W, eventually converge to
stationary points (i.e. local minima) of the objective function,
despite the fact that SV transmission can be delayed by up to s
iterations.

» Under partial broadcasting, the algorithm converges to a
O(LG(P — Q)) neighbourhood if C — oo.
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Hybrid Updates: PS + SFB

* Hybrid communications:
Parameter Server + Sufficient
Factor Broadcasting

o Parameter Server: Master-Slave
topology

» Sufficient factor broadcasting:
P2P topology

e For problems with a mix of
large and small matrices,
e Send small matrices via PS
* Send large matrices via SFB

E2 E3

worker 1

1 Client lib

[~ ——<-—n

N T
| % N | U,V
| Uy vs—> W=,V |
| u,v, " o

worker 2

N Client lib
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o Example: AlexNet CNN model

e Use SFB to communicate
1. Decouple into two 4096 vectorss
2. Transmit two vectors
3. Reconstruct the gradient matrix

Vv

Lw [
L
L

Hybrid example: CNN zugeta. 20

e Final layers = 4096 * 4096 matrix (17M parameters)

192

128 Max
pooling

192

128 Max
pooling

4

1000
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Hybrid example: CNN zugeta, 20

o Example: AlexNet CNN model
e Convolutional layers = e.g. 11 * 11 matrix (121 parameters)

» Use Full-matrix updates to communicate
1. Send/receive using Master-Slave PS topology

l |
7 157 192 128 \densc
\\ 13 \\ 13 \
N o 3| |
A U= ' 13 dense
.-'\

1000

192 192 128 Max , -

pooling 2048 2048

. Max 128 Max

| pooling pooling
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Hybrid CNN and Managed
Communications g, 2

e Hybrid comms eliminate in CNNs
* Use managed comms [Wei et al., 2015] for further 33% comms bottleneck

reduction
" VGG19-22K (40 GbE) - VGG19-22K (40 GbE)
—E-Maximum possible (ideal) speedup A —:Ia—L'inearl |
Pose!don w/ hybrid_ . Poseidon w/ hybrid 7Y
~¥-Poseidon w/o hybrid . —#-Poseidon w/o hybrid = 90% comms
~©-Naive Distributed Caffe - —-e—-TensorFlow = bottleneck
Caff iting ction
a arre o | TensorFlow
= =
o 8 N kot 8
g 3
wn wn
4t : 4t
D
2+ ] 2+
1 1r P
1 2 4 8 16 i 2 4 8 16
# of Nodes # of Nodes

e Good Science: Count machines, not GPUs; Measure performance, not throughput

e.g. Tensorflow blog reports perfectly-linear scaling up to 8 GPUs, but not how many
machines were used (other important but missing info: top-1 or top-5 accuracy? Accuracy

k measured on train or test data?)

©
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ILSVRC2015 winner
# params: 60.2M

Just demoed

ILSVRC2013 winner
# params: 143M
Most-adopted feature
Extraction network

e

~N

edups

( Spe

ResNet-152

—=— Linear

——— Poseidon

—o— TF

~\

32

Speedups
® 3

e

Poseidon Scalability

Inception-V3

—a— Linear
—&— Poseidon
—o— TF

12 4 8 16 32
# of Nodes
VGG19
32
—a— Linear
——&— Poseidon
—o— TF
(%]
o
=}
D16
1)
o
)
8
4
31

16
# of Nodes

32

N

edups
3

( Spe

i S} 8 16
# of Nodes
VGG19-22K \
—&— Linear

——&— Poseidon
—o— TF

& &

12 : 8 16
# of Nodes

ILSVRC2013 winner
# params: 60.2M

ILSVRC2013 winner
# params: 229M

Extended to 22K categories

Extremely Large DL
problem, TensorFlow
cannot scale at all

©
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Bandwidth)

e Scenario:

e Training Large Models
e Limited network bandwidth

GooglLeNet VGG19
161 @ Linear 161 @~ Linear
—&— Poseidon (2GbE) —— Poseidon (10GbE)
—#— Poseidon (5GbE) —#— Poseidon (20GbE)
—&— Poseidon (10GbE) =@— Poseidon (30GbE)
n -%- Caffe+WFBP (2GbE) 0 -#- Caffe+WFBP (10GbE) L.
g— ~A- Caffe+WFBP (5GbE) d g— -4~ Caffe+WFBP (20GbE) L
o -@®- Caffe+WFBP (10GbE) o -@®- Caffe+WFBP (30GbE) ’,,/ ~A
q) 8 ) QJ 8 o ”/ -
Q () e
o Q :
n wn P
4+ R T e e e
24 e Fel ccal o PEEPTL T
1+ 1
12 4 8 16 12 4 8 16
# of Nodes # of Nodes

# parameters 5M 143M

o

Speedups

Poseidon scalability (Limited

VGG19-22K

16

Linear

Poseidon (10GbE)

Poseidon (20GbE)

Poseidon (30GbE)

. Caffe+WFBP (LOGbE)
Caffe+WFBP (20GbE)

+ Caffe+WFBP (30GbE)

-

-
- o
- -
- -
-

16
# of Nodes
229M
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Summary

1. How to Distribute?
e  Structure-Aware Parallelization
e  Work Prioritization

2. How to Bridge Computation and Communication?
«  BSP Bridging Model
e  SSP Bridging Model for Data and Model Parallel

3. What to Communicate?
e  Full Matrix updates

o Sufficient Factor updates
e Hybrid FM+SF updates (as in a DL model)

4. How to Communicate?
* Managed comms — interleave comms/compute, prioritized comms
 Parameter Storage: Centralized vs Decentralized
e  Communication Topologies: Master-Slave, P2P, Partial broadcast

©
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Other system issues:

e Broadcast schemes

» Tailored to system configurations
Hardware-level
» CPU-to-CPU, GPU-to-GPU
» InfiniBand, Ethernet
Software-level
- BSP, SSP

» Full broadcast, partial broadcast
e Fault Tolerance
» SV-based checkpoint: save SVs generated in each clock onto disk
Light-weight in disk 10
No waste of compute cycles
Fine-grained (any clock) rollback
e Omni-Hardware

e Each operator has a CPU and GPU implementation
» Kernel fusion

o Elasticity

B Checkpoint Matrix W Checkpoint SV

MLR ™

LST™M

~ S o

Convergence time (h)
(=]

o

» Adding/removing machines do not interrupt current execution @




In Closing: Toward New System
for ML/AI
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Elements of Modern Al

Data ﬁ = » e
A V@&' &9 rhm o0

TaSk IR\, o +
(o R A ElEEE
= SR m il B

Model « Graphical Models + Large-Margin * Deep Learning + Sparse Coding
» Nonparametric * Regularized + Spectral/Matrix » Sparse Structured
Bayesian Models Bayesian Methods Methods I/0O Regression
Algorlthm + Stochastic Gradient + Coordinate * L-BFGS + Gibbs Sampling * Metropolis-
Descent / Back Descent Hastings
propagation
Implementation
» Mahout » Mllib » MxNet » Tensorflow
(MapReduce) (BSP) (Async)
System
Hadoop Spark MPI RPC GraphLab
Platform * Network switches  + Network attached  + Server machines + RAM - loT device « Virtual
and Hardware * Infiniband storage + Deskiops/Laptops * Flash networks (e.g. machines

* Flash storage * ARM-powered +SSD  Amazon EC2)
devices
* Mobile devices
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Sys-Alg Co-design Inside!

Model g

QACAC000D |
atéoooo |
o000

x4
L

=3

r %

Our “VML”
Software Layer

Algorithm

Implementation ==

System
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Time taken (minutes)

NGRIABY |

Better Performance

* Fast and Real-Time

» Orders of magnitude
faster than Spark and
TensorFlow

* As fast as hand-crafted
systems

AAAAAA ‘AZI

10
Up to 200x faster on some
8 |- ML algorithms
6 5.8
4 .3,'8§
X
2 -
0 Hand.
and-
Crafted PetuumOS
System

« Any Scale

* Perfect straight-line
speedup with more
computing devices

» Spark, TensorFlow can
slow down with more
devices

Up to 20x faster deep learning .l'\

vs TensorFlow

16
~@- Lincar
Poseidon

~&-TensorFlow

12 4 8 16

Number of GPU computers

TensorFl

 Low Resource

* Turning a regular cluster
into a super computer:

» Achieve Al results with much
more data, but using fewer
computing devices

» Google brain uses ~1000
machines whereas Petuum
uses ~10 for the same job
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A Petuum Vision

910101010101
110101010119
101010111010
101010101010
101010101011

B & X @ o @

Model

« Omni-Source
(Any Data)

Algorithm —
/ * Omni-Lingual
Implementation P E T U U M (Any Programming Language)

+ Omni-Mount
(Any Hardware)

System

* Network switches  + Network attached  + Server machines + RAM - loT device » Virtual
* Infiniband storage + Deskiops/Laptops * Flash networks (e.g. machines
* Flash storage + ARM-powered +SSD  Amazon EC2)
devices
* Mobile devices
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