
The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem A
Crystal Clear

Input: crystal.in
A new high technology company has developed a material that it hopes to market as an insulator. The material
consists of crystals and the square lattice on which the crystals are grown. The points on the lattice are at 1
centimeter intervals. The crystals are formed from seeds that are planted at the lattice points. Each crystal grows into
a circle of diameter 1 centimeter.

Using this material in applications will require cutting the lattice into pieces. One of the problems in cutting the
lattice is that some crystals will be sliced in the process. Slicing a crystal other than through the center completely
destroys that crystal’s insulation properties. (A cut touching a crystal tangentially does not destroy that crystal’s
insulation property.)

Retain insulation Lose insulation

The insulation capacity of a piece is directly proportional to the total area of the insulating crystals (or parts of
crystals) that are on the piece. The following figure shows a polygonal piece with its insulating crystals shaded.

Your job is to determine the insulating capacity of such polygonal pieces by computing the total area of the
insulating crystals in it.

The 1998 ACM Programming Contest World Finals sponsored by IBM

Input
The input consists of a sequence of polygon descriptions. Each description consists of a positive integer n
(3 ≤ n ≤ 25) representing the number of vertices, followed by n pairs of integers. Each pair is the x and y coordinates
of one vertex of the polygon. (The coordinate system is aligned with the lattice such that the integer coordinates are
precisely the lattice points.)

Vertices of each polygon are given in clockwise order. No polygon will be degenerate. No coordinate will be larger
than 250 in absolute value.

The input is terminated by zero for the value of n.

Output
For each polygon, first print its number (“Shape 1”, “Shape 2”, etc.) and then the area of the insulating crystals
in cm2, exact to three digits to the right of the decimal point.

The following sample corresponds to the previous illustration.

Sample Input Output for the Sample Input
5
0 2
3 5
6 3
6 0
1 0
0

Shape 1
Insulating area = 15.315 cm^2

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem B
Flight Planning
Input: flight.in

Your job is to write a program that plans airplane flights. Each flight consists of a series of one or more legs. Your
program must choose the best altitude for each leg to minimize the amount of fuel consumption during the trip.

The airplane has a fixed airspeed, given by the constant VCRUISE, and a most-efficient cruising altitude, AOPT.
When flying at altitude AOPT, fuel consumption in gallons per hour is given by GPHOPT. When flying at an
altitude that is different from AOPT, fuel consumption increases by GPHEXTRA for each 1000 feet above or below
AOPT. The flight starts and finishes at an altitude of 0. Each 1000 foot climb burns an extra amount of fuel given by
CLIMBCOST (there is no reduction in fuel consumption when you descend). Make the approximation that all
climbing and descending is done in zero time at the beginning of each flight leg. Thus each leg is flown at a constant
airspeed and altitude. For this problem, the airplane characteristics are given by the following constants:

VCRUISE 400 knots (a knot is one nautical mile per hour)
AOPT 30,000 feet
GPHOPT 2000 gallons per hour
GPHEXTRA 10 gallons per hour for each 1000 feet
CLIMBCOST 50 gallons per 1000 feet of climb

Before each flight, you are given the length of each leg and the tailwind expected for each leg. A positive tailwind
increases the airplane’s speed over the ground, and a negative tailwind decreases its speed over the ground. For
example, if airspeed is 400 knots and the tailwind is -50 knots, speed over the ground is 350 knots.

By policy, altitude for each leg must be some integer multiple of 1000 feet, between 20,000 and 40,000 feet,
inclusive. Your program must compute the best altitude for each leg to minimize overall fuel consumption for the
trip, and must compute the fuel required for the trip.

Input
The first line contains an integer N, representing the number of flights you are required to plan. Each flight consists
of the following input lines:

The first input line in a flight contains an integer K (0 < K < 10), representing the number of legs in the flight.
The next K input lines each contain the following three integers:

(1) The length of the leg, in nautical miles
(2) The expected tailwind at 20,000 feet, in knots
(3) The expected tailwind at 40,000 feet, in knots

The expected tailwind at altitudes between 20,000 and 40,000 feet is computed by linear interpolation. For example,
the expected tailwind at 30,000 feet is halfway between the expected tailwind at 20,000 feet and the expected
tailwind at 40,000 feet.

Output
Your program must produce one output line for each flight. The output line must contain the flight number (counting
from the beginning of the problem), the chosen altitude for each leg (in thousands of feet), and the fuel required for
the trip (in gallons, to the nearest gallon).

The 1998 ACM Programming Contest World Finals sponsored by IBM

Sample Input Output for the Sample Input
2
2
1500 -50 50
1000 0 0
3
1000 50 0
2000 0 20
1800 -50 100

Flight 1: 35 30 13985
Flight 2: 20 30 40 23983

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem C
Lead or Gold

Input: leadgold.in
How to make gold from lead has baffled alchemists for centuries. At the last Alchemists Club Meeting (ACM), a
sensational breakthrough was announced. By mixing the three chemicals Algolene, Basicine and Cobolase in the
correct ratio, one can create a mixture that transforms lead into gold. Since Algolene, Basicine and Cobolase (or A,
B, C for short) are generally not sold individually, but rather mixed into solutions, this may not be easy as it seems.

Consider the following example. Two mixtures of Algolene, Basicine and Cobolase are available, in ratios of 1:2:3
and 3:7:1, respectively. By mixing these solutions in a ratio of 1:2 we obtain a solution of A, B, C with ratio 7:16:5.
But there is no way to combine these mixtures into a new one with ratio 3:4:5. If we additionally had a solution of
ratio 2:1:2, then a 3:4:5 mixture would be possible by combining eight parts of 1:2:3, one part of 3:7:1 and five parts
of 2:1:2.

Determining which mixing ratios we can obtain from a given set of solutions is no trivial task. But, as the ACM has
shown, it is possibly a very profitable one. You must write a program to find mixing ratios.

Input
The input file contains several test cases. The first line of each test case contains an integer n (0 ≤ n < 100) that
represents the number of mixtures in the test case. The next n lines each contain three non-negative integers ai, bi, ci,
specifying the ratio ai : bi : ci in which A, B, C occur in the ith mixture. At least one of these integers is positive for
each mixture.

Finally, there is one line containing three non-negative integers a, b, c, which specify the ratio a:b:c in the desired
solution. At least one of these integers is positive.

The input file is terminated with the integer 0 on a line by itself following the last test case.

Output
For each test case, output the word “Mixture”, followed by the ordinal number of the test case. On the next line, if
it is possible to obtain the desired solution by mixing the input solutions, output the word “Possible”. Otherwise,
output the word “Impossible”.

Sample Input Output for the Sample Input
2
1 2 3
3 7 1
3 4 5
3
1 2 3
3 7 1
2 1 2
3 4 5
0

Mixture 1
Impossible

Mixture 2
Possible

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem D
Page Selection by Keyword Matching

Input: page.in
Anyone who has used the World Wide Web is familiar with search engines used to find pages matching a user-
generated query. Many of these engines are quite sophisticated, using advanced algorithms and parallel searching
techniques to provide fast, accurate responses.

This problem is somewhat simpler. A group of web pages has been classified by associating a list of keywords,
given in decreasing order of relevance, with each page (i.e., the order of keywords is from the most specific keyword
to the least specific). For example, a page on programming in Smalltalk has the keywords Smalltalk, programming,
and computers in that order; the most relevant keyword is Smalltalk.

Queries also include a list of keywords, again from most to least relevant. For example, in a query consisting of the
keyword Smalltalk followed by the keyword computers, Smalltalk is more important than computers.

In this problem you are to determine the top five (or fewer) pages that match each of an arbitrary number of queries.
To determine the strength of the relationship between a query and a web page, assume the keywords for each page
and each query are assigned integer weights, in descending order, starting with N, where N is the maximum number
of keywords allowed for a web page and query. The strength of the relationship is the sum of the products of the
weights associated with each keyword that appears both in the web page list and the query list. For example, assume
the following web pages and keyword lists:

Page 1: Smalltalk, programming, computers
Page 2: computers, programming
Page 3: computers, Smalltalk

For N equal 8, a query with keywords Smalltalk and programming in that order yields a strength rating of 113 for
Page 1 (8*8 + 7*7), 49 for Page 2 (7*7), and 56 for Page 3 (8*7). A query with keywords Smalltalk and computers
yields a strength rating of 106 for Page 1 (8*8 + 7*6), 56 for Page 2 (7*8), and 112 for Page 3 (8*7 + 7*8).

Input
Input data consist of one line for each web page and query. A line consists of a code letter followed by a list of
keywords. Code letters P, Q, and E denote a page, a query, and the end of file respectively. Code letters and
keywords are separated by at least one space. Ps and Qs may occur in any order. Pages are added sequentially
starting with one. Each page has at least one but no more than 8 keywords. Each word consists of no more than 20
alphabetic characters. The case of characters in the keywords is not significant. There will be a maximum of 25
pages in the input.

Each query also has of a list of between one and eight keywords. Again, a keyword has no more than 20 alphabetic
characters, case being insignificant. Number the queries sequentially starting with one.

Output
For each query, identify the 5 (or fewer) pages read so far that are most relevant to the query. Print a single line
containing the query identifier, a colon, and the page identifiers of the five most relevant pages in the decreasing
order of relevance. Page identifiers consist of the letter “P” followed by the page number. Query identifiers consist
of the letter “Q” followed by the query number. If several pages have the same relevance, list them by increasing
page number. Do not list pages that have no relationship (zero strength), even if fewer than five pages are identified.

The 1998 ACM Programming Contest World Finals sponsored by IBM

Sample Input Output for the Sample Input
P Smalltalk programming computers
P computers programming
P computers Smalltalk
P FORTRAN programming
P COBOL programming
P programming
Q Smalltalk
Q programming
Q computers
Q Smalltalk computers
Q Smalltalk programming
Q cooking French
E

Query Pages
Q1: P1 P3
Q2: P6 P1 P2 P4 P5
Q3: P2 P3 P1
Q4: P3 P1 P2
Q5: P1 P3 P6 P2 P4
Q6:

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

 Problem E
Petri Net Simulation

Input: petri.in
A Petri net is a computational model used to illustrate concurrent activity. Each Petri net contains some number of
places (represented by circles), transitions (represented by black rectangles), and directed edges used to connect
places to transitions, and transitions to places. Each place can hold zero or more tokens (represented by black dots).
Here are two examples:

P1

P2

T1T2

P1 P2T1 T2
P3

T3

In the first Petri net above, there are two places (P1 and P2) and two transitions (T1 and T2). P1 initially has one
token; P2 has none. P1 is an input place for transition T1, and P2 is an output place for T1. In the second example
there are three places and three transitions, with three tokens in P1. T2 has two input places, both of which are P2.

Operation of a Petri Net

Each transition in a Petri net is either enabled or disabled. A transition is enabled if there is at least one token in each
of its input places. Any transition can fire whenever it is enabled. If multiple transitions are enabled, any one of them
may fire. When a transition fires, one token is removed from each of the input places, and one token is added to each
of the output places; this is effectively done atomically, as one action. When there are no enabled transitions, a Petri
net is said to be dead.

In the top example only T1 is enabled. When it fires one token is removed from P1, and one token is added to P2.
Then T2 is enabled. When it fires one token is removed from P2, and one token is added to P1. Clearly this Petri net
will repeat this cycle forever.

The 1998 ACM Programming Contest World Finals sponsored by IBM

The bottom example is more interesting. T1 is enabled and fires, effectively moving a token to P2. At this point T1
is still the only enabled transition (T2 requires that P2 have two tokens before it is enabled). T1 fires again, leaving
one token in P1 and two tokens in P2. Now both T1 and T2 are enabled. Assume T2 fires, removing two tokens
from P2 and adding one token to P3. Now T1 and T3 are enabled. Continuing until no more transitions are enabled,
you should see that only one token will be left in P2 after 9 transition firings. (Note that if T1 had fired instead of T2
when both were enabled, this result would have been the same after 9 firings.)

In this problem you will be presented with descriptions of one or more Petri nets. For each you are to simulate some
specified number of transition firings, NF, and then report the number of tokens remaining in the places. If the net
becomes dead before NF transition firings, you are to report that fact as well.

Input
Each Petri net description will first contain an integer NP (0 < NP < 100) followed by NP integers specifying the
number of tokens initially in each of the places numbered 1, 2, ..., NP. Next there will appear an integer NT
(0 < NT < 100) specifying the number of transitions. Then, for each transition (in increasing numerical order 1, 2, ...,
NT) there will appear a list of integers terminated by zero. The negative numbers in the list will represent the input
places, so the number -n indicates there is an input place at n. The positive numbers in the list will indicate the
output places, so the number p indicates an output place at p. There will be at least one input place and at least one
output place for each transition. Finally, after the description of all NT transitions, there will appear an integer
indicating the maximum number of firings you are to simulate, NF. The input will contain one or more Petri net
descriptions followed by a zero.

Output
For each Petri net description in the input display three lines of output. On the first line indicate the number of the
input case (numbered sequentially starting with 1) and whether or not NF transitions were able to fire. If so, indicate
the net is still live after NF firings. Otherwise indicate the net is dead, and the number of firings which were
completed. In either case, on the second line give the identities of the places which contain one or more tokens after
the simulation, and the number of tokens each such place contains. This list should be in ascending order. The third
line of output for each set should be blank.

The input data will be selected to guarantee the uniqueness of the correct output displays.

Sample Input Output for the Sample Input
2
 1 0
2
 -1 2 0
 -2 1 0
100
3
 3 0 0
3
 -1 2 0
 -2 -2 3 0
 -3 1 0
100
0

Case 1: still live after 100 transitions
Places with tokens: 1 (1)

Case 2: dead after 9 transitions
Places with tokens: 2 (1)

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem F
Polygon Intersections

Input: poly.in
Most drawing or illustration programs have simple tools for creating polygon objects. The better ones can find the
regions that are the intersections of two polygons. The picture below shows two polygons, one is a pentagon and the
other is a triangle. Their intersection consists of the two dark regions.

IBM has just hired you as a member of a programming team that will create a very sophisticated drawing/illustration
program. Your task is to write the part of the program that deals with polygon intersections. Your boss has told you
to delay work on the user interface and focus only on the geometric representations of the intersections.

A polygon in the Cartesian plane can be represented by a sequence of points that are its vertices. The vertices in the
sequence appear in the order in which they are visited when traveling clockwise around the polygon’s boundary; so
any two adjacent vertices in the sequence are the endpoints of a line segment that is one of the polygon’s sides. The
last and the first vertices in the sequence are also endpoints of a side. Vertices are identified by their x- and y-
coordinates. Assume the following about each polygon.

• No point will occur as a vertex (on the same polygon) more than once.
• Two sides can intersect only at a common endpoint (vertex).
• The angle between any two sides with a common vertex has a measure that is greater than 0 and less than 360.
• The polygon has at least 3 vertices.

The intersection of two polygons consists of 0 or more connected regions. Your problem is to take two polygons and
determine the regions of their intersection that are polygons satisfying the criteria above.

Input
The input contains several data sets, each consisting of two polygons. Each polygon appears as a sequence of
numbers:

n x1 y1 x2 y2 ... xn yn

where the integer n is the number of vertices of the polygon, and the real coordinates (x1,y1) through (xn, yn) are the
boundary vertices. The end of input is indicated by two 0’s for the values of n. These two 0’s merely mark the end of
data and should not be treated as an additional data set.

Output
For each data set, your program should output its number (Data set 1, Data set 2, etc.), and the number of regions in
the intersection of its two polygons. Label each region in the data set (Region 1, Region 2, etc.) and list its vertices
in the order they appear when they are visited going either clockwise or counterclockwise around the boundary of
the region. The first vertex printed should be the vertex with the smallest x-coordinate (to break ties, use the smallest

The 1998 ACM Programming Contest World Finals sponsored by IBM

y-coordinate). No region may include degenerate parts (consisting of adjacent sides whose angle of intersection is
0). If the three endpoints of two adjacent sides are collinear, the two sides should be merged into a single side. Print
each vertex in the standard form (x,y), where x and y have two digits to the right of the decimal.

The following sample input contains exactly one data set. (The data set corresponds to the illustration at the
beginning of this problem description.)

Sample Input
3 2 1 0.5 3.5 8 5
5 1.5 3 2 7 6.5 6.5 6.5 3.25 4 4.5

0
0

Output for the Sample Input
Data Set 1
Number of intersection regions: 2
Region 1:(1.50,3.00)(1.59,3.72)(3.25,4.05)
Region 2:(4.43,4.29)(6.50,4.70)(6.50,4.00)(5.86,3.57)

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem G
Spatial Structures

Input: spatial.in
Computer graphics, image processing, and GIS (geographic information systems) all make use of a data structure
called a quadtree. Quadtrees represent regional or block data efficiently and support efficient algorithms for
operations like the union and intersection of images.

A quadtree for a black and white image is constructed by successively dividing the image into four equal quadrants.
If all the pixels in a quadrant are the same color (all black or all white) the division process for that quadrant stops.
Quadrants that contain both black and white pixels are subdivided into four equal quadrants and this process
continues until each subquadrant consists of either all black or all white pixels. It is entirely possible that some
subquadrants consist of a single pixel.

For example, using 0 for white and 1 for black, the region on the left below is represented by the matrix of zeros and
ones in the middle. The matrix is divided into subquadrants as shown on the right where gray squares represent
subquadrants that consist entirely of black pixels.

0 0
0 0

0 0 1 1 1 0 0
0
0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0

10

5

32

7
6

1

4

8
9

11 12

13 14

15 16
17 18

19

A quadtree is constructed from the block structure of an image. The root of the tree represents the entire array of
pixels. Each non-leaf node of a quadtree has four children, corresponding to the four subquadrants of the region
represented by the node. Leaf nodes represent regions that consist of pixels of the same color and thus are not
subdivided. For example, the image shown above, with the block structure on the right, is represented by the
quadtree below.

NW
NE SW

SE

1

2 3 4 5 6

7 98 10

11 12 13 14

15 16 17 18

19

Leaf nodes are white if they correspond to a block of all white pixels, and black if they correspond to a block of all
black pixels. In the tree, each leaf node is numbered corresponding to the block it represents in the diagram above.
The branches of a non-leaf node are ordered from left-to-right as shown for the northwest, northeast, southwest, and
southeast quadrants (or upper-left, upper-right, lower-left, lower-right).

The 1998 ACM Programming Contest World Finals sponsored by IBM

A tree can be represented by a sequence of numbers representing the root-to-leaf paths of black nodes. Each path is a
base five number constructed by labeling branches with 1, 2, 3, or 4 with NW = 1, NE = 2, SW = 3, SE = 4, and
with the least significant digit of the base five number corresponding to the branch from the root. For example, the
node labeled 4 has path NE, SW which is 325 (base 5) or 1710 (base 10); the node labeled 12 has path SW, SE or
435 = 2310; and the node labeled 15 has path SE, SW, NW or 1345 = 4410. The entire tree is represented by the
sequence of numbers (in base 10)

9 14 17 22 23 44 63 69 88 94 113

Write a program that converts images into root-to-leaf paths and converts root-to-leaf paths into images.

Input
The input contains one or more images. Each image is square, and the data for an image starts with an integer n,
where |n| is the length of a side of the square (always a power of two, with |n| < 64) followed by a representation of
the image. A representation is either a sequence of n2 zeros and ones comprised of |n| lines of |n| digits per line, or
the sequence of numbers that represent the root-to-leaf paths of each black node in the quadtree that represents the
image.

If n is positive, the zero/one representation follows; if n is negative, the sequence of black node path numbers (in
base 10) follows. The sequence is terminated by the number -1. A one-node tree that represents an all-black image is
represented by the number 0. A one-node tree that represents an all-white image is represented by an empty
sequence (no numbers).

The end of data is signaled by a value of 0 for n.

Output
For each image in the input, first output the number of the image, as shown in the sample output. Then output the
alternate form of the image.

If the image is represented by zeros and ones, the output consists of root-to-leaf paths of all black nodes in the
quadtree that represents the image. The values should be base 10 representations of the base 5 path numbers, and the
values should be printed in sorted order. If there are more than 12 black nodes, print a newline after every 12 nodes.
The total number of black nodes should be printed after the path numbers.

If the image is represented by the root-to-leaf paths of black nodes, the output consists of an ASCII representation of
the image with the character ‘.’ used for white/zero and the character ‘*’ used for black/one. There should be n
characters per line for an n×n image.

Sample Input
8
00000000
00000000
00001111
00001111
00011111
00111111
00111100
00111000
-8
9 14 17 22 23 44 63 69 88 94 113 -1
2
00
00
-4
0 -1
0

Output for the Sample Input
Image 1
9 14 17 22 23 44 63 69 88 94 113
Total number of black nodes = 11

Image 2
........
........
....****
....****
...*****
..******
..****..
..***...

Image 3
Total number of black nodes = 0

Image 4

The 1998 22nd Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem H
Towers of Powers

Input: tower.in
One of the many problems in computer-generated graphics is realistically modeling the “orderly randomness” of
things like mountain ranges and city skylines. A new student intern at a graphics company had an idea— use
fluctuations in number representations to model height. In this problem you will compute several such number
representations and show the “skylines” they produce.

Let n be any positive integer, and let b be an integer greater than or equal to 2. The complete base-b expansion of n
is obtained as follows. First write the usual base-b expansion of n, which is just a sum of powers of b, each
multiplied by a coefficient between 1 and b-1, omitting terms with zero coefficients. For example, if n = 20000 and
b = 3, the base-3 expansion of 20000 is given by

20000 = 39+ 35 + 2×33 + 2×32 + 2
To obtain the complete base-b expansion, we apply the same procedure to the exponents until all numbers are
represented in base b. For n = 20000 and b= 3 we would have

20000 = 332
+ 33+2 +2×33+ 2×32 + 2

As another example, consider n = 16647 and b = 2. The resulting expansion is

16647 = 2
22+1+ 22+ 2

 + 2
22+1

 + 2
2
 + 2 + 1

The rising and falling heights of the numbers form the number’s “skyline.”

For each pair of integers n and b in the input, display the complete base-b representation of n. Your display should
use multiple output lines for different exponent heights. The display must begin with n = , followed by the
expansion. Answers should use an asterisk (*) as the multiplication symbol between coefficients and powers of b.
Zero terms must not be printed, and unnecessary coefficients and exponents must not be shown (for example,
display 1 instead of b0, b2 instead of 1*b2and b instead of b1). To assist in accurately viewing the skyline of the
number, the display must show one character (either a digit, +, or *) per column of the multi-line display; there must
be no unnecessary spaces. The correct format is illustrated in the sample output shown below.

Answers must be displayed using no more than 80 columns. Expansions requiring more than 80 columns must be
split between terms, and a second set of display lines used to show the remaining portion of the expansion. The
second part of the answer must begin in the same column as the previous part of the answer. See the sample output
for an example.

Input
Input is a sequence of pairs of integers, n and b, followed by a pair of zeroes. Each value for n will be positive, and
each value for b will be greater than or equal to 2. No value will exceed the maximum signed integer size for the
machine.

The 1998 ACM Programming Contest World Finals sponsored by IBM

Output
For each input pair, n and b, print the complete base-b expansion of n as described above. Print a line containing

n in complete base b:
preceding each expansion. Separate the output for consecutive pairs by a line of hyphens. All coefficients, bases, and
exponents are to be displayed as standard base 10 integers. The expansion for each input pair will require at most
two standard screen widths, allowing for indentation and splitting between terms of the expansion.

Sample Input
20000 3
16647 2
1000 12
85026244 3
0 0

Output for the Sample Input
20000 in complete base 3:

 2
 3 3+2 3 2
20000 = 3 +3 +2*3 +2*3 +2

16447 in complete base 2:

 2+1 2 2+1
 2 +2 +2 2 2
16647 = 2 +2 +2 +2+1

1000 in complete base 12:

 2
1000 = 6*12 +11*12+4

85026244 in complete base 3:

 2 2 2 2 2 2 2
 3 +2*3+1 3 +2*3 3 +3+2 3 +3+1 3 +2 3 +1 3
85026244 = 3 +2*3 +2*3 +2*3 +2*3 +2*3 +2*3

 2*3+2 2*3+1 3
 +2*3 +3 +2*3 +3+1

