Analysis of Algorithms: Assignment 4

Due date: February 1 (Thursday)

Problem 1

For each of the following functions, give an asymptotically tight bound (Θ -notation). Make your expression inside Θ as simple as possible.

Example: $2n^3 + 3n^2 = \Theta(n^3)$.

(a)
$$(2n^6 + 6n^2)^3$$

(a)
$$(2n^6 + 6n^2)^3$$

(b) $(n+2)^2 \cdot (n+3)^3 \cdot (n+6)^6$

(c)
$$3^{2n} + 2^{3n}$$

(d)
$$\sqrt{2n+2} \cdot \sqrt[3]{3n+3} \cdot \sqrt[6]{6n+6}$$

(e) $3^{6n}+n!+\sqrt{n^n}$
(f) $2^{\frac{\log_3 n}{\log_9 2}}$

(e)
$$3^{6n} + n! + \sqrt{n^n}$$

(f)
$$2^{\frac{\log_3 n}{\log_9 2}}$$

Problem 2

Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

$$f(n) \neq \Theta(g(n))$$

$$f(n) \neq o(g(n))$$

$$f(n) \neq \omega(g(n))$$