Analysis of Algorithms: Solutions 5

Problem 1

number of
homeworks

P<d P4 P4 P4 P4 P P4 Pd P4 Pd P

Determine asymptotic bounds for each of the following recurrences.

(a) T'(n) =

3-T(n/27) + n.

We use the master method; since 3 < 27, we conclude that 7'(n) = O(n).

(b) T(n) =

T(n) =

3-T(n/27) + n.
vn+3- T(27)

In+3 (\/7+3 T(272))

Vn+3- \/7+32 272

In+3- \/7+32 (\3/;+3 T(27;3))
Vn+3- \/7+32 3272+33 T(273)

{‘/ﬁ+3-\3/;+32-3272+33 3273+34 3274+ +31°g27"-327loT7n
Vn+n+Vn+Vn+..+n
logz:n—i-l
Vn - (logyyn +1)
O(yn-lgn).

(c) T(n)=T(n/6)+T(n/3)+T(n/2)+ n.

We use the iteration method, which leads to the following tree:

6 n/3 n/2 n

logn+1
o9 n36 W18 M12 n18 W9 n/6 ni2 n/6 4 n
/

+
Iogzn 1

/
1

The summation gives a lower and upper bound for 7'(n):
n-(loggn+1) <T(n) <n-(logyn+1),

which implies that T'(n) = ©(n - Ign).
(d) T(n) =T(n—1)+1/2"

1
T(n) = T(n—1)+2—n

1 1
= T(n_2)+2n71+2_n
111 11
== §+§+¥+"'+2n71+2_n
_ 1
- om
= 0(1).

(e) T(n) =2-T(\/n) + 1.

We “unwind” the recurrence until reaching some constant value of n, say, until n < 2:

] e, ifn<2
T(")_{ 2-T(vn)+1, ifn>2

. k
For convenience, assume that n = 22", for some natural value k.

T(E%) = 1+2-T(/2%)
= 1+2.-T(2*)

= 1+2-(1+2-T(\/22’“‘1))
= 14244-T(2"7)

- 1+2+4-(1+2-T(\/22T2))

= 1+2+4+8-T2*)

= 14+2+4+..+214T(2)
= 28 1400
= 0(2%).
Finally, we note that k = lglgn, which means that T'(n) = ©(2'8!8") = O(Ign).

Problem 2

The standard analysis of MERGE-SORT(A, p, q) is based on the assumption that we pass
All..n] by a pointer. If a language does not allow passing an array by a pointer, we may
have two other options; for each option, determine the running time of MERGE-SORT.

(a) Copy all elements of the array A[l..n], which takes ©(n) time.

Let n be the size of the array A[1..n], and m be the size of the segment A[p..q|, sorted by the
recursive call MERGE-SORT(A, p, ¢). The time of copying the array is ©(n), and the time of
the MERGE operation is ©(m), which leads to the following recurrence:

T(m)=2-T(m/2) + O(n) + O(m).
Since m < n, we conclude that
T(m)=2-T(m/2)+0O(n)=2-T(m/2)+c-n,
and unwind this recurrence as follows:

T(m) = c-n+2-T(m/2)
c-n+2-c-n+22-T(m/4)
= c-n+2-c-n+22-c-n+2°-T(m/8)

= cn+2-cn+2%-con+.. 28" l.c.oppoem.cop
(2™ —1).c-n

(2-m—1)-c-n

= O(m-n).

Thus, the running time of MERGE-SORT(A, p,q) is ©(m - n), where m is the size of the
segment A[p..q]. The top-level call to the sorting algorithm is MERGE-SORT(A, 1, n); for
this call, we have m = n, which means that the time complexity is

(b) Copy the elements of the segment A|[p..q], which takes ©(q — p + 1) time.

The complexity of copying the segment is ©(m), which is the same as the time of the MERGE
procedure; hence, copying does not affect the complexity of the algorithm. The recurrence
is the same as the standard recurrence for MERGE-SORT, and the overall time is ©(n -1gn).

