Analysis of Algorithms: Solutions 6

									X
									X
									X
									X
									X
									X
									X
									X
									X X
									X
									X
									X
									X
									X
									Х
									Х
									X
									Х
									Х
									Х
									Х
									Х
									X
									X
									X
									X
number of									Х
homeworks								X	
						X			X
						X			X
						X			X
						X			Х
	X 	X 				X 		X 	X
	2	3	4	5			8	9	10
			grades						

The histogram shows the distribution of grades; it does not include the bonus.

Problem 1

Draw four binary search trees, with heights two, three, four, and five. Each tree should have six nodes, and the keys of these nodes should be 1, 2, 3, 4, 5, and 6.

Problem 2

Give a nonrecursive version of Inorder-Tree-Walk.

```
ITERATIVE-TREE-WALK(T)

x \leftarrow \text{Tree-Minimum}(root[T])

while x \neq \text{NiL}

do print key[x]

x \leftarrow \text{Tree-Successor}(x)
```

Problem 3

Give an algorithm that converts a sorted array A[1..n] into a balanced binary search tree.

```
\begin{aligned} &\operatorname{Convert}(A,p,r)\\ &q \leftarrow \lfloor (p+r)/2 \rfloor \\ &\operatorname{create\ a\ new\ node\ } x\\ &\ker[x] \leftarrow A[q] \\ &\operatorname{if\ } p < q\\ &\operatorname{then\ } y \leftarrow \operatorname{Convert}(A,p,q-1)\\ &\operatorname{parent}[y] \leftarrow x\\ &\operatorname{left-child}[x] \leftarrow y \\ &\operatorname{if\ } q < r\\ &\operatorname{then\ } z \leftarrow \operatorname{Convert}(A,q+1,r)\\ &\operatorname{parent}[z] \leftarrow x\\ &\operatorname{right-child}[x] \leftarrow z \\ &\operatorname{return\ } x \end{aligned}
```