Analysis of Algorithms: Solutions 9

X
X
X X
number of X X X
homeworks X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X X X

Problem 1

Suppose that G is a weighted directed graph, where all weights are integers between 1 and 5,
and let v and v be two vertices of G. Describe an efficient algorithm SHORTEST-PATH(G, u, v)
that finds a minimal-weight path from v to v.

We construct a new graph, by replacing every edge of length n in the original graph with
n unit edges, as shown in the picture. That is, we replace every edge of length 2 with
two unit edges, every edge of length 3 with three unit edges, and so on. We then run the
breadth-first search in the new graph, with the source vertex u, which finds a shortest path
from u to v. If the original graph has V' vertices and E edges, then the new graph has at
most V' +4 . E vertices and 5 - E edges, and the running time of the breadth-first search is
OV+4-E+5-E)=0V+E).

O O = O—0—"=0=-0—0
length n n unit edges

Problem 2
Write pseudocode of an algorithm GREEDY-KNAPSACK(W, v, w,n) for the 0-1 Knapsack
Problem. The arguments are an weight limit W, item values v[1..n], and item weights w(1..n].

GREEDY-KNAPSACK(W, v, w,n)
sort, items in the descending order of the ;L[’Z]] ratios
items < () > set of selected items
w-sum <— 0 > sum of their weights
fori+ 1ton > in sorted order
do if w-sum+ wli] < W
then items < items U {i}
w-sum <— w-sum + wli]

return items



The sorting takes O(nlgn) time, whereas the selection loop runs in linear time. Thus, the
total time of GREEDY-KNAPSACK is O(nlgn).

Problem 3
Suppose that the weights of all items in the 0-1 Knapsack Problem are integers, and the
weight limit W is also an integer. Design an algorithm that finds a globally optimal solution.

We use two arrays, item[1..W] and value[0..W], which are indexed on the size of a knapsack.
For every size ¢ between 0 and W, we compute the maximal value of items that can be loaded
into a knapsack, and store this result in value[i]. If valueli] is larger than valueli — 1], then
item[i] is the last added item; otherwise, item][i] is 0.

We add items in their numerical order; that is, if items 7; and j, must be in the knapsack,
and j; < jo, then we add j; before j5.

The following algorithm computes the arrays item[1l..W] and wvalue[0..W], and returns
the maximal value of items for size W its time complexity is O(n - W).

OPTIMAL-KNAPSACK(W, v, w, n)

value[0] < 0
fori+—1toW >> consider every size of a knapsack
do item[i] + 0
valueli] < valueli — 1] > initialize the maximal value for size ¢

for j < 1ton > look through items, to find the best addition to a smaller load
do if w[j] <i > item j fits into the knapsack
and j > item[i — w[j]] > it does not violate the numerical order
and valuei| < value[i—w[j]]+v[j] > we get a good value by adding j
then item|i] < j > add j to the knapsack
valueli] < value[i — w[j]] + v[j]
return value[\V]

We also need an algorithm for printing out the list of selected items. The following output
procedure uses the array item[1..W], built by DYNAMIC-KNAPSACK, to print items in their
numerical order; its running time is O(n).

PRINT-KNAPSACK (item, W, w, 1)
ifi=0
then “do nothing”
elseif item[i] = 0
then PRINT-KNAPSACK (item, W, w,i — 1)
else PRINT-KNAPSACK (item, W, w, i — wlitem]i]])
print item]i]



