Analysis of Algorithms: Solutions 9

								X		
								X		
								X	X	
number of							X	X	X	
homeworks							X	X	X	
						X	X	X	X	
						X	X	X	X	
				X		X	X	X	X	
				X		X	X	X	X	
	X	X		X		X	X	X	X	
	2	3	4	 5	 6	 7	 8	 9	 10	
		grades								

Problem 1

Suppose that G is a weighted directed graph, where all weights are integers between 1 and 5, and let u and v be two vertices of G. Describe an efficient algorithm Shortest-Path(G, u, v) that finds a minimal-weight path from u to v.

We construct a new graph, by replacing every edge of length n in the original graph with n unit edges, as shown in the picture. That is, we replace every edge of length 2 with two unit edges, every edge of length 3 with three unit edges, and so on. We then run the breadth-first search in the new graph, with the source vertex u, which finds a shortest path from u to v. If the original graph has V vertices and E edges, then the new graph has at most $V + 4 \cdot E$ vertices and $5 \cdot E$ edges, and the running time of the breadth-first search is $O(V + 4 \cdot E + 5 \cdot E) = O(V + E)$.

Problem 2

Write pseudocode of an algorithm GREEDY-KNAPSACK(W, v, w, n) for the 0-1 Knapsack Problem. The arguments are an weight limit W, item values v[1..n], and item weights w[1..n].

Greedy-Knapsack(W, v, w, n) sort items in the descending order of the $\frac{v[i]}{w[i]}$ ratios $items \leftarrow \emptyset$ \triangleright set of selected items $w\text{-}sum \leftarrow 0$ \triangleright sum of their weights for $i \leftarrow 1$ to n \triangleright in sorted order do if $w\text{-}sum + w[i] \leq W$ then $items \leftarrow items \cup \{i\}$ $w\text{-}sum \leftarrow w\text{-}sum + w[i]$ return items

The sorting takes $O(n \lg n)$ time, whereas the selection loop runs in linear time. Thus, the total time of Greedy-Knapsack is $O(n \lg n)$.

Problem 3

Suppose that the weights of all items in the 0-1 Knapsack Problem are integers, and the weight limit W is also an integer. Design an algorithm that finds a qlobally optimal solution.

We use two arrays, item[1..W] and value[0..W], which are indexed on the size of a knapsack. For every size i between 0 and W, we compute the maximal value of items that can be loaded into a knapsack, and store this result in value[i]. If value[i] is larger than value[i-1], then item[i] is the last added item; otherwise, item[i] is 0.

We add items in their numerical order; that is, if items j_1 and j_2 must be in the knapsack, and $j_1 < j_2$, then we add j_1 before j_2 .

The following algorithm computes the arrays item[1..W] and value[0..W], and returns the maximal value of items for size W; its time complexity is $\Theta(n \cdot W)$.

```
OPTIMAL-KNAPSACK(W, v, w, n)
value[0] \leftarrow 0
for i \leftarrow 1 to W
                        ⊳ consider every size of a knapsack
    do item[i] \leftarrow 0
        value[i] \leftarrow value[i-1] \triangleright initialize the maximal value for size i
        for j \leftarrow 1 to n
                               ▷ look through items, to find the best addition to a smaller load
            do if w[j] < i
                                 \triangleright item j fits into the knapsack
                         and j > item[i - w[j]]
                                                        ⊳ it does not violate the numerical order
                         and value[i] < value[i-w[j]] + v[j]
                                                                     \triangleright we get a good value by adding j
                                               \triangleright add j to the knapsack
                     then item[i] \leftarrow i
                             value[i] \leftarrow value[i - w[j]] + v[j]
```

return value[W]

We also need an algorithm for printing out the list of selected items. The following output procedure uses the array item[1..W], built by DYNAMIC-KNAPSACK, to print items in their numerical order; its running time is O(n).

```
PRINT-KNAPSACK(item, W, w, i)
if i = 0
   then "do nothing"
elseif item[i] = 0
   then PRINT-KNAPSACK(item, W, w, i - 1)
else Print-Knapsack(item, W, w, i - w[item[i]])
    print item[i]
```