Analysis of Algorithms: Solutions 2

X
X
X
number of X X
homeworks X X X
X X X X
X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X X

1.5-2 2.5-3 3.5-4 4.5-5 5.5-6 6.5-7 7.5-8 8.5-9 9.5-10
grades

This histogram shows the distribution of grades for the homeworks submitted on time. Note
that it does not include the bonus grades.

Problem 1
Write pseudocode for the MERGE(A, p, ¢, r) procedure.

We use an auxiliary array B[p..r], for storing the result of merging A[p..q] and Alg + 1..7].
After completing the merge, we copy the contents of B[p..r] into A[p..r].

MERGE(A, p, q,T)
14D > index in A[p..¢q]
jq+1 >indexin Afg+ 1..7]
k< p > index in B[p..r|
while i < gorj<r > merge A[p..q| and Alg + 1..r]
doifj>r
then Blk] < Ali]
1 1+1
else if i > ¢
then B[k] < A[j]
j+—i+1
else if A[i] < A[j]
then B[k] «+ A[i
1 1+1
else B[k| + A[j]
j—j+1
k+—k+1
for k< ptor > copy the merged array to A[p..r]
do A[k] «+ Blk]



Problem 2
For each of the following functions, give an asymptotically tight bound (©-notation).

(a) (n?+n+ 1) =(n?+o(n?) + o(n?))'? = O((n?)!?) = O(n?)

(b) (Vn+¥/n+lgn)® = (Vn+o(vn)+o(vn))® =0((vn)") = 6(n°)
(c) n'®+1.01" = 0(1.01") + 1.01™ = ©(1.01™)

(d) n'°+0.99" =n'" 4+ 0(1) = O(n'?)

(e) 2" +n!+n"=O0(n") +O(n") + n" = O(n")

(f) 2'8" =n =0(n)

Problem 3
Give an example of functions f(n) and g(n) such that f(n) # O(g(n)) and f(n) # Q(g(n))-

Consider the following two functions:

n if n is even;
f(”):{ 1 ifnis odd.

(n) = 1 if n is even;

=Y 0 if nis odd.

For even n, f(n) grows asymptotically faster than g(n). On the other hand, for odd n,
f(n) grows asymptotically slower. Therefore, g(n) is neither asymptotically lower bound nor
asymptotically upper bound for f(n).

Problem 4
Suppose that we have four algorithms, called Ay, A;, As, and A3z, whose respective running
times are m, n?, lgn, and 2". If we use a certain old computer, then the maximal sizes of
problems solvable in an hour by these algorithms are sg, s1, S9, and ss.

Suppose that we have replaced the old computer with a new one, which is £ times faster.
Now the maximal size of problems solvable in an hour by Ay is k- sg. What are the maximal
problem sizes for the other three algorithms, if we run them on the new computer?

For A;: On the old machine, the A; algorithm solves a problem of size s; in one hour. The
running time of this algorithm on a problem of size s; is s?; hence, s? = 1 hour.
The new machine is k times faster, which means that the running time of A; is n? k.
We denote the size of the largest problem solvable in one hour by vy; then, v#/k = 1 hour.
We conclude that v?/k = s? and, hence, v; = s;v/k. Thus, the maximal size of a problem
solvable in one hour on the new machine is s;Vk.

For A,: On the old machine, the Ay algorithm solves a problem of size s, in one hour, which

means that 1g s, = 1 hour. If we denote the maximal problem solvable in an hour on the new

machine by v,, then (Igvy)/k = 1 hour. Thus, (Igvs)/k = lg sy, which implies that vy = s5.

Thus, the maximal problem solvable in one hour on the new machine is of size s&.

For A;: We denote the maximal problem solvable by A3 on the new machine by vz, and use
a similar reasoning to obtain the equation 2”3 /k = 2% which implies that vs = s3 + Ig k.



