Analysis of Algorithms: Solutions 6

```
X
                                 X
                                 X
                                 X
                        X
                              X X
                       Х
                              X \quad X
                              х х
                        Х
number of
                        X
                              X X
homeworks
                        Х
                              X
                                Х
                    X
                       Х
                              X
                                 Х
                    Х
                       Х
                          Х
                              Х
                                 Х
              X \quad X \quad X \quad X
                          Х
                              X
                                 X
        X X X X
                      х х
                             Х
           3 4 5 6 7
                          8 9
                                10
                  grades
```

Problem 1

Write a nonrecursive version of FIND-SET with path compression, for disjoint-set forests.

```
FIND-SET(x) z \leftarrow x
while z \neq parent[z] \triangleright find the root
do z \leftarrow parent[z]
while x \neq z \triangleright set the parent pointers to the root z
do y \leftarrow parent[x]
parent[x] \leftarrow z
x \leftarrow y
return z
```

Problem 2

Write efficient algorithms for converting (a) an adjacency-list representation of a graph into an adjacency matrix and (b) an adjacency matrix into adjacency lists.

We denote the adjacency list of a vertex u by Adj-List[u], and the adjacency-matrix element for vertices u and v by Adj-Matrix[u, v]. The time complexity of both algorithms is $\Theta(V^2)$.

(a) Converting adjacency lists into a matrix.

```
Lists-to-Matrix(G) \rhd G is represented by adjacency lists for each u \in V[G]
do for each v \in V[G]
do Adj-Matrix[u,v] \leftarrow 0
for each u \in V[G]
do for each v \in Adj-List[u]
do Adj-Matrix[u,v] \leftarrow 1
```

(b) Converting an adjacency matrix into lists.

```
Matrix-to-Lists(G) > G is represented by an adjacency matrix for each u \in V[G]
do initialize an empty list Adj-List[u]
for each u \in V[G]
do for each v \in V[G]
do if Adj-Matrix[u, v] = 1
then add v to Adj-List[u]
```

Problem 3

Using Figure 23.3 in the textbook as a model, illustrate the steps of breadth-first search on the directed graph of Figure 23.2(a), with vertex 3 as the source.

The order of painting the vertices is as follows:

gray 3	black 5
gray 5	black 6
gray 6	$\operatorname{gray} 2$
black 3	black 4
gray 4	black 2