Analysis of Algorithms: Solutions 9

number of
homeworks

Ba e bd Bd Bd B B4 bd bd e
Ba b4 bd Bd Bd B4 B4 bd bd bd b

3 4 5 6 7 8 9 10 11 12

Problem 1
Determine a longest common subsequence of {(0,1,1,0,1,1) and (1,0,1,0,0, 1,0, 1), and draw
the table constructed by the LCS-LENGTH algorithm for these two sequences.

The longest common subsequences are (0,1,1,0,1), (0,1,0,1,1), and (1,1,0,1,1). The table
computed by LCS-LENGTH is as follows:

O P, N WP OO



Problem 2
Write an algorithm INCREASING-LENGTH(A, n) that determines the length of a longest in-
creasing subsequence of an array A[n|.

Let d[i] denote the length of a longest increasing subsequence whose last element is A[i]. For
example, suppose that A = (1,2,1,2,3) and ¢ = 3; then, the longest increasing subsequence
that ends at A[3] is (1, 1), which implies that d[3] = 2.

Observe that this subsequence contains at least one element, which means that d[i] > 1.
Furthermore, if j < i and A[j] < A[é], then d[i] > d[j] + 1, because we may construct a
(d[j] + 1)-element increasing subsequence that ends at A[i], by adding A[i] to the longest
increasing subsequence that ends at A[j]. These observations lead to the following algorithm,
whose running time is ©(n?):

INCREASING-LENGTH(A, n)
d-maz < 0
fori<1ton
do d[i] + 1
for j«—1toi1—1
do if A[i] > A[j] and d[i] < d[j] +1
then d[i] < d[j] +1
if d-maz < d[i]
then d-maz < d[i]
return d-maz

Problem 3

Suppose that you drive along some road, and you need to reach its end. Initially, you have a
full tank, which holds enough gas to cover a certain distance d. The road has n gas stations,
where you can refill your tank. The distances between gas stations are represented by an
array A[l..n], and the last gas station is located exactly at the end of the road. You wish
to make as few stops as possible along the way. Give an algorithm CHOOSE-STOPS(d, 4, n)
that identifies all places where you have to refuel, and returns the set of selected gas stations.

CHOOSE-STOPS(d, A, n)
stations < () 1> set of selected gas stations
d-left + d > distance that corresponds to the remaining gas
for i< 1ton

do if d-left < A[i] > cannot reach the next gas station? then refuel

then stations < stationsU {i — 1}
d-left < d

d-left < d-left — A[i] > drive to the next station

return stations

The algorithm runs in linear time, that is, its complexity is ©(n).



Problem 4

Suppose that the weights of all items in the 0-1 Knapsack Problem are integers, and the
weight limit W is also an integer. Design an algorithm that finds a globally optimal solution,
and give its time complexity in terms of the number of items n and weight limit W.

We use dynamic programming with two arrays, item[1..W] and value[0..W], which are in-
dexed on the size of a knapsack. For every size 7 between 0 and W, we compute the maximal
value of items that can be loaded into a knapsack, and store this result in value[i]. If valuel]
is larger than value[i — 1], then item][i] is the last added item; otherwise, item|i] is 0.

We add items in their numerical order; that is, if items 7; and j, must be in the knapsack,
and j; < j9, then we add j; before 7.

The following algorithm computes the arrays item[1..W] and wvalue[0..W], and returns
the maximal value of items for size W its time complexity is ©(nW).

Dynamic-KNAPSACK(W, v, w, n)
value[0] < 0
for 1 < 1 to W > consider every size of a knapsack
do item[i] + 0
valueli] < valueli — 1] > initialize the maximal value for size i
for j + 1 ton © look through items, to find the best addition to a smaller load
do if w[j] <i > item j fits into the knapsack
and j > item[i — w([j]] © it does not violate the numerical order
and value[i] < value[i —w[j]]+v[j] > we get a good value by adding j
then item[i] « j > add j to the knapsack
valueli] < value[i — w[j]] + v[j]
return value[W]

We also need an algorithm for printing out the list of selected items. The following output
procedure uses the array item[1..W], built by DYNAMIC-KNAPSACK, to print items in their
numerical order; its running time is O(n).

PRINT-KNAPSACK (item, W, w, i)
ifi=0
then “do nothing”
elseif item[i] = 0
then PRINT-KNAPSACK (item, W, w,i — 1)
else PRINT-KNAPSACK (item, W, w, i — wlitem][i]])
print item]i]



