
Enabling Rich Human-Agent Interaction
for a Calendar Scheduling Agent

• The RhaiCAL system provides
novel visualizations and interaction
techniques for interacting with an
intelligent agent, with an emphasis
on calendar scheduling.

• A�er an agent interprets natural
language containing meeting
information, a user can easily
correct mistakes using RhaiCAL’s
clarification dialogs, which provide
the agent with feedback to improve
its performance.

• When an agent proposes to take
actions on the user’s behalf, it can
ask the user to review them.
RhaiCAL uses novel visualizations
to present proposals to the user and
to allow the user to modify or reject
them. The agent is informed of the
user’s actions in a manner that
supports long-term learning of the
user’s preferences.

• We have designed a high-level
XML-based language that allows an
agent to express its questions and
proposed actions without
mentioning user interface details,
and that enables RhaiCAL to
generate high-quality user
interfaces.

• Just like a human assistant, an
agent needs to consult its
supervisor when asked to perform
a task that is under-specified, has
ambiguous instructions, deviates
from normal, or has changed.

• What is a good user interface for
interaction between a user and an
agent? How should an agent ask a
user to check its understanding of
natural language? How should an
agent ask a user to approve, reject,
or modify actions that it proposes?

• We are using calendar scheduling
to answer these questions.

Clarifying Natural Language

Proposing Schedules

Communicating between Agent and UI
<action type="add">

 <parameter name="object" type="meeting">

 <object id="mtg-F408" type="meeting" option="a">

 <property name="start">

 <option>2004-07-30 13:30:00 -0400</option>

 </property>

 <property name="end">

 <option>2004-07-30 14:30:00 -0400</option>

 </property>

 <property name="summary">

 <option confidence="0.8">

 quarterly report -

 Laura

 </option>

 </property>

 <property name="location">

 <option origin="#CC89">SRH 531</option>

 </property>

 </object>

 <constraint properties="start, end">

 <inclusive-range>

 <min origin="#1288">2004-07-30 12:00:00 -0400</min>

 <max origin="#D8AB">2004-07-30 16:30:00 -0400</max>

 </inclusive-range>

 <preference>

 <inclusive-range>

 <min origin="#CC89">2004-07-30 14:00:00 -0400</min>

 <max>2004-07-30 15:00:00 -0400</max>

 </inclusive-range>

 </preference>

 </constraint>

 </parameter>

</action>

Andrew Faulring and Brad A. Myers
{faulring, bam}@cs.cm.edu
School of Computer Science, Carnegie Mellon University
http://www.cs.cmu.edu/~faulring/rhai.html

Acknowledgements
The authors thank Ellen Ayoob, Andrew Ko, Jay Modi, Jeffrey Nichols, Jean Oh, Jeff Pierce, Bill Scherlis, Desney Tan, Aaron Spaulding, Anthony Tomasic, and John Zimmerman. Andrew Faulring is supported by a NSF Graduate
Research Fellowship. This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the DARPA or the Department of Interior-National Business Center (DOI-NBC).

• A�er the agent clarifies its understanding of Laura’s email, the agent searches for
schedules that satisfy Laura’s request and Paula’s preferences. RhaiCAL visualizes
the agent’s suggestions within the context of Paula’s calendar to allow her to see
how the proposal relates to existing calendar entries.

• RhaiCAL allows the agent to propose multiple schedules, which are shown
side-by-side.

• RhaiCAL uses three visual layers to group the meetings:
▪ The backmost layer contains items that represent the user’s preferences such as

lunch time. Items in this layer are filled with a light gray diagonal pa�ern.
▪ The next layer contains existing meetings in Paula’s calendar, such as those with

Jerry and Amy.
▪ The foremost layer contains meetings that the agent is proposing to add or

change. These meetings are drawn with shadows.
• The vertical bars on the right, labeled with subject for the associated meeting,

show the scheduling constraints and preferences of other meeting participants.
The bar shows when the other participant is available, and the thicker bar shows
the times that they prefer.

• The user edits a meeting by dragging it around the calendar or by double clicking
on it to bring up a property sheet dialog. When done responding to the proposal,
the user presses the “OK” bu�on.

• RhaiCAL’s XML-based language supports communication
between an agent and the RhaiCAL user interface runtime.
The example to the right shows an excerpt of the XML that
an agent would send to RhaiCAL to propose adding the
“quarter report - Laura” meeting.

• Primitive types: boolean, integer, fixed-point, floating-point,
time, date, and string.

• Aggregate types: object (collection of properties), or list.
• An <action> block proposes a change to some data. In this

example, the agent is proposing to add a meeting object to
the user’s calendar. Actions can be grouped together, such as
“Option B” in the above example: add the meeting with
Laura at 2:00 and bump Jeff’s meeting to 4:30.

• Each <option> block contains an optional origin
a�ribute, which links to the anchor from which the option’s
value was derived.

• A <constraint> block describes constraints on property
values. In this example, the constraint specifies another
person’s available and preferred times for the meeting.

• Other constraints group options of different properties, and
specify that an option should only be used once in a set of
properties.

• A calendar scheduling agent intercepts and interprets emails.
A RhaiCAL clarification dialog box (shown on the right) lets
a user to check and correct the agent’s interpretation of
natural language.

• The agent’s instructions appear at the top, the properties of
the request in the middle, and the text of the original email at
the bo�om.

• Anchors associate text in the source email with text in the
request’s properties. Anchors inform the user from where the
agent found a property’s value. Inactive anchors (“Laura”)
are drawn with a blue do�ed underline; active anchors
(“quarterly report”) are drawn with a thick blue underline.

• When the user copy-and-pastes or drag-and-drops text from
the email into a property, RhaiCAL creates an anchor to
preserve the association. RhaiCAL returns these anchors to
the agent as feedback to improve its performance through
learning.

Rich
Human-
Agent
Interaction for
CALendaring

Solution

Problem

