
Development of CAMPOUT and its further applications to planetary
rover operations: a multi-robot control architecture

Paolo Pirjanian*, Terry L. Huntsberger, Paul S. Schenker,
Jet Propulsion Laboratory, California Institute of Technology

ABSTRACT

In this paper, we describe an architecture for the development of autonomy software for multi-robot distributed control
and collective estimation. CAMPOUT, the Control Architecture for Multi-Robot Planetary OUTposts, provides
communication facilities for sharing of state information across robots and it uses a behavior network for representation
and execution of group activities as well as the activities of a single robot. In our research, we have shown that
CAMPOUT provides a level of abstraction that enables us to develop multi-robot software in a manner much similar to
what we use for single robot software development. We showcase the main architectural components by describing two
multi-robot tasks for planetary construction and collective cliff-descent. For both tasks, we show how behavior
networks can be used to describe group activities and how publish/subscribe and other communication mechanisms can
be used to share state information across multiple robots.

Keywords: control architecture, multi-robot systems, tight coordination, planetary rover operations

1 INRODUCTION

Future planetary and space operations may require employment of multiple robots, which must cooperate to achieve a
common task that is either impossible or impractical to accomplish using a single robot. These tasks may range from
cooperative handling, transportation, assembly, and maintenance of large structures to collective surface exploration and
mapping [1]. In our work to date, we have focused on two areas of multi-robot control issues. The first area pertains to
cooperative grasp, handling, and transportation of large containers using Robotic Work Crews (RWC) [2]. The second
area is the use of multi-robot systems to develop an aggressive mobility system for All Terrain Exploration (ATE) [3].
The ATE concept consists of a tethered ’cliff-bot’ that is assisted by two ’anchor-bots’ to reach a desired location on a
cliff side, where high-value science targets can be accessed.

The advantages of using multiple versus a single robot for such tasks are many, including redundancy and hence fault-
tolerance to single robot failures, complementary capabilities provided by a heterogeneous group of robots, parallel task
execution, and increased work for the same launch mass [4]. But these benefits often come at the cost of an increased
complexity of software and techniques for control and coordination of multiple robots, the need for inter-robot
communications and more. For instance, a distinctive characteristic of ATE and RWC is the requirement for explicit
coordination of the activities of distributed robotic entities in a tightly coupled fashion. Both systems consist of robots
that are physically connected (with a container or tethers) so that the actions of a single robot directly influence the
(physical) state of the others. E.g., in ATE, the velocity of the cliff-bot must be tightly coupled with the velocities at
which the anchor-bots pay out the tethers. A significant mismatch between their velocities can either yank the cliff-bot
or send it falling down the cliff, etc. Thus a major thrust of our work has been to develop a methodology along with a
software architecture called CAMPOUT that supports the development of multi-robot systems. CAMPOUT (Control

* Paolo.Pirjanian@jpl.nasa.gov; phone 1 818 354-3169; fax 1 818)393-3254; http://robotics/people/paolop; Planetary
Robotics Lab, Jet Propulsions Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA
91109, USA

Architecture for Multi-robot Planetary OUTposts) essentially provides infrastructure for collective state estimation and
distributed control. Robotics is a highly multidisciplinary field, and requires efficient integration of many components
(perception, mapping, localization, control, learning, etc.) that use different representations, frameworks, and paradigms
(classical control theory, AI planners, estimation theory, data fusion, computer vision, utility theory, decision theory,
fuzzy logic, multiple objective decision making etc.). CAMPOUT provides the infrastructure, tools, and guidelines that
consolidate a number of diverse techniques to allow the efficient use and integration of these components for meaningful
interaction and operation. This is facilitated through a few elementary architectural mechanisms for behavior
representation, behavior composition, and group coordination, and the interfaces between these. These mechanisms and
a framework with guidelines for describing systems define the core of CAMPOUT. CAMPOUT is extensible and scales
freely with regard to behavioral mechanisms and protocols that it can host and fuse, re-mappable inter-robot
communications it can support, and the overall ability to functionally integrate heterogeneous, multi-purpose platforms.
In this paper, we describe the fundamental philosophy of CAMPOUT, the main underlying architectural mechanisms,
and its application to two planetary rover tasks of coordinated transportation and collective cliff-descent. We conclude
with lessons learned and directions for future work.

2 CAMPOUT

CAMPOUT consists of a number of key mechanisms and architectural components that facilitate development of multi-
robot systems for cooperative and coordinated activities. These include the following:

1. Modular task decomposition: Following a behavior-based methodology, CAMPOUT provides fundamental
building blocks for describing a system in terms of task-achieving modules known as a behavior-producing module
or a behavior, for short. While a behavior provides a convenient and efficient architectural substrate to encapsulate
perception and action, it is its interactions with other behavior-producing modules that generate the final behavior of
the system. In its current implementation, task decomposition is done by hand and encoded in a script/plan, which
is then executed by the agents. We are currently working towards extending CAMPOUT with automated planning
of joint team activities.

2. Behavior coordination mechanisms: A system’s behavior is described as a network of behaviors that interact with
each other and with the environment through sensors and effectors. The behavior interactions are regulated through
behavior coordination mechanisms (BCMs). The BCMs are used to restrict and control the behavioral interactions
so that the system can operate according to its specifications. In other words, the BCMs are used to ensure that the
behaviors interact in a desired and consistent manner.

3. Group coordination: CAMPOUT uses the same task decomposition scheme and representation to describe group
activities, the deference being that the nodes (behaviors) of the network are distributed across the group of robots
and connected through implicit (supported by extraprioceptive sensing) or explicit (radio) communication.

4. Communications infrastructure: Relying on sensing for communication is not a feasible solution because sensing
can be unreliable, the sensory envelope is often more range-limited than radio communication, and it requires more
computation for processing than is usually the case with radio communication. CAMPOUT provides a software
infrastructure that allows transparent inter-robot communication, which enables the robots to share state
information, sensors, actuators, etc. The communications infrastructure allows a behavior network to be seamlessly
distributed across a network of robots.

2.1 Modular task decomposition

In CAMPOUT, the control and autonomy software is described as a network of modules known as behaviors.
Essentially, a behavior is a specialized computational unit that generates a mapping from perception to action in order to
achieve or maintain a goal such as obstacle avoidance, stable balance, compliance etc. Behaviors exploit specific
knowledge about their task and the environment to achieve a remarkably efficient implementation of their control policy,
while requiring limited computation [5].

In our architectural methodology we formalize a behavior, b, as a mapping, b: P* × X → [0; 1], that relates each percept
sequence p∈ P* and action x ∈ X pair, (p, x), to a preference value that reflects the action’s desirability. The percept

describes possible (processed or raw) sensory input and the N-dimensional action space is defined to be a finite set of
alternative actions. The described mapping assigns to each action x ∈ X a preference, where the most desired actions are
assigned 1 and undesired actions are assigned 0, from that behaviors point of view. Note that this definition of a behavior
does not dictate how the mapping is to be implemented but provides a general recipe for a behavior with a well-defined
interface (useful when composing behaviors regardless of their roles in a behavior hierarchy). This representation does
not exclude implementation using a look-up-table, a finite state machine, a neural network, an expert system, control
laws (such as PID etc.), or any other approach for that matter. Note also that this representation does not restrict us to
reactive behaviors since it could have internal state. In CAMPOUT, this representation is implemented using an N-
dimensional array, which contains the desirability values recommended by a behavior.

2.2 Behavior coordination mechanisms

Behavior-producing modules or behaviors are the building blocks used for describing a system’s behavior including its
perceptual capabilities, decisions, actions, and reactions. Using behavior coordination mechanisms (BCMs) we
combine a group of behaviors to achieve higher-level goals. A major issue in the design of behavior-based control
systems is the formulation of effective mechanisms for coordination of the behaviors’ activities into strategies for
rational and coherent behavior. BCMs coordinate the activities of lower-level behaviors within the context of a high-
level behavior’s task and objective. An explicit design goal of CAMPOUT has been to support not one but an arbitrary
number of BCMs. BCMs can be divided into two main classes: arbitration and command fusion. For a detailed
overview, discussion, and comparison of behavior coordination mechanisms see [6].
If behaviors are viewed as operands, then BCMs are the operators used to combine behaviors into higher-level
behaviors.
Arbitration mechanisms select one behavior, from a group of competing ones, and give it ultimate control of the system
(the robot) until the next selection cycle. This approach is suitable for arbitrating between the set of active behaviors in
accord with the system's changing objectives and requirements under varying conditions. It can focus the use of scarce
system resources (sensory, computational, etc.) on tasks that are considered to be relevant. CAMPOUT implements the
following arbitration mechanisms:

• Priority-based arbitration: which is a subsumptive-style, priority-based arbitration mechanism, where behaviors
with higher priorities are allowed to suppress the output of behaviors with lower priorities.

• State-based arbitration: which is based on the Discrete Event Systems (DES) formalism [7], and is suitable for
behvior sequencing.

Command fusion mechanisms combine recommendations from multiple behaviors to form a control action that
represents their consensus. This approach provides for a coordination scheme that allows all behaviors to simultaneously
contribute to the control of the system in a cooperative rather than a competitive manner, which makes them suitable for
tightly coupled tasks that require spatio-temporal coordination of activities. CAMPOUT provides a number of
complementary mechanisms for fusion:

• Voting techniques interpret the output of each behavior as votes for or against possible actions and the action
with the maximum weighted sum of votes is selected. CAMPOUT implements a DAMN-style [8] voting
algorithm based on BISMARC [9]

• Fuzzy command fusion mechanisms (see [10-11]) use fuzzy logic and inference to formalize the action
selection processes. In addition, fuzzy approaches enable a new class of coordination mechanisms denoted
context-dependent blending, introduced to robotics by Saffiotti, Ruspini, and Konolige in [10], which allow for
weighted combination of behaviors. The implementation in CAMPOUT follows that described in [10].

• Multiple objective behavior fusion provides a formal approach to behavior coordination based on multiple
objective decision theory [12]. Action selection consists of selecting an action that makes the best trade-off
between the task objectives and which satisfies the behavioral objectives as much as possible.

In short, CAMPOUT supports both arbitration and command fusion, both of which are useful for describing complex
activities. Arbitration is useful for describing sequences of actions/behaviors with conditionals. Command fusion is
useful for cooperative and parallel execution of activities.

2.3 Group coordination

In order to cooperate and collectively contribute to a common task, the robots must cooperate and coordinate their
activities. Behavior coordination is basically concerned with resolving or managing conflicts between mutually
exclusive alternatives and between behavioral objectives. Group coordination in CAMPOUT (see Figure 1) is treated as
the coordination of multiple distributed behaviors, across a network of robots, where more than one decision maker is
present.

Behavior coordination in multi-robot systems has received relatively little attention. One approach proposed in [13] uses
inhibition and suppression across a network of heterogeneous robots augmented with motivational behaviors that can
trigger behavior invocation based on some internal parameters that measure progress. A similar approach was proposed
in the AYLLU architecture [14], which uses port arbitration as the main mechanism for multi-robot behavior
coordination. Both of these approaches can be viewed as the extension of subsumptive-style arbitration to multi-robot
coordination.

Recently, work in progress is investigating the extension of the 3T architecture to multi-robot coordination [15]. The
above approaches as well as most multi-robot architectures including ACTRESS, GOFER, SWARM [16, 17, 18]
invariably have two things in common. First, multi-robot coordination mechanisms are limited to only one approach,
and second this approach mostly tends to be arbitration rather than a command fusion scheme. Arbitration limits
cooperation to execution of tasks that are either independent/parallel or loosely coupled, turn-taking tasks. We maintain
that arbitration and command fusion mechanisms are complementary and a system implementation will typically make
use of both.

The philosophy in CAMPOUT is that the architecture
should support both arbitration and fusion. Further, we
favor mechanisms that are based on formal theories to
support a sound approach to description and validation of
system behavior. This is an important characteristic of
CAMPOUT, since it enables us to provide certain
performance guarantees. We have chosen to support, but
not limit the architecture to, arbitration using ALLIANCE
and AYLLU’s subsumptive-style and the discrete event
system. Additionally, multi-objective behavior
coordination is supported by CAMPOUT for command
fusion [19].

The view taken in CAMPOUT is thus that multi-robot
cooperation arises from coordination of multiple
behaviors that reside on not one but a group of robots (see
Figure 1). In order to support this view, BCMs must be
extended to support multi-robot coordination. In [19] the
multiple objective behavior coordination approach was
extended to multi-robot applications.

2.4 Communications infrastructure

CAMPOUT provides the infrastructure by which the distributed behaviors can interact through communication. The
behaviors and hence the robots can communicate implicitly by interaction through the environment or explicitly using
sensory feedback or explicit communication. The first two approaches, interaction through the environment and sensory
feedback, do not require any explicit form for architectural support as long as the robots have the necessary sensing
capabilities to facilitate such interaction. These forms for interaction can be difficult and often computationally
demanding, which is why most multi-robot systems resort to a form of explicit communication. CAMPOUT provides a

Figure 1 Networked robotics and resource sharing
elements of CAMPOUT that enable definition of
group coordination behaviors.

rich and efficient infrastructure for explicit communication to facilitate multi-robot cooperation. Using this
infrastructure, behaviors on one robot can interact with behaviors on other robots. In general the infrastructure defines a
network of resources that can be shared among the robots. These resources include behaviors, sensors, and actuators.
Thus a behavior on one robot can be driven by a sensor on another robot or even contribute to the control of a different
robot. This idea is depicted in Figure 1, where behavior composition can be achieved across several robots.

In order to facilitate a group of robots to coordinate their activities and cooperate towards the accomplishment of a
common task they may be required to communicate to share resources (e.g., sensors or actuators), exchange information
(e.g., state, percepts), synchronize their activities etc. The primitive and composite behaviors constitute the skill set that
enable a robot to interact with and accomplish tasks in its environment. The skill set of the robot can be augmented by
adding new primitive and/or composite behaviors. CAMPOUT provides a broad set of facilities to foster such
collaborative effort by offering a communications infrastructure. The current implementation of communications in
CAMPOUT is provided using UNIX-style sockets. Another approach would be to base the communications on some
general-purpose message-passing package such as MPI. However, such generality comes at significant overhead cost in
efficiency, which we intend to avoid for the types of applications that CAMPOUT is designed for. The communications
facilities consist of the following core functions:

• Synchronization: two main functions Signal (destination, sig) and Wait (source, sig) are used to send and wait for a
signal to and from a given robot. This pair constitutes the facilities for synchronizing the activities of robots and/or
behaviors.

• Data exchange: SendEvent (destination, event) and GetEvent (source, event) are used to send and receive an event
structure to and from a particular robot. The event structure can contain arbitrary data packages as contracted
between the sender (source) and receiver (destination). For instance, it can be used to transmit a percept or raw
sensor data from one robot to the other etc. E.g., robot 2 will be able to have a behavior that is being fed by the
position of robot 1 (to, e.g., follow it).

• Behavior exchange: SendObjective (destination, objective) and GetObjective (source, objective) are used to send
and receive objective functions (multivalued behavior outputs) to and from a robot. This function encodes a multi-
valued output into a message and transmits it to the destination where it is decoded into a multi-valued
representation.

• Publish/Subscribe: Probably CAMPOUT’s most useful/powerful facility for inter-robot communications is based
on a publish/subscribe service where one robot can request any value on any robot. Basically, a robot can request
subscription to a given attribute (variable, sensor, etc.) on a given robot at a given frequency. Once a subscription
has been established using Subscribe(attribute, robot_ID, frequency), the subscriber can locally access the
requested attribute.

These core set of communications facilities (and other convenience functions) support distributed sharing of resources
such as sensors and state, as well as providing the necessary tools to form a network of behaviors spanning a group of
physically distributed (but informationally connected) robots. The state of one robot (e.g., sensor readings or output from
a behavior) can be used to affect/determine the behavior of another robot. All these facilities are showcased in the
following applications for multi-robot planetary operations.

3 APPLICATION OF CAMPOUT TO ROVER COORDINATION

In this section, we describe how the architectural components of CAMPOUT can be used to describe tasks that represent
group activities so that they can be executed by a distributed set of robots. We use two multi-robot applications which
require close coordination between the activities of the robots and where most of the architectural facilities of
CAMPOUT are used to accomplish this. Both tasks are characterized by their strict requirements for tight coordination
because of the physical interactions between the robots.

3.1 Coordinated Transportation

The first task consists of using two robots to transport a large, extended container over 10s of meters in rough terrain.
The coordinated transport task in open, uneven terrain requires a tightly-coupled, close coordination of the activities of
the two robots. This is accomplished by some 20 behaviors, organized in a hierarchy where lower-level behaviors are
combined into higher-level behaviors (reported at last year’s conference [20]). The behaviors form a network of
modules distributed across the two robots and linked by means of communication. Key to the group behaviors is the
notion of implicit communication through the shared container (payload carried by the two rovers) and explicit
communication through communication facilities for distributed resource sharing. These behaviors are implemented
and tied together using the mechanisms provided by CAMPOUT.

Coordinated transportation consists of four phase for grabbing and lifting the container, clearing the container storage
unit and assuming a column transport formation facing the deployment site, traversing to the deployment site, and finally
deploying and aligning the container. We have developed a finite state machine (FSM) description of the transport
phases to emulate the planning level in CAMPOUT, since our first year task is not developing a planner. Here we only
describe the behaviors for accomplishing the assume formation phase, where the robots find the deployment site and turn
to face it in a column formation. The Assume Formation group behavior is invoked each time the heading error relative
to the target is larger than a preset threshold. A behavior denoted Find Target uses a visual target finding algorithm
based on color-segmentation to localize the rovers for heading adjustments during the traverse step in the sequence.
Then an Approach Target group behavior is used to safely carry the container towards the deployment area. Approach
Target uses a number of compliance behaviors to assure safe handling of the container during turn and carry operations
by constraining and adjusting the movements of the two rovers.

A desired formation is defined by the relative angle between the two robots, α, and the relative angle towards the target,
γ (see Figure 3). The Find Target behavior provides the angle to the target then a Turn group behavior reconfigures the
formation to a desired one. Two constraints make this a challenging task. First, transformation between the current and
target formations must ensure that the container is handled safely, i.e., the distance between the robots, d, should always
remain within some tolerance margin, dmin ≤ d ≤ dmax, determined by the distance between the grip points of the rovers, L
(250 cm), and the longitudinal translation in the gimbal Tgimbal (±2 cm). I.e., L-2Tgimbal ≤ d ≤ L+2Tgimbal, which implies
that the distance between the two rovers should be maintained within a margin of 8cm (4Tgimbal). A set of compliance
behaviors monitor the state of the load and constrain the movement of the rovers to guarantee this requirement. Second,
it is required that the container does not collide with the mast on the lead rover (see Figures 2 and 3), which could lead to
damaging the mast, the gripper/gimbal, or the container, and/or dropping the container. The shaded area around the lead

Figure 2 The Robotic Work Crews task showing transport of an extended object through tightly-coupled
coordination of two robots in uneven terrain. (left) Column (diagonal) formation for long traverse. (right) Row
formation for precision placement.

rover, in Figure 3, indicates the safety zone (-35° to +35°) where the container beam cannot enter because it will then
collide with the mast.

3.1.1 Centralized motion planning

One approach is to formulate this problem as a constraint satisfaction search problem, with the following description:

• Configuration space is the possible states of the formation defined by (θL, θF, α), where θL and θF are the absolute
heading angle of the leader and follower respectively and α is the formation angle. The configuration space will
exclude states where the beam intersects with the safety zone.

• The goal configuration is (θtarget, θtarget, αformation), where θtarget is the heading angle to the target and αformation is the
desired formation angle.

• The operators for search correspond to the actions that the robots can perform and include: TurnInPlace(φ) and
Ackerman(β) for each of the rovers. I.e., four types of operators exist, two for each rover. However, due to the
strategy we have chosen for the compliance behaviors (see next section) we have constrained the motion of the
leader to only TurnInPlace movements. Hence only three types of operators exist. LeaderTurnInPlace,
FollowerTurnInPlace, and FollowerAckerman. Ackerman causes the follower to pivot around the lead rover.

Using some search algorithm, a centralized module/planner can generate the sequence of actions (operators) that bring
the system to the goal configuration. The execution of the sequence must command and synchronize the motion of each
of the robots. A main advantage of this approach is that it is complete and it can generate optimal (e.g., shortest
sequence of movements) solutions. This is, however, outweighed by its many disadvantages including it’s polynomial
computational complexity due to a three-dimensional configuration space and a large branching factor determined by the
number of operators. Further, this approach requires a centralized module/planner, which generates commands to
control each of the robots and monitors their state during execution. While this centralized approach could easily be
implemented in CAMPOUT, we preferred a decentralized approach that does not suffer from many of the disadvantages
of its centralized counterpart.

3.1.2 Decentralized motion generation and coordination

By a careful inspection of results generated by the
centralized search method described above, we
observed a pattern in the action sequences, which
was used to design a decentralized solution. The
optimal solution generated by the search algorithm
had the following pattern:

1. The lead rover turns as far as possible until
either θtarget is reached or it cannot move
further due to the safety zone constraint. It
turns in the direction that minimizes the
difference between its current heading angle
and the desired heading, θtarget.

2. The follower pivots until either αformation is
reached or it cannot move further due to the
safety zone constraint. It pivots in the
direction that minimizes the formation angle
error.

xF

yF

C

xL

yL

a

g
y’L

x’L

xF

yF

C

xL

yL

a

g
y’L

x’L

Figure 3 Formation between the two robots with follower on left and
leader on right. The formation is defined by the angle α between the
two robots. Desired heading is given by the relative heading angle γ.
The shaded area on the lead rover is a safety zone where the container
beam should not enter to prevent collisions with its mast.

This sequence will alternate the two robots until the goal configuration is reached. Note that once one rover moves, it
also frees the other rover from being constrained by the safety zone. In this way, incremental progress is made towards
the goal configuration. Using this observation we constructed a distributed solution to the problem where the lead and
follower rovers alternate in turning in place and pivoting until the goal configuration is reached:

- Lead rover performs: TurnInPlace (m ax (m in (αleft, θleft), m in (αright, θright))),

where αleft (-35 degrees) and αright (35 degrees) are the limit angles of the safety zone and θleft and θright are the relative
angle to θtarget in clock-wise and counter-clock-wise direction respectively.

- Follower rover performs: Ackerman (m ax (m in (αleft, αformation), m in (αright, αformation))),

where αleft and αright are the limit angles of the safety zone and αformation is the desired formation angle.

It can be shown that this strategy is complete, i.e., it
will reach a solution if one is found. However, the
strategy does not guarantee an optimal solution
(minimum steps) although its solutions are typically
close to optimal.

The lead and follower rovers need to synchronize
their activities for two purposes: 1) termination of
formation configuration and 2) turn-taking between
leader turning in place and follower pivoting. The
communication behavior Signal is used to perform
this synchronization. The termination condition is
when θL = θtarget and α = αformation. The lead rover
can measure α locally from the gimbal pots and its
heading θL based on visual feedback and position
encoders. The follower can access θL using
communication constructs of CAMPOUT and it can
measure α locally. This behavior is implemented
using a discrete event system or finite state machine
action selection mechanism as shown in Figure 4.
Note that the Turn behavior in the figure is either a
TurnInPlace or an Ackerman for the leader and
follower, respectively.

The group turn behavior has two separate, distributed pieces: one that runs on the leader and one on the follower (see
Figure 4). Each of these consists of the composition of a set of primitive behaviors on each of the rovers, which use
local sensory feedback for control. These distributed pieces of the group turn behavior are synchronized in part using
explicit communication for invoking either the leader part or the follower part. One rover turns (using the Turn
behavior) until it is done (i.e., cannot turn further due to the safety constraint) then hands the token to the other rover by
a signal. The Wait behavior in each of the rovers consists of a number of behaviors including compliance behaviors.
For example, when the other rover starts moving/turning, the waiting rover monitors the state of the load (through the
sensors of the gimbal) and then triggers a compliance behavior to assure that the container is handled safely in
accordance with the distance constraint described above. This is accomplished by crabbing in the direction of the
container in order to center the load (based on pot-meter readings) and to reduce the forces on the gimbals (based on the
force-torque sensor readings). The behavior coordination and communication mechanisms provided by CAMPOUT
enable a seamless integration and coordination of behaviors across the robots.

Start

Turn

StopSignalWait

ready done

not T T = (θL == θtarget
& α == α formation)not

ready

Start

Turn

StopSignalWait

ready done

not T T = (θL == θtarget
& α == α formation)

not
ready

Rover 1

Rover 2

Figure 4 Distributed behavior network, used for the group Assume
Formation task. The arrows represent events that cause transitions,
and the dashed curves represent events caused by explicit
communication of signals between remote components/behaviors.

3.2 Collective Cliff-Descent

The objective of this work has been to develop a distributed mobility system for the cooperative traverse of a cliff-side
wall --up to 75o grade-- where a ’cliff-bot’ rappels down a cliff assisted by two semi-mobile railed robotic anchoring
stations called ’anchor-bots’. This aggressive mobility platform includes capabilities for cooperative rappelling down a
cliff and navigation to a designated way-point on the cliff (see Figure 5). This work enables access to high-value
science at high-risk locations, such as escarpments, fissures, breakout channels and cliffs. The system test-bed consists
of a tethered ensemble of three robotic entities; the rappeller or cliff-bot, and two anchoring assistants, anchor-bots, that
cooperatively direct and safely guide the rappeller to descend to way-points which are on the cliff-side and which are
within the workspace defined by the tether lengths and the anchoring points. In this work we are using CAMPOUT to
demonstrate elements including collective fused state estimation and distributed controls. More generally, the
underlying development of on-board autonomous “behavior-based” controls and state estimation technology will lead to
a next generation of highly adaptive, survivable mobile systems for all-terrain exploration and multi-task planetary
applications.

3.3 Collective way-point
navigation

Without coordinated assistance from
the anchor-bots, the cliff-bot will not
be able to traverse the side of a cliff
with slopes of up to 75 degrees, due
to tip-over and loss of traction
considerations. Most mobility
platforms are not able to safely
traverse moderate slopes of as low as
35-40 degrees without adaptive CG
and traction control. In fact, we have
previously developed such techniques
for traversing slopes of up to 50
degrees [3].

To navigate on a steep cliff-side wall,
the cliff-bot and the two anchor-bots
are required to tightly coordinate their
activities. Each anchor-bot must
adjust the velocity of its tether to the
velocity of the cliff-bot. The
relationship between the velocity of
the tethers is derived from the
kinematics constraints of the system
and is determined by the projection of
the cliff-bot's velocity, v onto the
directional vector of each tether rleft and rright. The velocity vector v is easily estimated using the cliff-bot's position
encoders and inertial navigation system but has to be shared with the anchor-bots. Also the tether vectors rleft and rright

are estimated based on sensor data on the cliff-bot, which is instrumented with resolvers to measure the tilt and pan (or
pitch and yaw) angles of the attached tethers. So the yaw and pitch angles must be shared with the anchor-bots, which is
transparently provided through CAMPOUT's communications infrastructure. Using CAMPOUT, each anchor-bot can
access the sensor readings (tether vectors) or fused estimates (e.g., velocity vector) on any robot. To control the tether
velocities each anchor-bot is instrumented with one encoder on the driving motor and another on the pay-out mechanism
that measures the tether length.

Cliff-botAnchor-bot

Safety
line

Figure 5 The cliff-bot concept for All Terrain Exploration, illustrated as a CAD
drawing (lower-left) and the actual test-bed that we have constructed with the two
semi-mobile winch assemblies emulating the anchor-bots (upper-right).

In theory, the coordination of the velocities of anchor-bots with the cliff-bot boils down to a straight-forward projection
of velocities onto the tether vectors. However, to realize this capability in practice the three robots are required to
perform distributed control and estimation. This requires access to data that is distributed across the robots, which is
facilitated by CAMPOUT. Further, there are a number of failure modes that are not handled by this straight-forward
approach. One particular failure mode is when the cliff-bot attempts to ascend a steep slope but cannot create enough
torque to create a momentum, which implies that its velocity never exceeds 0. This means that the projected velocities
for the winches remain 0. When this occurs, we would like the anchor-bots to proactively, rather than reactively, assist
the cliff-bot to initiate its velocity by hauling it for a short distance. Once the cliff-bot is in motion the anchor-bots will
resume adjusting their velocities in a reactive manner. CAMPOUT’s task decomposition and distributed task description
capabilities facilitate the development of such distributed control strategies using powerful tools to simplify the problem.
Many other failure modes exist that again require both collective estimation and distributed control. The architectural
facilities provided by CAMPOUT support the development of such complex systems.

The block diagram in Figure 6 shows a portion of the behavior network that is used for controlling the velocity of
anchor-bot 1. The portion used for controlling anchor-bot 2 is the same but with different links between the behaviors,
sensors, and actuators. The four main behaviors that control the velocity of the tether are Match Velocity, Haul,
Maintain (tether) Tension, and Stability. Match Velocity adjusts the tether velocity based on the cliff-bot’s velocity.
Haul is triggered either when the other anchor-bot is triggered or when the velocity of the cliff-bot remains zero after a
time-out period from the time where a navigation command was issued. When Haul is triggered, it gives the cliff-bot a
"push" (or actually pull) in the right direction to help it initiate motion in the up-hill direction. Maintain Tension
controls the tether velocity to maintain a safe tension on the tether. Stability consists of a number of modules that check
various stability requirements (not covered here) and triggers a safe mode where all commands are aborted. These
behaviors are in part coordinated using a priority-based arbitration mechanism (denoted with the circle labeled "P") and
in part by a summation operator. The boxes with numbers 1, 2, and 3 indicate the priority of each behavior with Stability
having the highest priority of 1. The links to the behaviors indicate exchange of sensory, perceptual, and other state
information across the network of behaviors and robots, as supported by CAMPOUT’s communications facilities. In
fact, for the behaviors there is no perceivable distinction between local and remote data since all data transfer occurs
transparently once the transfer has been initiated using the publish and subscribe methods.

Cliff-bot

Anchor-bot 1

Anchor-bot 2

Perception

Cliff-bot

Anchor-bot 1

Anchor-bot 2

Action

v

r1

P
r1, r2

yaw,
pitchtimeout

v

signal signal

abort
Haulor 2

Match
velocity 3

abort

(v = 0)

Anchor-bot 1
Controller

Maintain
Tension

pitch/”tension”

+

∆v

v1Stability 1

Figure 6 A subset of the behavior network for collective cliff-descent illustrating sub-system for
controlling the velocity of anchor-bot 1. The arrows represent data links between local blocks as well
as remote components (behaviors, sensors, actuators) thus spanning a behavior network across the
team of robots.

4 CONCLUSIONS AND FUTURE WORK

Developing control software for multi-robot systems using the conventional tools used for single-robot systems can
become rather tedious and challenging. One challenge stems from the lack of access to the state of a multi-robot system,
which is required for decision-making and control. Another challenge is the limitations of conventional representations
for the description of group activities for a set of distributed entities with independent computing platforms. A related
challenge is need for coordination of the activities of individual robots to accomplish a desired group activity. These are
hard challenges for multi-robot, in particular for tasks which require tight coordination of activities and where the robots’
actions and states are interdependent.

CAMPOUT provides communication facilities for sharing of state information across robots and it uses a behavior
network for representation and execution of group activities in the same way that it represents the activities of a single
robot. In our research, we have shown that CAMPOUT almost bridges the gap between multiple robots and provides a
level of abstraction that enables us to develop multi-robot software in a manner much similar to what we use for single
robot software development.

For future work, we are interested in further bridging this gap by extending CAMPOUT with task planning capabilities
and automation of group activity generation. Currently, we use CAMPOUT’s facilities to hand-craft the behavior
network that represents a group activity. We are investigating approaches to automate this process so that behavior
networks can be generated and implemented automatically.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the Cross Enterprise Technology Development Program of the National Aeronautics and Space
Administration. The authors would like to thank the many people that have provided valuable contributions to the
described work including Chris Leger, Ashitey Trebi-Ollennu, Hari Das, Hrand Aghazarian, Brett Kennedy, Anthony
Ganino, Mike Garrett, Sanjay S. Joshi, Lee Magnone, and Erik Mum.

REFERENCES

1. T.L. Huntsberger, P. Pirjanian, and P.S. Schenker, ’’Robotic outposts as precursors to a manned Mars habitat,’’ in
Proceedings of Space Technology and Applications International Forum (STAIF-2001), Albuquerque, NM, Feb
2001.

2. P.S. Schenker, T.L. Huntsberger, P. Pirjanian, A. Trebi-Ollennu, H. Das, S. Joshi, H. Aghazarian, A.J. Ganino, B.A.
Kennedy, and M.S. Garrett, ’’Robot work crews for planetary outposts: Close cooperation and coordination of
multiple robots,’’ in Proceedings of SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic
Systems III, Vol. 4196, Sensor Fusion and Decentralized Control in Robotic Systems III (Eds. G. T. McKee and P.
S. Schenker), Boston, MA, Nov. 5-8, 2000.

3. P. S. Schenker, P. Pirjanian, B. Balaram, K. S. Ali, A. Trebi-Ollennu, T. L. Huntsberger, H. Aghazarian, B. A.
Kennedy and E. T. Baumgartner, Jet Propulsion Laboratory; K. Iagnemma, A. Rzepniewski, and S. Dubowsky,
Massachusetts Institute of Technology; P. C. Leger and D. Apostolopoulos, Carnegie Mellon University; G. T.
McKee, University of Reading (UK), “Reconfigurable robots for all terrain exploration,” in Proc. SPIE Vol. 4196,
Sensor Fusion and Decentralized Control in Robotic Systems III (Eds. G. T. McKee and P. S. Schenker), 15 pp.,
Boston, MA, Nov. 5-8, 2000.

4. B. Wilcox, A. Nasif, and R. Welch, "Implications of Martian Rock Distributions on Rover Scaling," Planetary
Society International Conference on Mobile Planetary Robots and Rover Roundup, Santa Monica CA, January 29 -
February 1 1997.

5. P. Pirjanian, H.I. Christensen, and J.A. Fayman "Experimental Investigation of Voting Schemes for Fusion of
Redundant Purposive Modules", 5th Symposium for Intelligent Robotic Systems, Stockholm, July 1997. pp 131-
140.

6. P. Pirjanian, "Behavior Coordination Mechanisms - State-of-the-art", Tech-report IRIS-99-375, Institute for
Robotics and Intelligent Systems, School of Engineering, University of Southern California, October, 1999.

7. J. Kosecka and R. Bajcsy, “Discrete Event Systems for autonomous mobile agents,” in Proc. Intelligent Robotic
Systems '93 Zakopane, pages 21--31, July 1993.

8. J. Rosenblatt, “The Distributed Architecture for Mobile Navigation,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 9, no. 2/3, pp.339-360, April-September, 1997.

9. T. L. Huntsberger and J. Rose, “BISMARC,” Neural Networks, vol. 11, no. 7/8, pp. 1497-1510, 1998.
10. A. Saffiotti, K. Konolige, and E.~H. Ruspini, “A multivalued logic approach to integrating planning and control,”

Artificial Intelligence, vol. 76, pp. 481--526, March 1995.
11. J. Yen and N. Pfluger, “A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for

mobile robot navigation,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 6, pp. 971 -- 978, June
1995.

12. P. Pirjanian, “Multiple objective behavior-based control," Journal of Robotics and Autonomous Systems, vol. 31,
no. 1-2, pp. 53-60, Apr 2000.

13. L. E. Parker, Heterogeneous Multi-Robot Cooperation, Massachusetts Institute of Technology Ph.D. Dissertation,
January 1994. Available as MIT Artificial Intelligence Laboratory Technical Report 1465, February 1994.

14. B.B.Werger, “Ayllu: Distributed Port-Arbitrated Behavior-Based Control,” in Distributed Autonomous Robotic
Systems 4, Lynne E. Parker, George Bekey, and Jacob Barhen (eds.), Springer, 2000:25-34.

15. R. Simmons, S. Singh, D. Hershberger, J. Ramos, T. Smith, “First Results in the Coordination of Heterogeneous
Robots for Large-Scale Assembly”, In Proceedings of the International Symposium on Experimental Robotics
(ISER), Honolulu Hawaii, December 2000.

16. P. Caloud, W. Choi, J.-C. Latombe, Le C. Pape, and M. Yin, “Indoor automation with many mobile robots,” in Proc.
IEEE/RSJ IROS’90, 1990, pp. 67-72.

17. H. Asama, A. Matsumoto, and Y. Ishida, “Design of an autonomous and distributed robot system: ACTRESS,” in
Proc. IEEE/RSJ IROS’89, 1989, pp. 283-290.

18. K. Jin, P. Liang, and G. beni, “Stability of synchronized control of discrete swarm structures,” in Proc. IEEE Intl.
Conf. on Robotics and Automation (ICRA’94), 1994, pp. 1033-1038.

19. P. Pirjanian and M. Mataric, “Multi-robot target acquisition using multiple objective behavior coordination,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA2000), San Francisco, April 2000, pp 101-106.

20. P. Pirjanian, T.L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, H. Das, S. Joshi, and P.S. Schenker, ''CAMPOUT:
A control architecture for multi-robot planetary outposts,'' in Proc. SPIE Symposium on Sensor Fusion and
Decentralized Control in Robotic Systems III, Vol. 4196, Boston, MA, Nov. 2000, pp. 221-230.

