
Verification of Embedded Control Software

Flavio Lerda

December 12, 2007

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Edmund M. Clarke - chair

Stephen Brookes
Bruce Krogh

Rajeev Alur (University of Pennsylvania)

Copyright c© 2007 Flavio Lerda

The author was supported by General Motors and the Carnegie Mellon University-General

Motors Collaborative Research Laboratory under grant no. GM9100096UMA.

This research was sponsored by the Office of Naval Research (ONR), the Naval Re-

search Laboratory (NRL), the Army Research Office (ARO), the Air Force Research Office

(AFRO), and the National Science Foundation (NSF).

The views and conclusions contained in this document are those of the author and should

not be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the sponsoring institutions, the U.S. Government or any other

entity.

Keywords: Formal methods, model checking, numerical simulation, hybrid
systems, control software.

Abstract

Embedded control software is ubiquitous nowadays. It is a significant com-

ponent of, for instance, home appliances, cars, and medical devices. As the

uses of software increase in our daily life, the importance of its correctness

increases as well. At the same time, expectations for embedded control soft-

ware are usually higher than for desktop applications, making correctness a

crucial problem in this domain.

One approach to improve the reliability of embedded control software is

by means of validation and verification techniques, which analyze a system

and try to determine if the given requirements are satisfied. Techniques like

numerical simulation check that the system behaves correctly by exploring

a number of its possible behaviors. Techniques like model checking, on the

other hand, formally establish the validity of properties of the system.

The focus of this thesis is the combination of software model checking

with numerical simulation for validation and verification of embedded control

software. A characteristic of embedded control software is the interaction

with an environment that is continuous in nature. This makes model checking

i

ii Verification of Embedded Control Software

more difficult as the system has an infinite number of states.

This thesis aims at developing different techniques that can be used to

analyze control systems. These techniques range from an optimized version

of numerical simulation to a conservative approach for the verification of

control system’s safety. The techniques not only differ in the type of results

they can provide (correctness versus bug finding), but also in the associated

complexity. I see these approaches as a first step toward developing a spec-

trum of techniques with different costs that can be applied to analyze control

systems.

In this proposal, I first describe an approach called systematic simula-

tion that employs a model checker to explore the behaviors of a software

implementation while using MATLAB/Simulink to model and simulate the

continuous environment. This approach is used to perform bounded-time

verification of an embedded control system with a finite set of initial states

whose controller is implemented in software. Next, I present an approach

based on a notion of approximate equivalence between states of the systems

that can be used to test an embedded control system by determining during

the analysis which traces to explore. Last, I present a conservative extension

of the latter approach that is able to formally verify bounded-time safety of

embedded control software. This approach performs a conservative merging

of traces that are similar, based on a conservative notion of equivalence be-

tween states. So far I have applied these techniques to a few control system

examples including the design of an unmanned aerial vehicle (UAV) based

F. Lerda iii

on the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control

(STARMAC).

iv Verification of Embedded Control Software

Table of Contents

1 Overview 1

1.1 Systematic Simulation . 3

1.2 Path Pruning . 5

1.3 Conservative Merging . 6

1.4 Related Work . 7

2 System Model 11

2.1 Control Systems . 11

2.2 Sampled-Data Control System 13

3 Systematic Simulation 21

3.1 Algorithm . 22

3.2 Implementation . 27

3.3 Experimental Evaluation . 28

4 Path Pruning 37

4.1 Approximate Equivalence . 38

v

vi Verification of Embedded Control Software

4.2 Path Pruning Algorithm . 40

4.3 Experimental Evaluation . 41

5 Conservative Merging 49

5.1 Bounded-Time Safety Verification Algorithm 58

5.2 Merging for Affine Dynamics 66

5.3 Experimental Evaluation . 68

6 Timeline 73

Chapter 1

Overview

Model-based design of embedded control systems is becoming standard prac-

tice. The goal of model-based design is to reduce development time and cost

by evaluating controllers using computer-based models before building the

actual system. This approach requires methods for exploring the behaviors

of dynamical systems. While simulation can be used to evaluate system per-

formance for a specific set of parameters, exhaustive evaluation of system

behaviors over a range of parameters using simulation is usually intractable.

Applying formal methods to embedded control design is important for reduc-

ing time to market and for meeting safety and performance requirements, but

formal methods are difficult to apply to systems that interact with a con-

tinuous dynamic environment, called the plant. In this thesis, I propose to

investigate the use of formal verification techniques to catch design errors

and verify correctness of a design. The approaches presented here explore

1

2 Verification of Embedded Control Software

the behaviors of an embedded control system using techniques that combine

software model checking with numerical simulation.

Numerical simulation is the most widely used technique for validating

control system designs. Tools like MATLAB/Simulink provide an environ-

ment for modeling and simulating control systems [24, 1]. Simulation requires

the developer to specify a set of cases that need to be checked. The effec-

tiveness of simulation, therefore, depends on the ability of the developer to

identify a representative set of cases. The results of simulation are limited

to the cases that have been explicitly checked, however. While numerical

simulation may be able show the presence of errors, it is unable to prove the

absence thereof.

Model checking is an automated technique for the formal verification of

temporal properties [8, 9]. One of the main advantages of model checking

compared to other techniques, such as numerical simulation, is the ability to

explore behaviors exhaustively and therefore prove the correctness of a sys-

tem. In recent years, there has been considerable interest in model checkers

for software [2, 14, 5, 27]. These techniques aim at checking correctness of

software systems expressed in modern programming languages. These ap-

proaches, however, cannot be applied directly to embedded control software,

which are difficult to analyze using model checking due to the controller’s

interaction with a continuous dynamic plant.

This thesis aims at developing approaches that narrow the gap between

simulation and model checking of embedded control software. Using numer-

F. Lerda 3

ical simulation, these approaches capture the dynamics of the continuous

dynamic plant accurately. By employing a model checker, they are able to

verify properties that are difficult to verify using standard simulation. In this

thesis, I propose three different approaches. The first one, called systematic

simulation, is an extension of standard numerical simulation, which uses a

model checker to explore a set of possible behaviors systematically. The sec-

ond approach, called path pruning, extends systematic simulation by using a

notion of approximate equivalence to reduce the number of paths that need

to be explored during the analysis. The latter approach is not conservative,

however, as it uses an approximate notion of equivalence based on a measure

of the proximity of states. The third part of my thesis proposes an approach,

called conservative merging, that is able to reduce the number of paths that

are explored during the verification while guaranteeing that, if no error is

detected, the system is safe.

1.1 Systematic Simulation

Numerical simulation is a validation technique that generates a trace of a

system. For a dynamical system specified as a set of differential equations,

numerical methods are used to perform the simulation. A simulation trace

corresponds to one possible evolution of the dynamical system: all inputs

must be fixed, and therefore the simulation is deterministic.

In order to check that the system behaves correctly for all values of the

4 Verification of Embedded Control Software

inputs and deal with non-deterministic behavior, I propose to use a model

checker to guide a numerical simulation engine to produce all possible traces

of a given system. If the set of initial states and inputs is finite, this al-

lows us to prove that the system is safe for all possible values of the inputs

and all possible non-deterministic behaviors. By using a model checker, the

technique is more efficient than using standard simulation. While simulation

explores traces independently of each other, the traces explored by a model

checker form a state-transition graph called the state-space graph. Model

checkers explore each transition of the state-space graph only once, reducing

the amount of computation required when compared to standard simulation.

This thesis considers a particular type of control systems where the con-

troller is implemented in software as a set of concurrent and/or distributed

tasks. We have implemented a tool based on an explicit-state model checker

for software that uses MATLAB/Simulink as the numerical simulation en-

gine [21]. We applied this approach to a MATLAB/Simulink model of an

unmanned aerial vehicle and was able to detect an error in the controller.

This work has been done in collaboration with Dr. James P. Kapinski, Hi-

tashyam Maka, my advisor Prof. Edmund M. Clarke, and Prof. Bruce H.

Krogh.

F. Lerda 5

1.2 Path Pruning

The systematic simulation approach exhaustively explores all possible be-

haviors of a system. This may require substantial computational resources

when applied to complex systems. For such systems, the number of traces

is exponential in the time bound and the number of tasks and inputs. The

model checker has to explore all traces, even if many of them are similar to

each other. The path pruning approach presented in this thesis tackles this

problem by pruning parts of the state-space graph generated by the model

checker.

Explicit-state model checkers compute the set of reachable states itera-

tively by constructing the state-space graph using the transition relation of

the system. When the model checker encounters a state that is equal to a

previously visited state, the successors of the current state are not explored.

Doing so would only lead to states that have already been encountered. The

path pruning approach replaces state equality used in standard model check-

ers with a notion of state equivalence based on an approximation of the

plant state. This is a heuristic approach that enables the technique to ana-

lyze larger systems. While the approach is able to search for counterexamples

efficiently, it does not explore all possible system behaviors. As such it can

show that a system is unsafe, but it cannot prove that a system is safe.

So far, we have developed different notions of approximate equivalence

and applied them to a robotics control system example [25]. The work has

6 Verification of Embedded Control Software

been developed in collaboration with Sebastian Scherer and my advisor Prof.

Edmund M. Clarke.

1.3 Conservative Merging

The path pruning approach presented above is based on a notion of approx-

imate equivalence that is used to prune the state space. The approach is

not conservative, however; it can be used to find counterexamples, but it

is unable to prove safety. In this thesis I also propose an approach called

conservative merging that is able to prove bounded-time safety of a system

while performing path pruning, which corresponds to merging a state with a

previously visited one. In model checking, merging can be done only when a

state on one trace is identical to a state on another trace. Our approach is

able to perform a conservative merging when two states are in proximity to

each other if the pruned parts of the state space are guaranteed to be safe.

In this thesis, I show how to determine safe sets of plant states around each

state of a trace. These sets correspond to a set of traces that are in proximity

of the explored trace and are guaranteed to be safe. When a state that is

within a safe set is reached, the current state can be merged conservatively

with a previously visited state and the successors of such a state do not need

to be explored further.

In general, given a dynamical system and two initial states that are in

proximity to each other, the trajectories starting at those initial states may

F. Lerda 7

diverge. This thesis uses bisimulation functions [11] to bound the distance

between future evolutions. Bisimulation functions were introduced by Girard

and Pappas as a way to determine the relation between states of a dynamical

system [11, 16]. In this work, we use bisimulation functions to approximate

conservatively the plant transitions while using a notion of program equiva-

lence to approximate conservatively the behavior of the controller.

We have implemented this technique for the special case of affine plant

dynamics, for which an efficient algorithm to compute bisimulation functions

exists, and used this technique to prove the safety of a model of an unmanned

aerial vehicle [20]. This work has been done in collaboration with Dr. James

P. Kapinski, my advisor Prof. Edmund M. Clarke, and Prof. Bruce H.

Krogh.

1.4 Related Work

This thesis presents three different techniques that can be used to analyze

control systems. They range from an optimized version of numerical simu-

lation (systematic simulation) to a conservative verification technique (con-

servative merging). The techniques not only differ in the type of results they

can provide (bug finding versus correctness), but also in the associated com-

plexity. These three technique are a first step toward developing a range of

techniques that can be applied to analyze control systems.

Various methods have been developed to verify hybrid automata, which

8 Verification of Embedded Control Software

can model embedded control systems [13, 18, 3, 7]. These techniques are

computationally expensive, however, and are able to analyze only systems of

low complexity. A central problem in verifying safety properties of control

systems is reachable set estimation, i.e., the problem of determining the set

of states that are reachable from a given set of initial states.

Other verification techniques for control systems that are based on nu-

merical simulation exist. For example, Kapinski et al. [17] have investigated

the use of ellipsoidal sets to overapproximate the set of reachable states of a

dynamical system. Donzé and Maler [10] have showed how to use sentitivity

analysis to perform reachability analysis. Both approaches perform a search

forward in time while computing an overapproximation of the set of reacha-

bile states. The work in this thesis instead uses the safety requirements to

construct sets of states that are guaranteed to be safe, proceeding backward

in time. The work by Julius et al. also provides a means for determining

maximum safety bounds for simulation traces [16], but the technique pre-

sented here goes further by handling more complex, nondeterministic control

systems. This is especially important when modeling a controller that is

implemented in software where external inputs and task interleaving, due

for instance to a distributed implementation, can lead to nondeterministic

behavior. The work presented here deals efficiently with the large number

of reachable paths that occur due to nondeterministic behaviors in the con-

troller.

The rest of the proposal is organized as follows. Chapter 2 describes the

F. Lerda 9

model of control systems considered in this proposal. Chapter 3 describes

a technique called systematic simulation that combines a software model

checker and numerical simulation to verify bounded-time safety of embedded

control software with a finite set of initial states. Since the number of traces

of a system may be quite large, Chapter 4 introduces an approach, based

on a notion of approximate equivalence between states of the system, that is

able to prune some traces that are similar to previously explored traces. This

approach reduces the amount of work needed to analyze a system, but, like

simulation, it only looks at a subset of the possible behaviors, and, therefore,

it is unable to prove correctness. While this approach is useful to analyze a

system and discover errors, Chapter 5 proposes a different approach that is

able to merge states conservatively and therefore guarantees the correctness

of the system. Lastly, Chapter 6 contains a summary of the work that still

needs to be done for this thesis and a timeline for its completion.

10 Verification of Embedded Control Software

Chapter 2

System Model

2.1 Control Systems

A control system is a system composed of a continuous-time environment that

is being controlled, called the plant, and a controller. Usually, the controller

is able to sense the outputs of the plant (called the sensor values) and decides

the commands to send to the plant (called the actuator values). This type

of control system is usually referred to as a closed-loop control system. In

this work, I will consider closed-loop control systems where the controller is

implemented in software. Since the software executes only at discrete times,

I will look at a particular class of control systems known as sampled-data

control systems. A sampled-data controller is able to observe the state of

the plant only at discrete time instants, called sample times. I assume here,

without loss of generality, that the sample times occur at multiples of a fixed

11

12 Verification of Embedded Control Software

sampling period, ts > 0.

Let us consider a system made of two components: a continuous-time

plant and a discrete controller. The plant has a set of n real-valued state

variables (the plant state, denoted by x ∈ R
n), a set of s real-valued inputs

(the actuator values, denoted by u ∈ R
s), and a set of r real-valued outputs

(the sensor values, denoted by y ∈ R
r). The plant evolves according to the

differential equation ẋ = fu(x), where the dynamics of the plant depend on

the actuator values u. The sensor values y are a function of the plant state,

i.e., y = g(x) for a fixed function g, independent of u. The controller is

represented as a finite-state machine with an initial location Linitial , a final

location Lfinal , and a set of m variables that assume values from a finite do-

main V (the controller variables, denoted by v ∈ V m). At each sample time,

the controller starts from the initial location Linitial and continues executing

until it reaches the final location Lfinal . The transitions of the finite-state

machine may depend on and update the variables v. Figure 2.1 shows the

structure of this type of systems.

Figure 2.1: The architecture of a sampled-data system.

F. Lerda 13

2.2 Sampled-Data Control System

This section presents a formal model of sampled-data control systems where

the controller is implemented as a set of concurrent tasks. The model pre-

sented here is general enough that it can be used both for tasks that are exe-

cuting on the same processor sharing variables and tasks that are distributed

across multiple processors. In the following, I assume that the execution

time of the transitions of the different tasks, the clock skew between different

processors, and the communication time are small compared to the sampling

period. This assumption is reasonable for most control systems implemented

in software where the sampling time is very large compared to the clock cycle

of modern processors.

Definition 2.1 (Controller Task) Given a set of controller variables V m

and a set of sensors values R
r, a controller task is a tuple

Task i = 〈Loci, li,initial , li,final , δi〉

where:

• Loci is a finite set of control locations;

• li,initial , li,final ∈ Loci are two specially designated locations, called the

initial and final control locations of Task i; and

• δi : R
r → 2Loci×V m×Loci×V m

is the transition relation of Task i. Assume

that there are no transitions from the final control location li,final .

14 Verification of Embedded Control Software

At each sample instant, the task starts executing at the initial control

location li,initial and executes until it reaches the final control location li,final .

Notice that the transition relation δi depends on the current sensor values

y. Given li, l̂i ∈ Loci, v, v̂ ∈ V m, and y ∈ R
r, there exists a transition

from (li,v) to (l̂i, v̂) when the sensor values are equal to y if and only if

(li,v, l̂i, v̂) ∈ δi(y).

Definition 2.2 (Sampled-Data Control System) A sampled-data con-

trol system is a tuple

SDCS = 〈{Task1, . . . ,Taskp}, V, h, fu, g, ts, Init〉

where:

• {Task1, . . . ,Taskp} is a finite set of controller tasks;

• V is a finite domain for the controller variables;

• h : V m → R
s is the actuator function that maps the values of the

controller variables v into the actuator values u;

• For each actuator value u ∈ R
s, fu : R

n → R
n is a Lipschitz continuous

function that describes the flow of the plant;

• g : R
n → R

r is the sensor function that maps a plant state x into the

corresponding sensor values y;

• ts > 0 is the sampling period; and

F. Lerda 15

• Init ⊆ Loc1 × . . .× Locp × V m × R
n is a set of initial states.

Definition 2.3 (State) A state of an SDCS is a tuple (q,x) where q =

(L,v) is the controller state, L ∈ Loc1 × . . . × Locp specifies the control

locations of each task, v ∈ V m is the value of the controller variables, and

x ∈ R
n is the plant state.

Given a controller state q, let us denote by L(q) the control locations

corresponding to q and by v(q) the value of the controller variables corre-

sponding to q. Let Linitial = (l1,initial , . . . , lp,initial) denote the initial control

location of the controller, and Lfinal = (l1,final , . . . , lp,final) denote the final

control location of the controller.

Definition 2.4 (Continuous Trajectory) Given the actuator value u and

a plant state x0, let ξx0

u
: R→ R

n denote a solution to the initial value problem

ẋ(t) = fu(x(t)),x(0) = x0.

Since we assumed that fu(·) is Lipschitz continuous, there exists a unique

ξx0

u
(·) for every x0 ∈ R

n.

Definition 2.5 (Transitions) Given two states s = (q,x) and ŝ = (q̂, x̂) of

an SDCS, there exists a transition from s to ŝ, denoted by s −→ ŝ, if either:

• q = ((l1, . . . , lp),v), q̂ = ((l̂1, . . . , l̂p), v̂), y = g(x) denotes the sensor

values corresponding to plant state x, and there exists a task Task j such

that x = x̂, (lj,v, l̂j, v̂) ∈ δj(y), and, for every task Task i not equal to

Task j , li = l̂i. This is called a controller transition.

16 Verification of Embedded Control Software

• q = (Lfinal ,v), q̂ = (Linitial ,v), u = h(v) denotes the actuator values

corresponding to v, ξx

u
(t) is the continuous trajectory starting from plant

state x, and x̂ = ξx

u
(ts), the value the continuous trajectory reaches at

time ts. This is called a plant transition.

Definition 2.6 (Trace) A trace of an SDCS is a finite sequence of states

σ = s0 . . . sK , for some K, such that sk −→ sk+1 for all 0 ≤ k < K.

Figure 2.2 illustrates two traces of an SDCS , σa = s0s1s2s3 and σb =

s0s1s4s5. In this example, the plant states have two dimensions, correspond-

ing to the axes labeled x1 and x2. The vertical axis represents the value of

the controller variables: each plane corresponds to a different value of the

controller variables, namely va, vb, and vc. Plant transitions correspond to

continuous lines within a given plane; controller transitions correspond to

dotted lines from one plane to another. The initial state is s0, and the first

transition is a plant transition, s0 −→ s1. Two controller transitions are pos-

sible starting from s1; nondeterminism in the controller leads to two separate

states, s2 and s4. From each of these states a plant transition is possible,

s2 −→ s3 and s4 −→ s5.

Definition 2.7 (Duration) The duration of a trace σ is the amount of time

elapsed between its first state and its last state, and it is defined inductively

as follows:

• if σ = s0, duration(σ) = 0;

F. Lerda 17

Figure 2.2: Two traces of an SDCS . The axes labeled x1 and x2 represent
two dimensions of the plant state. The vertical axis represents the controller
variables. Each plane correspond to a different value of the controller vari-
ables. Solid arrows connecting points represent plant transitions. Dotted
lines connecting points represent controller transitions.

• if σ = s0 . . . sK and sK−1 −→ sK is a controller transition then duration(σ) =

duration(s0, . . . sK−1), since we assume that controller transitions exe-

cute instantaneously;

• if σ = s0 . . . sK and sK−1 −→ sK is a plant transition then duration(σ) =

duration(s0, . . . sK−1) + ts, since each plant transition has a duration

equal to the sampling period ts.

18 Verification of Embedded Control Software

In the model presented above, since I assumed that controller transitions

are instantaneous, a plant transition is allowed only after each controller task

has reached its final control location. Two situations are possible, however,

in which a controller task never reaches its final control location, namely

deadlock and livelock. A deadlock corresponds to a state of the controller from

which no further transition is possible. A livelock corresponds to an infinite

trace where the controller never reaches the control location Lfinal . Deadlocks

and livelocks are due to errors in the controller and can be detected by the

algorithms presented in this proposal. What follows are formal definitions of

deadlock and livelock states.

Definition 2.8 (Deadlock State) A system state s is a deadlock state if

there does not exist a system state s′ such that s −→ s′.

Since a plant transition is always possible from the control location Lfinal ,

a deadlock corresponds to a state (q,x) such that L(q) 6= Lfinal and there

does not exist a controller state q̂ such that (q, q̂) ∈ δi(g(x)) for some task

Task i, where g(·) is the sensor function, which maps a plant state x into the

corresponding sensor value y.

Definition 2.9 (Livelock State) A state s = (q,x) is a livelock state if

and only if there exists an infinite sequence of controller states q0q1 . . . such

that q0 = q and, for every i ≥ 0, there exists a task Task j such that (qi, qi+1) ∈

δj(g(x)), where g(·) is the sensor function, which maps a plant state x into

the corresponding sensor value y.

F. Lerda 19

Definition 2.10 (Reachable States) A state s of an SDCS is reachable

within a time bound T from a state s0 if and only if there exists a trace

σ = s0 . . . sK , for some K, such that sK = s and duration(σ) ≤ T .

Definition 2.11 (Safe States) Given a time bound T and a set of states

Fail ⊂ Loc × V m × R
n, a state s is safe for time bound T if and only if no

deadlock state, no livelock state, and no state in Fail is reachable within time

bound T .

Consider again the diagram in Figure 2.2: states s3 and s5 are safe for

time bound zero, states s1, s2, and s4 are safe for time bound ts, and state

s0 is safe for time bound 2ts.

Definition 2.12 (Bounded-Time Safety) Given an SDCS, a set of states

Fail ⊂ Loc×V m×R
n, and a time bound T, the SDCS is safe for time bound

T if and only if all initial states are safe for time bound T .

20 Verification of Embedded Control Software

Chapter 3

Systematic Simulation

Numerical simulation is a validation technique that generates a trace of a

system. For a dynamical system specified as a set of differential equations,

numerical methods are used to perform the simulation. Tools such as MAT-

LAB/Simulink [1] are used for modeling and simulating dynamical systems.

A simulation trace corresponds to one possible evolution of the dynamical

system: all inputs must be fixed, and therefore the simulation is determinis-

tic.

Model checking is a verification technique that is able to check that all

possible behaviors of a system satisfy a given property. In this context, a

system is allowed to be non-deterministic. Systems modeled as an SDCS

exhibit non-deterministic behavior due to the following: (i) the interleaving

of concurrent tasks; (ii) multiple initial states; and (iii) non-determinism

in the controller finite state automaton, which can be used to model, for

21

22 Verification of Embedded Control Software

example, external inputs to the controller.

In contrast to numerical simulation, where each trace is explored indepen-

dently, in model checking the set of generated traces forms a graph, known

as the reachable state-space graph (see Figure 3.1). The nodes of the graph

correspond to states of the system, the edges to transitions. A state of the

graph is initial if the corresponding system state is initial. A path in the

graph from an initial state corresponds to a trace of the system. Explicit-

state model checkers explore the reachable state-space graph starting from

each element of a finite set of initial states. The algorithm is based on a

depth first search of the state-space graph. The search proceeds from a state

to one of its successors and continues until it reaches a state that has no

successor or a previously visited state. This approach guarantees that no

transition is visited more than once. In terms of the traces that need to be

explored, this leads to a saving in terms of simulation time, as sequences of

states that are common to multiple traces are explored only once.

3.1 Algorithm

The algorithm used by our approach is shown in Figure 3.2. The main

function takes as inputs an SDCS , a set of fail states Fail , and a time bound

T . It returns one of four possible answers:

• SAFE, if the system is safe within time bound T and no deadlock or

livelock is reachable within time bound T ;

F. Lerda 23

(a) Standard simu-
lation

(b) Systematic simulation

Figure 3.1: Standard simulation (a) generates traces one at a time. Sys-
tematic simulation (b) exploits the common prefixes of traces to make the
analysis more efficient.

• UNSAFE(σ), if the system is unsafe; σ is a trace that leads to an

unsafe state;

• DEADLOCK(σ), if a deadlock state is reachable within T ; σ is a

trace that leads to a deadlock state;

• LIVELOCK(σ), if a livelock state is reachable within T ; σ is a trace

that leads to a livelock state.

The main function calls the function explore for each initial state of

the SDCS (lines 5-6) and appropriately interprets the result (lines 7-8). The

function explore takes as arguments the system state (q,x), the time horizon

τ , and the sequence of states σ. This function performs a depth-first search

24 Verification of Embedded Control Software

of the part of the state-space graph reachable from (q,x) up to time τ .

1: global SDCS, Fail , T;
2: global visited ← {}; // Visited states, initially empty.

3: // Check the time-bound safety of an SDCS
4: main :
5: foreach ((q, x) ∈ Init) : // Depth-first search for each initial state
6: result ← explore(q, x, T, ());
7: if(result ! = SAFE) return result;
8: return SAFE;

9: // Perform a depth-first search up to time τ
10: function explore(q, x, τ, σ) :
11: if ((q, x) ∈ Fail) return UNSAFE(σ); // Check for fail states
12: if (is deadlock(q, x)) return DEADLOCK(σ) // Detect deadlocks
13: if (is livelock(q, x, σ)) return LIV ELOCK(σ) // Detect livelocks

14: // Compare to already visited states
15: if (already visited(q, x, τ))
16: return SAFE;
17: visited ← visited ∪ {(q, x, τ)};

18: if (q.L = Lfinal) : // Perform a plant transition
19: return plant transition(q, x, τ, σ);
20: else : // Perform a controller transition
21: return controller transitions(q, x, τ, σ);

Figure 3.2: The systematic simulation algorithm.

The function explore checks if an unsafe state has been reached (line

11), in which case it returns immediately. Otherwise, explore checks for

deadlocks (line 12) and livelocks (line 13). Next, if there exists an already

visited state that is equal to the current state and has a time horizon larger

than or equal to the time horizon of the current state (line 15 and function

F. Lerda 25

22: // Perform a plant transition using numerical simulation
23: function plant transition(q, x, τ, σ) :
24: if (τ < ts) return SAFE; // Stop if not enough time left
25: x̂ ← sim(x, h(q.v));
26: q̂ ← (Linitial , q.v);
27: return explore(q̂, x̂, τ − ts, σ · (q̂, x̂));

28: // Perform all possible controller transitions
29: function controller transitions(q, x, τ, σ) :

30: Q̂ ← {q̂ | ∃ i : (q, q̂) ∈ δi(g(x))} ;

31: foreach (q̂ ∈ Q̂)
32: result ← explore(q̂, x, τ, σ · (q̂, x));
33: if (result ! = SAFE) return result;
34: return SAFE;

35: // Check for deadlocks
36: function is deadlock(q, x) :

37: Q̂ ← {q̂ | ∃ i : (q, q̂) ∈ δi(g(x))} ;

38: return (Q̂ = ∅);

39: // Check for livelocks
40: function is livelock(q, x, σ) :
41: K = σ.length;
42: // Check if there exists a loop made of only discrete transitions.
43: if (∃ N < K :
44: σ[N] = (q, x) ∧
45: ∀ N ≤ k < K :
46: ∃ i : (σ[k].q, σ[k + 1].q) ∈ δi(σ[k].x) ∧
47: σ[k].x = σ[k + 1].x) :
48: return true;
49: return false;

50: // Check the state has already been visited
51: function already visited(q, x, τ) :
52: return (∃ (q̂, x̂, τ̂) ∈ visited : q = q̂ ∧ x = x̂ ∧ τ ≤ τ̂);

Figure 3.2: Continued – The systematic simulation algorithm.

26 Verification of Embedded Control Software

already visited at lines 51-52), the search stops as the current state is

guaranteed to be safe (line 16). Otherwise, the current state and time horizon

are added to the set of visited states (line 17).

Line 19 calls the function plant transition to perform a plant tran-

sition and is executed only if the current control location q.L is equal to

Lfinal . Otherwise line 21 calls the function supervisor transitions, which

explores the transitions of the controller.

The function plant transition first checks that the time horizon is large

enough to allow a plant transition, whose duration is equal to the sampling

time ts (line 24). If a transition is possible, lines 25-26 compute the next state:

the plant state x̂ is obtained by performing numerical simulation (calling the

function sim) and the control location is set to Linitial . The exploration

continues on line 27 with a recursive call to explore starting from the newly

generated state, with a smaller time horizon and an updated trace.

The function controller transitions first computes the set of succes-

sors of the given state (line 30). The successors are explored, one at a time,

by the loop at lines 31-33. For each successor, a recursive call to explore

is performed. The time horizon in the recursive call is unchanged since I

assumed that controller transitions execute instantaneously (line 34).

The function is deadlock (lines 36-38) determines if the current state

is a deadlock by looking at the set of its successors and checking whether it

is empty. The function is livelock (lines 40-49) determines if the current

state belongs to a livelock by checking whether it is part of a loop in the

F. Lerda 27

current path σ. The function already visited (lines 51-52) determines if

the current state has already been visited by looking for a state with the

same controller state q, the same plant state x, and a time horizon greater

than or equal to the current time horizon τ .

The pseudocode in Figure 3.2 is based on the algorithm for explicit-state

model checking [9], which performs a depth-first search of the state transition

graph. The major additions are livelock detection (lines 44-49), bounded

time reachability by storing time horizons together with states in the visited

set (lines 15-17), and the computation of plant transitions using numerical

simulation (lines 23-27).

3.2 Implementation

We implemented this technique by extending an existing explicit-state source

code model checker [21]. The tool we chose to use is Java PathFinder [27].

While the main purpose of the tool is to verify Java programs, it is able to

handle the subset of C that is common to the two languages. We were able

to check the code automatically generated using the MathWorks’ Real-Time

Workshop code generator with only minor syntactic modifications. The main

reasons for choosing Java PathFinder were that it was readily available and

it could be extended to implement our approach. In future work, we plan to

investigate using alternative model checkers, especially tools that are aimed

at C/C++. We used MATLAB/Simulink to model the plant and controller

28 Verification of Embedded Control Software

and to provide simulation traces for the systematic simulation analysis. This

enables full support of models developed used MATLAB/Simulink, a stan-

dard modeling tool for these types of systems.

We extended the existing model checker in the following ways. We added

an additional component to the state of the system corresponding to the

state of the plant. The plant state is represented by a set of floating-point

values for each of the plant state variables. We extended the transition

system constructed by the model checker to include plant transitions. Sepa-

rate concurrent processes are modeled explicitly in the model checker. Plant

transitions are computed using the MATLAB/Simulink numerical integration

solver (this corresponds to line 31 in Figure 3.2). Given the sampling period

ts, the current plant state x, and the actuator values u, MATLAB/Simulink

returns the state x̂ that is reached at time ts.

3.3 Experimental Evaluation

In the following, I present experimental results obtained by applying the sys-

tematic simulation technique presented above to an example based on the

Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STAR-

MAC). STARMAC is a quadrotor unmanned aerial vehicle (UAV) under de-

velopment at Stanford University [15]. We obtained a Simulink model of

the STARMAC system from the Stanford development team. Then we con-

structed a new system model, the Reconnaissance Mission (RM) model, that

F. Lerda 29

includes a supervisory controller that we designed. We used the technique

described above to detect an error in the RM model.

The vehicle, shown in Figure 3.3, is composed of a computer controller

and power supply at its center, which is attached to a frame on which four

rotors are mounted. The controller of the vehicle is organized on three levels

illustrated in Figure 3.4. The inner loop controller sends thrust commands

to the four rotors based on the pitch, roll, yaw, and altitude commands that

it receives from the outer loop controller. The latter commands are based on

the position command (in three dimensions) that the supervisory controller

generates. The supervisor makes its decision based on the current position

of the vehicle.

Figure 3.3: An illustration of the Stanford Testbed of Autonomous Rotorcraft
for Multi-Agent Control.

We constructed a supervisory controller whose purpose is to guide the

vehicle through a sequence of waypoints. The controller must be robust with

respect to invalid waypoints, meaning that it has to guarantee that the vehi-

cle will not reach an altitude below 1 meter unless it is taking off or landing

(corresponding to the first and last waypoint in the sequence). The super-

30 Verification of Embedded Control Software

Figure 3.4: Vehicle block diagram.

visory controller is modeled using Stateflow diagrams. The implementation

uses the following interleaved tasks, illustrated in Figure 3.5:

• Waypoint Tracking [Figure 3.5(a)] takes the vehicle through a set

of positions given by a waypoint list. It checks the proximity of the

vehicle to the target waypoint and, if the vehicle is close to the target,

it picks the next waypoint from the list and issues the command to the

STARMAC Quadrotor.

• Waypoint Monitor [Figure 3.5(b)] checks if the altitude command of

the next waypoint is below 1.1 meters and, if so, it adjusts the altitude

command to 1.1 meters to avoid falling below the 1 meter minimum

altitude.

• Command Latch [Figure 3.5(c)] maintains the last command until

the next waypoint command is issued.

The MATLAB/Simulink model of the RM system includes the supervi-

F. Lerda 31

(a) (b) (c)

Figure 3.5: The three tasks implementing the controller: (a) Waypoint Track-
ing; (b) Waypoint Monitor; and (c) Command Latch.

sory controller, the outer loop controller, the inner loop controller, and the

dynamics of the vehicle (see Figure 3.4). Since the inner and outer control

loops operate at a much faster clock rate than the supervisor, we model them

as part of the RM plant and take the supervisor to be the RM controller.

The RM plant model corresponds to a set of non-linear differential equations

with over 39 continuous-valued state variables. The interaction between the

plant and the supervisory controller occurs by means of position commands

(in the x, y, and z coordinates) sent by the supervisor to the plant, and

32 Verification of Embedded Control Software

position sensor values sent by the plant to the supervisor.

The property to be checked is that the vehicle never flies below the min-

imum safe altitude of 1 meter, unless it is taking off or landing. We used

the technique described in this chapter to search for a counterexample. The

tool explores the traces of the system until it reaches an unsafe state and the

counterexample shown in Figure 3.6 is generated. The horizontal axis in the

figure represents time, the vertical one represents the altitude. The dashed

curve is the actual altitude of the vehicle as it evolves with the passing of

time. The solid curve represents the altitude command generated by the

controller. The trace is a counterexample because at the end of the trace the

altitude reaches a value below 1 meter and the vehicle is neither taking off

nor landing. The circles on the diagram mark the sampling times and may

correspond to multiple controller transitions.

The counterexample is due to the interleaving of the tasks. In this partic-

ular trace the Waypoint Monitor task executes before the Waypoint Track-

ing task at time t = 7 seconds and therefore sees the previous value of

target position. Since this value is valid (its altitude component is above

1.1 meters) the value is not changed. After that, the Waypoint Tracking

task executes and target position is set equal to the fourth waypoint,

which contains an invalid altitude value (see Figure 3.7). The value of

waypoint available is set to true and the Command Latch task records

the incorrect value. At this point the vehicle starts to decrease its alti-

tude towards the waypoint at altitude 0.5 meters. At the next sample

F. Lerda 33

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

A
lt

it
u

te
 (

m
et

er
s)

z
cmd

z
z

min

Figure 3.6: Counterexample trace.

time, the Waypoint Monitor task corrects the value, but it is too late as

waypoint available is now set to false and the Command Latch task does

not update its interval value until the next waypoint is generated. One sam-

pling time later the vehicle altitude becomes lower than the minimum safe

altitude and an error is reported by the tool.

As shown in Figure 3.8, during the analysis with a time bound of 15 sec-

onds, the tool generated 131,158 states before detecting the error. This re-

quired about 11 minutes and 928MB of memory. The counterexample shown

in Figure 3.6 contains 1346 transitions, of which 9 are plant transitions and

34 Verification of Embedded Control Software

x y z

1 0.0 0.0 0.0

2 2.0 1.3 1.2

3 0.2 2.0 1.5

4 1.8 1.1 0.5

5 1.2 0.4 1.5

6 0.0 0.0 0.0

Figure 3.7: List of waypoints used in the experimental evaluation

the rest are controller transitions. The large number of controller transitions

is due to the fact that the software is modeled at the statement level in order

to be able to check the interleaving of the tasks. During the analysis, the

tool encountered 140,673 states equal to previously visited states, marked

as revisited states in the table. Different task orderings during execution

often led to the same state. The approach, however, is able to detect those

cases where a different ordering leads to a different behavior, as in the coun-

terexample shown above. The results for different values of the time bound

are shown in Figure 3.8. Notice that no counterexample is found for a time

bound of 5 seconds (first row in the table), since the duration of the shortest

counterexample trace is 9 seconds.

F. Lerda 35

Time Running Memory Reached Revisited

bound time usage states states

5s1 5:50s 795MB 112,057 131,781

10s 1:12s 25MB 2,470 2,449

15s 11:31s 928MB 131,158 140,673
1No counterexample found.

Figure 3.8: Running times, memory usage, number of reached states, and
number of revisited states for different time bounds and with and without
approximate equivalence.

36 Verification of Embedded Control Software

Chapter 4

Path Pruning

The systematic simulation approach presented in the previous chapter ex-

haustively explores all possible behaviors of an SDCS . By using a model

checker, the technique is more efficient than using standard simulation to

enumerate all traces. The approach, however, requires substantial compu-

tational resources when applied to complex systems. For such systems, the

number of traces is exponential in the time bound and the number of tasks

and inputs. The model checker has to explore all traces, even if many of them

are similar to each other. This chapter presents an approach that prunes the

state-space graph by removing parts of its traces.

Explicit-state model checkers compute the set of reachable states itera-

tively by constructing the state-space graph using the transition relation of

the system. When the model checker encounters a state that is equal to

a previously visited state (lines 15-16 in Figure 3.2), the successors of the

37

38 Verification of Embedded Control Software

current state are not explored. Doing so would only lead to states that have

already been encountered. This chapter presents an approach that replaces

the notion of state equality in model checking with state equivalence based

on an approximation of the plant state. The approach, called path pruning,

uses a notion of approximate equivalence between states. This approach,

however, is a heuristic that enables the technique to analyze larger systems.

While the approach is able to efficiently search for counterexamples, it does

not explore all possible system behaviors. As such it cannot prove that a

system is safe.

4.1 Approximate Equivalence

The path pruning approach presented in this chapter is based on a notion of

approximate equivalence between states. Intuitively, an approximate equiva-

lence corresponds to an equivalence relation between the plant states.

Definition 4.1 (Approximate Equivalence) Given an SDCS, an equiv-

alence relation ≈ between plant states, two states (q1,x1) and (q2,x2) of the

SDCS are approximately equivalent if and only if q1 = q2 and x1 ≈ x2.

The notion of approximate equivalence defined above is used in the next

section to prune the paths explored by the algorithm presented in the previ-

ous chapter. When a state that is approximately equivalent to a previously

visited state is encountered, we can stop exploring traces starting from that

F. Lerda 39

state. In the following, I present two examples of equivalence relations over

the plant states.

Example 4.1 (Finite Precision) The first equivalence relation is obtained

using a finite precision to represent each component of the plant state. Given

a finite precision δ > 0, the finite precision representation of a real number is

given by the function fp : R→ R defined as fpδ(r) = δ⌊r/δ⌋. For example, if

r = 3.259 and δ = 0.1, we have that fpδ(r) = 3.2. Given a plant state x ∈ R
n,

let x|i denote the ith component of x. Given a finite precision δ > 0, the

δ-approximate equivalence relation ≈δ is defined as follows: two plant states

x1,x2 ∈ R
n are equivalent, denoted by x1 ≈δ x2, if and only if, for every i be-

tween 1 and n, fpδ(x1|i) = fpδ(x2|i). The relation ≈δ is clearly an equivalence

relation. This notion of approximate equivalence corresponds to pruning the

paths starting from a state that is equal to a previously visited state when

using only a finite precision to compare the plant states. Figure 4.1(a) shows

two plant states x1 and x2 that are approximately equivalent. The hatched

area represents the set of states equivalent to x1 and x2 according to this

notion of equivalence.

Example 4.2 (Order Reduction) A different equivalence relation between

plant states can be defined by considering only some components of the plant

state. Let Π : R
n → R

n′

, with n′ < n, denote the projection of a subset of

components of a plant state x ∈ R
n. The Π-approximate equivalence ≈Π is

defined as follows: two plant states x1,x2 ∈ R
n are equivalent if and only if

40 Verification of Embedded Control Software

(a) (b)

Figure 4.1: Two equivalent plant states x1 and x2 using different notions of
equivalence: (a) Finite precision; and (b) Order reduction.

Π(x1) = Π(x2). It is easy to see that ≈Π is an equivalence relation. This

notion of equivalence corresponds to pruning traces starting from a state that

is equal to a previously visited state with respect to a subset of its compo-

nents. Figure 4.1(b) shows two equivalent plant states x1 and x2. Using this

notion of equivalence, the set of states equivalent to x1 and x2 corresponds

to a vertical line.

4.2 Path Pruning Algorithm

By using the notion of approximate equivalence defined in the previous sec-

tion it is possible to modify the algorithm given in the Chapter 3 (Figure 3.2)

to search for counterexamples efficiently. Notice that by using approximate

equivalence, the algorithm is unable to prove bounded-time safety. However,

it allows to search efficiently for counterexample in a complex system by

F. Lerda 41

looking only at a subset of its traces. The next chapter presents an extension

of this approach and introduces a notion of equivalence that is sufficient to

guarantee safety.

The path pruning algorithm is a simple modification of the systematic

simulation algorithm presented in Chapter 3 where the already visited

function defined in Figure 3.2 is replaced by the one shown in Figure 4.3.

The algorithm simply checks if a state that is approximately equivalent to

the one currently being explored has been visited before. If such a state

exists then the successors of the current states are not explored. I call this

operation path pruning as it corresponds to removing the paths starting at

the current state from the state-space graph constructed by the algorithm.

Figure 4.2(a) shows an example of path pruning.

4.3 Experimental Evaluation

We have implemented the path pruning approach presented above in a model

checker based on Java PathFinder [25]. In this implementation and in the

example below, we have used the finite precision approach from Exam-

ple 4.1 to compute approximate equivalence. Given a precision δ > 0, the

δ-approximate equivalence relation ≈δ corresponds to using only a finite pre-

cision to represent the states of the plant. Therefore, instead of storing the

plant state in the visited set (line 17 in Figure 3.2), we decided to store

the finite precision approximation of the plant state instead. This has some

42 Verification of Embedded Control Software

(a) (b)

Figure 4.2: Approximate equivalence (a) identifies states that have the same
controller state and similar plant states. This enables pruning (b) parts of
the state-space graph when checking for approximate safety.

practical advantages. First, in order to determine if a state is approximately

equivalent to the current state, it is sufficient to find a stored state that is

equal to the finite precision approximation of the current state. This allows

using efficient hashing techniques to determine if a state has already been

visited. Another advantage is that storing the finite precision approxima-

tion of states reduces the memory requirements needs to represent the set of

visited states.

Below I demonstrate the path pruning algorithm by applying it to a

robotic example. I first describe the robotic example itself. After that, I

outline the steps involved in analyzing the system and the results I obtained.

A slalom course laid out on the pavement defines the task for the robot.

F. Lerda 43

1: // Check if the state has already been visited
2: function already visited(q, x, τ) :
3: return

4: ∃ (q̂, x̂, τ̂) ∈ visited :
5: q = q̂ ∧
6: x ≈ x̂ ∧
7: τ ≤ τ̂ ;

Figure 4.3: The conservative merging verification algorithm.

A white line connects a series of gates which the robot must follow while

controlling the speed. Various weather and lighting conditions challenge

sensing, computing, and locomotion. The robot tries to complete the course

as quickly as possible while tracking the line. A robot designed to meet the

specification requires an adequate physical platform with correct software.

Hardware. The robot is 41x27x12cm in size and utilizes two battery packs

with 7.2V and 12V to provide power for processing and actuators indepen-

dently. Two geared 12V motors drive the back wheels as depicted in Fig. 4.4.

The microcontroller adjusts the pulsewidth of the signal and effectively reg-

ulates the power supplied to the motors. To actuate the rack-and-pinion

steering, the microcontroller sends pulsewidth commands to a servo. Steer-

ing and velocity commands are determined using the data read from the

sensors. The robot has 12 sensors (Fig. 4.4): ten brightness sensors measure

the reflectivity of the ground and two encoders measure the velocity and dis-

tance traveled. The brightness sensors are mounted on a line perpendicular

to the direction of travel. The approximate offset from the center of the line

44 Verification of Embedded Control Software

is measured using this sensor arrangement. The input/output (I/O) ports of

the microcontroller are connected to an analog-to-digital (A/D) converter,

25-tick encoders, a servo, and an amplifier. Three tasks read and write val-

ues via I/O ports and memory. The microcontroller directly executes Java,

which significantly simplifies the verification using Java PathFinder. It im-

plements Java 2 Micro Edition, and it has multithreading. The software is

written and compiled on a host computer and then downloaded to the flash

memory of the microcontroller.

Motor

Motor

Encoder

Encoder

L
ig

ht
 S

en
so

rs

St
ee

ri
ng

Wheel

Wheel

Wheel

Wheel

Figure 4.4: Diagram of the robot showing the location of sensors and actua-
tors.

Software. The software regulates the steering and the speed using two

separate tasks. An additional task reads the reflectance values from the

brightness sensors. Computations do not involve dynamic object creation

or destruction and use only integer arithmetic. Depending on the setup,

different interleaving of tasks are possible but all tasks execute periodically

with a frequency of 33Hz. The A/D converter measures the voltage generated

by each light sensor. The microcontroller communicates via a serial bus to

F. Lerda 45

read the values. Since commands are sent at the fixed frequency of 33Hz,

sensor values are read at the same frequency. The two encoders are connected

directly to the microcontroller and provide speed and distance traveled. The

cached brightness values are used by the controller to calculate a steering

command. After normalizing the values, the algorithm finds the left and

right edge of the line. Proportional control is performed to try to keep the

middle of the line centered underneath the sensors. If it is ever detected

that the line is out of bounds, the last known good direction is used as the

steering direction. The speed of the robot is calculated from elapsed time and

registered encoder ticks. The desired goal speed is determined from the the

last steering command in order to adapt to curvature. The difference between

the two determines the pulsewidth command sent to the motor driver.

The system is depicted in a block diagram representation in Fig. 4.5. The

control software is on the left and the plant is on the right. The inputs and

outputs of the controller software are quantized since the implementation of

the software relies on fixed point integer arithmetic. The dependency between

the steering and speed control tasks is indicated by a connection from the

output of the steering controller to the input of the speed controller.

The Plant Model. The plant model can be either derived from first prin-

ciples or automatically identified using a technique known as system iden-

tification [23]. Although the robot is simple, it is not trivial to derive the

physical model from first principles because many parameters are unknown

46 Verification of Embedded Control Software

Velocity
 response

f(u)

Steering Controller
(Task 2)

Steering
response

f(u)

Speed Controller
(Task 3)

RobotController Software

0
steeringmodel

speedmodel

Figure 4.5: A block diagram representing the control software and discrete
time plant model of the robot.

and hard to measure. Therefore, we derived the environment using system

identification. The position relative to the line depends on the velocity of the

robot and the steering angle. A fourth-order system gives a good relation-

ship between velocity, steering pulsewidth, and position relative to the line.

The identified system model constrains the input into the software. Since

the interactions with the environment are executed at a fixed frequency of

33Hz, we express the system as a discrete state space systems with a sample

time of 0.03s.

Properties. The initial configuration of the robot defines the initial values

of the state vector. Although it is possible to test ranges of initial config-

urations, we focused on a single initial configuration. In this configuration

the robot steers to the right since it wants to reach back to the center of

the line. The robot is offset from the middle of the line by 36mm, i.e. the

middle of the line is under the rightmost sensor. The robot starts with zero

initial velocity. The closed system with initial conditions is fully specified

F. Lerda 47

and permits reasoning about the properties that are necessary to ensure the

correct operation of the robot. Safety properties state conditions that must

hold for the robot to be able to advance and not damage the hardware. In

particular, the line has to be visible by at least one light sensor to ensure

that a correct command is sent. This is specified as a property which checks

that the position with respect to the line is within a given range. The speed

also has to be within a range to give the robot enough time to process and

react to the available data.

The goal of the case study is to demonstrate the path pruning approach

to verifying control system software. By using the path pruning algorithm

presented in this chapter, we were able to check approximate safety of the

system (Figure 4.6). In order to examine the effects of different kinds of

sensor and actuator inaccuracy, we added nondeterministic behavior to parts

of the model. We explored the influence of a ±5 error in the number of ticks

counted by the encoder, a random failure of two light sensors, and a ±50µs

error in the output pulsewidth times. The runtime and memory usage for

the different runs are shown in Figure 4.6. While modeling errors requires

additional resources, it provides a better coverage of the behavior of the

system.

In order to determine if the approach is able to detect subtle errors in

the code, we seeded a bug in controller. In [22], a fatal type-conversion

bug for the Ariane 5 rocket is analyzed. In this incident, the conversion of

a 64-bit floating point value to a 16-bit signed integer caused an overflow.

48 Verification of Embedded Control Software

Experiment Time Memory

Model without Noise 0:00:07 5 Mb

Noisy Encoder Values 0:45:41 106 Mb

Light Sensor Failure 1:12:55 159 Mb

Noisy Pulsewidth Commands 0:18:18 41 Mb

Figure 4.6: Computation time and memory necessary for the verification
with and without different kinds of errors.

This occurs only for specific trajectories, making it a perfect candidate for

model checking. We investigated if this type of bug could be discovered

using our technique. The source code of the robot was seeded with a similar

type-conversion bug. An 8-bit signed integer variable was used to store the

number of encoder ticks during a single period. The internal value is actually

a 16-bit unsigned integer, so a type conversion occurs when the value is read

from the sensor. The 8-bit signed integer variable, which ranges between -127

and 128, is sufficient in most cases to represent the number of ticks, as it is

usually less than 128. However, if the velocity exceeds a certain threshold,

a number of ticks larger than 128 is possible. The bug is hard to find, as

it depends on the continuous state of the system (the current velocity) and

the bug shows itself only under certain conditions (the velocity exceeding the

threshold). Even if it is in general difficult to detect intermittent bugs, we

were able to detech this bug using our approach.

Chapter 5

Conservative Merging

In Chapter 3, I presented an approach that combines model checking and

simulation to check bounded-time safety of an SDCS with a finite set of initial

states. In Chapter 4 I introduced a notion of approximate equivalence that

is used to prune the state space and, therefore, reduces the size of the state

space that needs to be explored. The approach is not conservative, however;

it can be used to search for counterexamples, but it is not guaranteed to find

a counterexample if the system is not safe.

The approach presented in this chapter is able to prove bounded-time

safety of an SDCS while performing path pruning, which corresponds to

merging a trace with a previously visited one. In model checking, merging

can be done only when a state on one trace is identical to a state on another

trace. Our approach is able to perform a conservative merging when two

states are in proximity to each other if the pruned parts of the state space

49

50 Verification of Embedded Control Software

are guaranteed to be safe. In the following, I show how to determine safe

sets of plant states around the states in a trace. These sets correspond to a

set of traces that are in proximity of the visited trace and are guaranteed to

be safe. When a state that is within a safe set is reached, the trace can be

merged conservatively with a previously visited state and the successors of

such a state do not need to be explored further.

In general, given a dynamical system and two initial states that are in

proximity to each other, the trajectories starting at those initial states may

diverge. This thesis uses bisimulation functions to bound the distance be-

tween future evolutions. Bisimulation functions were introduced by Girard

and Pappas as a way to determine the relation between states of a dynami-

cal system [11]. In this work, we use bisimulation functions to approximate

conservatively the plant transitions.

Definition 5.1 (Bisimilation Function) [11] Given an autonomous dy-

namical system Σ described by ẋ(t) = f(x(t)) where x : R → R
n and

f : R
n → R

n, a differentiable function ϕ : R
n × R

n → R is a bisimula-

tion function of Σ if and only if

• ϕ(y, z) ≥ 0, for all y, z ∈ R
n; and

• ∇yϕ(y, z) · f(y) +∇zϕ(y, z) · f(z) ≤ 0, for all y, z ∈ R
n.

The previous definition is similar to the definition of Lyapunov functions

from stability theory [6]. Both Lyapunov functions and bisimulation func-

tions are required to decrease along trajectories of the system (the second

F. Lerda 51

condition of Definition 5.1). Bisimulation functions, however, are defined

over a pair of states and consider the distance between two trajectories,

while Lyapunov functions are defined over a single state and consider the

distance between a trajectory and a rest post. Lyapunov functions can be

used to prove that a trajectory starting close to a rest point will remain close

to the rest point as time evolves. Similarly, bisimulation functions can be

used to prove that two trajectories that start from points close to each other

remain close to each other as time evolves [16].

Definition 5.2 (Inner Levels Sets) Given a plant state x ∈ R
n, a bisim-

ulation function ϕ, and a real value r ≥ 0, the inner levels set of the bisimu-

lation function ϕ centered at x and of size r, denoted by Nϕ(x, r), is defined

as

Nϕ(x, r) = {z ∈ R
n |ϕ(x, z) ≤ r}.

We assume that for every value of the supervisor variables v, a bisimu-

lation function ϕv of the autonomous dynamical system ẋ(t) = fv(x(t)) is

given. We can now state the following theorem about bisimulation functions

and plant transitions, based on a theorem from Julius et al. [16].

Theorem 5.1 (Plant Approximation) Given two states s = ((Lfinal ,v),y)

and ŝ = ((Linitial ,v), ŷ) such that s −→ ŝ is a plant transition, and a bisim-

ulation function ϕv for the differential equation ẋ(t) = fv(x(t)), for every

r ≥ 0 and for every z ∈ Nϕv
(y, r), if ((Lfinal ,v), z) −→ ((Linitial ,v), ẑ) is a

plant transition, then ẑ ∈ Nϕv
(ŷ, r).

52 Verification of Embedded Control Software

Proof

The theorem is a direct consequence of Corollary 1 of [16]. �

In Chapter 2, I defined a state of an SDCS to be safe if it does not lead

to a fail state, a deadlock state, or a livelock state (see Definition 2.11). A

state of an SDCS is made of a supervisor state q and a plant state x. If I

choose a specific supervisor state q, I can define a set X of plant state to be

safe with respect to the supervisor state q as follows.

Definition 5.3 (Safe Plant States) Given a supervisor state q and a time

bound T, a set X ⊆ R
n of plant states is safe for T at q if and only if, for

every x ∈ X , the state (q,x) is safe for time bound T .

Figure 5.1 illustrates the notion of safe plant states. In this example, the

plant states have two dimensions, corresponding to the axes labeled x1 and

x2. The vertical axis represents the value of the supervisor variables: each

plane corresponds to a different value of the supervisor variables, namely

va, vb, and vc. On each plane, the areas marked by Fail correspond to the

parts of the plant state space that are unsafe for the corresponding value

of the supervisor variables. Plant transitions correspond to continuous lines

within a given plane; supervisor transitions correspond to dotted lines from

one plane to another. The two sets N3 and N5 are safe for time bound zero,

as they do not intersect the Fail plant states in the corresponding planes.

The sets N2 and N4 are safe for time bound ts, the sampling period, as

they are guaranteed to avoid the Fail region if the system evolves only for

F. Lerda 53

one sampling period. The set N1 is also safe for time bound ts as discrete

transitions from states in N5 lead to states in N1 or in N3.

Figure 5.1: An illustration of sets of plant states safe for a time bound T .
N5 and N3 are safe for time bound zero, while N1, N2 and N4 are safe for
time bound ts, the sampling period.

Given a set of fail states Fail and a supervisor state q, let us denote

by Failq the fail states of q, i.e., the set of plant states that, together with

supervisor state q, are fail states. The set of fail states of q can be defined as

Failq = {x ∈ R
n | (q,x) ∈ Fail} .

54 Verification of Embedded Control Software

Theorem 5.2 (Plant Transition Approximation) Given two states (q,y)

and (q̂, ŷ) such that q = (Lfinal ,v), q̂ = (Linitial ,v), and (q,y) −→ (q̂, ŷ) is

a plant transition, if X̂ ⊆ R
n is safe for T at q̂, then for all r ≥ 0, if

Nϕv
(ŷ, r) ⊆ X̂ and Nϕv

(y, r) ∩ Failq = ∅ then Nϕv
(y, r) is safe for (T + ts)

at q.

Proof

We prove this theorem by contradiction. Assume that Nϕv
(y, r) is not

safe for (T +ts) at q. This means that there exists a plant state z ∈ Nϕv
(y, r)

and a trace σ = s0s1 . . . sK , for some K, such that s0 = (q, z), sK ∈ Fail ,

and duration(σ) ≤ T + ts. Since z ∈ Nϕv
(y, r) and, by hypothesis, Nϕv

(y, r)

does not intersect the fail states of q, Nϕv
(y, r) ∩ Failq = ∅, we have that

z /∈ Failq and so s0 = (q, z) /∈ Fail . Therefore, the trace must contain at

least two states (K ≥ 1). Let σ̂ denote s1 . . . sK . By Definition 2.7 we

have that duration(σ) = duration(σ̂) + ts, since σ̂ is obtained from σ by

removing a plant transition, whose duration is the sampling period ts. Since

duration(σ) ≤ T + ts, by assumption, we can deduce that duration(σ̂) ≤ T.

By Definition 2.5, s1 = (q̂, ẑ) for some ẑ ∈ R
n. By Theorem 5.1 we can

deduce that ẑ ∈ Nϕv
(ŷ, r). But, by hypothesis, Nϕv

(ŷ, r) ⊆ X̂ and therefore

ẑ ∈ X̂ . Since X̂ is safe for T at q̂, there does not exist any trace starting at

(q̂, ẑ) that reaches a state in Fail and whose duration is less than or equal to

T . However, σ̂ is such a trace, which is a contradiction, therefore Nϕv
(y, r)

must be safe for (T + ts) at q. �

F. Lerda 55

Theorem 5.2 allows us to determine a set of plant states that are safe for

(T +ts) at a given supervisor state q given a set of plant states that are safe for

T at the supervisor state q̂ obtained by performing a plant transition. Below

we show how to compute a set of plant states that is safe for T at a supervisor

state q for the case of supervisor transitions. While plant transitions are

always deterministic, supervisor transitions may lead from one state to a

number of successor states. In order to deal with this, we define a notion of

equivalence between plant states with respect to a supervisor state.

Definition 5.4 (Program Equivalence) Given a supervisor state q and a

pair of plant states y, z ∈ R
n, we say that y is program equivalent to z at q,

denoted by y ≈q z, if and only if

• for every q̂1 such that (q,y) −→ (q̂1,y), we have that (q, z) −→ (q̂1, z);

and

• for every q̂2 such that (q, z) −→ (q̂2, z), we have that (q,y) −→ (q̂2,y).

The relation ≈q defined above is an equivalence relation. Therefore, for

every supervisor state q, ≈q defines a set of equivalence classes. Given a

supervisor state q and a plant state y, let [y]q denote the equivalence class

of y defined by ≈q, that is [y]q = {z ∈ R
n |y ≈q z}.

Theorem 5.3 (Supervisor Transition Approximation) Given a state (q,y)

with q = (L,v) and L 6= Lfinal , let Q̂ = {q̂ | (q,y) −→ (q̂,y)} denote the set

of supervisor successors of (q,y). For each successor q̂ ∈ Q̂, let Tq̂ be a time

56 Verification of Embedded Control Software

bound and X̂q̂ ⊆ R
n be a set of plant states safe for time bound Tq̂ at q̂.

Consider a time bound T and set of plant states X ⊆ R
n. The set X is safe

for time bound T if

• for every supervisor successor q̂ ∈ Q̂, the time bound T is less than the

time bound Tq̂ corresponding to q̂, i.e., T ≤ Tq̂;

• the set X does not contain any fail states of q, i.e., X ∩ Failq = ∅;

• every plant state in X is program equivalent to y, i.e., X ⊆ [y]q; and

• for every supervisor successor q̂ ∈ Q̂, every plant state in X belongs to

the set of safe plant states X̂q̂ corresponding to q̂, i.e., X ⊆ X̂q̂.

Proof

We prove this theorem by contradiction. Assume X is not safe for T at q.

This means that there exists a plant state z ∈ X and a trace σ = s0s1 . . . sK ,

for some K, such that s0 = (q, z), sK ∈ Fail , and duration(σ) ≤ T . Since

z ∈ X and, by hypothesis, X does not intersect the fail states of q, X ∩

Failq = ∅, we know that z /∈ Failq and so s0 = (q, z) /∈ Fail . Therefore

the trace σ must contain at least two states (K ≥ 1). The first transition

of σ must be a supervisor transition because L 6= Lfinal by hypothesis. Let

s1 = (q̂, z) and σ̂ = s1 . . . sK . Since z ∈ X and, by hypothesis, X ⊆ [y]q ,

we have that y ≈q z and, since (q, z) −→ (q̂, z), there exists a supervisor

transition (q,y) −→ (q̂,y) and so it must be that q̂ ∈ Q̂. Since we assumed

that z ∈ X and, by hypothesis, X ⊆ X̂q̂ because q̂ ∈ Q̂, we have that

F. Lerda 57

z ∈ X̂q̂. But, by hypothesis, X̂q̂ is safe for time bound Tq̂ at q̂. This means

that there does not exist any trace starting at (q̂, z) that reaches a state in

Fail and whose duration is less than or equal to Tq̂. But σ̂ is such a trace

because duration(σ̂) ≤ Tq̂. This is true because σ̂ is obtained from σ by

removing a supervisor transition and therefore duration(σ) = duration(σ̂),

duration(σ) ≤ T, by assumption, and T ≤ Tq̂, by hypothesis. This is a

contradiction and therefore X must be safe for T at q. �

Figure 5.2 shows an application of the theorem above. In this case, state

s1 = (q,y) has two successors, states s2 and s4. We assume that the sets

N2 and N4 are safe for time bound T2 and T4, respectively. The set X1 in

Figure 5.2 denotes the equivalence class [y]q corresponding to state s1. Let

T1 be the smallest of T2 and T4. Then, set N1 is safe for T1, because N1 does

not intersect the fail states of q, every state of N1 is program equivalent to

y, and N1 is contained within both N2 and N4.

The conservative merging occurs when a trace reaches a state within a

safe set of plant states. State s7 in Figure 5.3 is within N2, which we assume

to be safe for time bound T2. The state s6 has a single successor, namely s7.

The set X6 in Figure 5.3 denotes the equivalence class corresponding to state

s6. The set N6 does not intersect the fail region, N6 is a subset of N2, and N6

is a subset of the equivalence class X6. Therefore, by Theorem 5.3, we can

deduce that N6 is safe for T2: any trace starting from a plant state within

N6 leads to a state within N2.

58 Verification of Embedded Control Software

Figure 5.2: N1 is safe for min(T2, T4) since any state in N1 leads to a state
within N2 or N4, which we assume to be safe for T2 and T4, respectively.

5.1 Bounded-Time Safety Verification Algo-

rithm

This section gives an algorithm to check bounded-time safety of an SDCS .

This algorithm is based on the explicit-state Model Checking algorithm [9],

but uses levels sets of a bisimulation function and the notion of program

equivalence to determine sets of plant states that are safe. The standard

explicit-state Model Checking algorithm is a depth first search of the set of

F. Lerda 59

Figure 5.3: The trace containing s6 and s7 is merged with a previously visited
trace. N6 is safe for T2 since any state in N6 leads to a state within N2, which
we assume to be safe for T2.

reachable states for each of the initial states. By using bisimulation functions

and the notion of program equivalence, the algorithm presented here is able

to determine, without looking at every trace, if a certain state encountered

during the analysis is guaranteed not to lead to a fail state.

The procedures main and explore in Figure 5.4 implement the depth

first search. For each initial state (q,x), the procedure explore is invoked to

perform a depth first search up the time bound T (lines 5-10). If the initial

state is safe, a set of states that are safe for T at q is returned: this set is

added to the set of initial states that are guaranteed to be safe (SafeInit on

line 8). Otherwise, if an error was detected, it is returned immediately (line

10). After analyzing each initial state, the set of safe initial states is returned

60 Verification of Embedded Control Software

1: global SDCS, Fail , T;
2: global safe sets ← ∅; // Sets of safe plant states, initially empty.

3: main : // Check bounded-time safety of SDCS
4: SafeInit ← ∅ // Set of safe initial states.
5: foreach ((q, x) ∈ Init) // Depth-first search for each initial state.
6: result ← explore(q, x, T, [(q, x)]);
7: if(result = SAFE(X))
8: SafeInit ← SafeInit ∪ {(q, x) | x ∈ X} // Add to safe initial states.
9: else

10: return result; // An error was detected.
11: return SAFE(SafeInit); // Return the set of safe initial states.

12: function explore(q, x, τ, σ) // Depth-first search from (q, x) up to time tau.
13: if ((q, x) ∈ Fail) return UNSAFE(σ); // Check for fail states
14: if (is deadlock(q, x)) return DEADLOCK(σ) // Detect deadlocks
15: if (is livelock(q, x, σ)) return LIV ELOCK(σ) // Detect livelocks

16: if (∃ (q̂, X̂ , τ̂) ∈ safe sets : q = q̂ ∧ x ∈ X̂ ∧ τ ≤ τ̂)

17: return SAFE(X̂); // Merge traces if within a safe set.
18: if (q.L = Lfinal)
19: result = plant transition(q, x, τ, σ); // Plant transition
20: else

21: result = controller transitions(q, x, τ, σ); // Supervisor transitions
22: if (result = SAFE(X))
23: safe sets ← safe sets ∪ {(q, X , τ)}; // Plant states safe for τ at q.
24: return result;

Figure 5.4: The conservative merging verification algorithm.

F. Lerda 61

25: function plant transition(q, x, τ, σ)
26: if (τ < ts) // Stop if time bound is less than sampling time
27: return SAFE({y | (q, y) /∈ Fail});
28: x̂ ← sim(x, fq.v); // Numerical simulation
29: q̂ ← (Linitial , q.v);
30: result = explore(q̂, x̂, τ − ts, σ · (q̂, x̂));

31: if (result = SAFE(X̂))

32: rmax ← max
{

r |Nϕq.v
(x̂, r) ⊆ X̂

}

; // Safe set of plant states

33: return SAFE(Nϕq.v
(x, rmax));

34: else

35: return result;

36: function controller transitions(q, x, τ, σ)

37: Q̂ ← {q̂ | ∃ i : (q, q̂) ∈ δi(x)} ; // Explore each successor

38: X ← [x]q ∩ Fail ;

39: foreach (q̂ ∈ Q̂)
40: result ← explore(q̂, x, τ, σ · (q̂, x));

41: if (result = SAFE(X̂))

42: X = X ∩ X̂ ;
43: else

44: return result;
45: return SAFE(X);

Figure 5.4: Continued – The conservative merging verification algorithm.

62 Verification of Embedded Control Software

on line 11.

The procedure explore takes as arguments a state (q,x), a time bound

τ, and a trace σ which leads to (q,x). The time bound τ represents the

amount of time remaining from the given state, that is τ = T − duration(σ).

It performs the actual depth first search starting from the given state up to

the time bound. The trace σ is used to generate a counterexample if a fail

state is reached (line 13), a deadlock is detected (line 14), or the current state

is a livelock state (line 15).

The current state is compared with the sets of safe states that have been

determined so far (lines 16-17). If there exists a set of plant states X̂ that

is safe for the current supervisor state q and a longer time bound τ̂ ≥ τ, the

search of this branch can terminate and the set of plant states X̂ is returned

to the caller as safe.

Two ways of computing the successor states are possible. If the current

control state is equal to Lfinal , then a plant transition is performed by calling

the function plant transition (line 19). Otherwise, the transitions of the

supervisor are explored by calling the function supervisor transitions

(line 21). In either case, if the result is that the current state is safe, the set

X of plant states that are computed to be safe for state q and time bound τ

is added to the list of safe sets (line 23).

The result of a plant transition is computed by the function plant transition

in Figure 5.4. Line 27 is executed if the time bound has been reached, i.e.,

there is not enough time left to complete an additional plant transition. The

F. Lerda 63

set of plant states that are safe for time bound τ at q is simply the set of

plant states that are not fail states of supervisor state q, since τ < ts (line

27). Otherwise, the successor state (q̂, x̂) of the current state (q,x) is com-

puted using numerical simulation (line 28) and by setting the current control

location to Linitial (line 29). The search continues from the new state by

calling explore. The recursive call uses a smaller time bound and adds one

state to the trace being constructed (line 30).

If the result at line 30 is that state (q̂, x̂) is safe, the set of states X̂ that

are safe for time bound τ − ts at q̂ is used to determine the maximum size of

a inner levels set of the bisimulation function centered around x that is safe

for time bound τ at q by solving the optimization problem:

rmax = max
{

r ∈ R | Nϕv
(x̂, r) ⊆ X̂

}

,

where v is the current value of the supervisor variables and ϕv is the bisim-

ulation function for ẋ = fv(x) (line 32). The set Nϕv
(x, rmax) is returned to

the caller since it is safe for time bound τ at q.

The function supervisor transitions in Figure 5.4 computes and ex-

plores the successors of a state (q,x) that originate from transitions of the

supervisor. The set of successors Q̂ is generated by using the transition re-

lations δ1, . . . , δp of the tasks that make up the supervisor (line 37). Each

successor q̂ is visited by calling the function explore over (q̂,x) with the

same time bound τ (since supervisor transitions are instantaneous) and with

64 Verification of Embedded Control Software

a trace that adds the new state (q̂,x) to σ (line 40).

If the state (q̂,x) is safe, a set of safe plant states X̂ is returned by the

recursive call. The set of safe plant states that is returned to the caller by

this call (line 45), computed by lines 38 and 42, is

X = Failq ∩ [x]q ∩
⋂

q̂∈Q̂

X̂q̂.

The set X satisfies the hypothesis of Theorem 5.3, namely X ∩ Failq = ∅,

X ⊆ [x]q , and, for every supervisor successor q̂ ∈ Q̂, X ⊆ X̂q̂.

This concludes the description of the algorithm. The following theorems

establish correctness and termination of the procedure.

Theorem 5.4 (Correctness) Consider an SDCS, a set of fail states Fail ,

and a time bound T . If the algorithm of Figure 5.4 returns SAFE (X) then

the SDCS is safe for time bound T, Init ⊆ X , and all states in X are safe for

time bound T . If the algorithm returns UNSAFE (σ) then the SDCS is not

safe for time bound T and σ is a trace of duration less than T that ends at a

state in Fail. If the algorithm returns DEADLOCK (σ) then a deadlock state

is reachable within time bound T . If the algorithm returns LIVELOCK (σ)

then a livelock state is reachable within time bound T .

Proof

(Sketch) We can show, by induction on the time bound τ that, given a

state (q,x) and a path σ to (q,x), if explore returns SAFE (X), then x ∈ X

and X is safe for τ at q.

F. Lerda 65

Three cases are possible. The base case is when τ < ts and q = (Lfinal ,v):

in this case, the algorithm computes a set of states that is safe for τ at q.

Otherwise, if q = (Lfinal ,v) and τ ≥ ts, a plant transition is possible: in this

case, by Theorem 5.2, the computed set is safe for τ at q. If the location

of q is not equal to Lfinal , the set of supervisor transitions is computed and,

according to Theorem 5.3, the constructed set is safe for τ at q.

From this, we can deduce that X contains every initial state of SDCS

and that each state in X is safe for time bound T .

If the algorithm returns UNSAFE (σ), it must have executed line 13, in

check case the trace σ ends at state (q,x), which belongs to Fail . Therefore,

σ is a valid trace from an initial state to a fail state and its duration is less

than T by construction. This trace proves that SDCS is unsafe.

A similar argument holds if the algorithm returns DEADLOCK (σ) or

LIVELOCK (σ). �

Theorem 5.5 (Termination) Given an SDCS with a final set of initial

states, the algorithm of Figure 5.4 always terminates.

Proof

(Sketch) The algorithm constructs a trace σ that leads to the current

state. Every trace generated by the algorithm is finite. This is true because

the trace has only a finite number of plant transition, because the algorithm

generates only traces of duration less than T ; moreover, a trace cannot con-

tain an infinite number of supervisor transitions. In order for that to happen,

66 Verification of Embedded Control Software

there would an infinite suffix of σ corresponding to only supervisor transi-

tions. The plant state of the states in the suffix would be all the same, and,

since there exists a finite number of supervisor states (Loc and V are both

finite sets), one of the states in the suffix of σ must be repeated and the

algorithm would detect a livelock and terminate. This means that the re-

cursion tree has a finite depth. Since the plant transitions are deterministic

and there exists a finite set of supervisor states, the recursion tree obtained

during execution of the algorithm also has a finite maximum degree. Since

the depth of the tree is finite and the degree of each node is finite, there exists

a finite number of nodes, and the algorithm will terminate after exploring

each node. �

5.2 Merging for Affine Dynamics

In this section, we discuss properties related to our technique for the case of

stable affine plant dynamics.

Bisimulation Functions. For the special case of affine plant dynamics,

that is fv(x) = Avx + Bv, a bisimulation function is given by

ϕv(y, z) = (z− y)TPv(z− y),

where Pv satisfies the Lyapunov inequality Av

TPv +PvAv ≤ 0 [6, 16]. The

inner levels sets are given by Nϕv
(x, r) = {z ∈ R

n | (z− x)TPv(z− x) ≤ r},

F. Lerda 67

which are ellipsoidal set [19].

Maximum Ellipsoid Within an Ellipsoid. In the case of affine dynamics,

an operation required by the procedure given in Section 5.1 is the computa-

tion of the maximum sized ellipsoid contained in a second ellipsoid. Given

a set Nϕv
(z, rz) and a point y ∈ R

n, we want to find the maximum ry such

that Nϕv
(y, ry) ⊆ Nϕv

(z, rz). It is shown in [4] that this is equivalent to the

following:

max
λ,c

c

s.t.













−rzQv (z− y) c
√

Qv

(z− y)T λ− 1 0

c
√

Qv 0 −λI













≤ 0

λ ≥ 0

c ≥ 0,

where c =
√

ry, Qv = Pv

−1, I is the identity matrix, and
√

Qv is the matrix

that satisfies Qv =
√

Qv

√
Qv, which exists since Qv is positive semidefinite.

This can be formulated as a convex problem with Linear Matrix Inequality

(LMI) constraints [4]. Numerical tools exists for solving such problems in

polynomial time [12].

Maximum Ellipsoid Within a Set of Linear Constraints. The other

operation required by the procedure given in Section 5.1 in the case of affine

68 Verification of Embedded Control Software

dynamics is the computation of an ellipsoid of maximum size that satis-

fies a conjunction of linear constraints. We want to maximize r subject

to constraints of the form
∧imax

i=1
cT

i y ≤ bi for all y ∈ Nϕv
(x, r) = {z ∈

R
n | (z−x)TPv(z−x) ≤ r}, where bi ∈ R, ci ∈ R

n for each i. Let Qv = Pv

−1.

The maximum r that satisfies the linear constraints is then given by [19]

r∗ = min
i∈{1,...,imax}

(bi − cT
i x)2

cT
i Qvci

.

5.3 Experimental Evaluation

The technique presented in the previous section was implemented using an

existing explicit-state source-code Model Checker. The tool we chose is Java

PathFinder [27]. While the main purpose of the tool is to verify Java pro-

grams, it handles the subset of C that is common to the two languages.

This prototype implementation handles systems where the plant dynamics

are affine. We use the LMI tool CVX with the semidefinite program solver

SDPT3 [12, 26] to solve the optimization problems that arise during the

verification.

Java PathFinder was extended as follows. The state of a system was

enhanced to include the plant state x, represented by a set of floating-point

variables. Our extension stores sets of plant states that are safe with respect

F. Lerda 69

to a given supervisor state and time bound. Safe sets are represented as

ellipsoidal sets, and program equivalence classes and system requirement are

represented as sets of linear constraints. Ellipsoidal sets are represented by

their size parameter r and their center, while the shape and orientation are

determined by the bisimulation function given for each set of plant dynamics.

The set of constraints used to express the set of fail states as well as the pro-

gram equivalence classes are given as annotations. Moreover, since the plant

dynamics are affine, it is possible to convert the continuous-time dynamics

into discrete-time difference equations over the fixed sampling period ts.

We applied our technique to an example based on the Stanford Testbed

of Autonomous Rotorcraft for Multi-Agent Control (STARMAC), a quadro-

tor unmanned aerial vehicle (UAV) under development at Stanford Univer-

sity [15]. The vehicle, shown in Figure 5.5, is composed of a computer con-

troller and power supply at its center, which is attached to a frame on which

four rotors are mounted. A computer controller sends thrust commands to

the four rotors. The supervisor makes its decisions based on measurements

of the state of the vehicle.

We consider a model of the STARMAC system containing six plant state

variables: the horizontal position and velocity (x and ẋ), the vertical po-

sition and velocity (z and ż), and the rotation about the y-axis and the

corresponding rotational velocity (θ and θ̇). The y position and rotation

around the x-axis and z-axis are not included in this model. Motors 1 and 3

provide lift and torque around the y-axis, while motors 2 and 4 only provide

70 Verification of Embedded Control Software

lift. The forces applied by motors 2 and 4 lie on the y-axis and are not shown

in Figure 5.5. Equivalent force is applied by motors 2 and 4 at all times.

Figure 5.5: An illustration of the dynamics captured by the enhanced STAR-
MAC model.

The equations of motion are

ẍ = − b

m
ẋ +

1

m
(u1 + u2 + u3 + u4) sin(θ)

z̈ = − b

m
ż +

1

m
(u1 + u2 + u3 + u4) cos(θ)− g

θ̈ =
L

Iy

(u1 − u3)−
c

Iy

θ̇,

where L = 0.236 m is the distance from the center of the UAV to each motor,

b = 0.3 N · sec/m is the viscous damping due to translation, m = 0.518 kg is

the mass of the UAV, Iy = 0.048 kg ·m2 is the moment of inertia of the UAV

about the y-axis, c = 0.03 N ·m · sec/rad is the rotational viscous damping, ui

are the forces produced from each of the four motors, and g is the acceleration

due to gravity in meters per second squared.

F. Lerda 71

We linearized the equations and designed a linear quadratic regulator

(LQR) to drive the system to a given set point. The LQR controller is

modeled as part of the plant. The system we obtained is of the form ẋ =

Ax + Bx∗, where x∗ is the set point we want to reach and

A = −B =

































−0.6 0.0 0.0 0.0 0.0 9.8

1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −1.1 −0.4 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

−35.4 −22.1 0.0 0.0 −70.2 −2221.7

0.0 0.0 0.0 0.0 1.0 0.0

































.

The supervisory controller for this system is implemented by two concur-

rent tasks: one task determines the target position based on a given list of

waypoints; the other sends position commands to the plant. Due to the inter-

leaving of the two tasks, the plant might receive the updated target position

with a sampling period delay, and the system will follow slightly different

traces every time a new waypoint is generated.

We performed the analysis both with and without state merging. The

results, presented in Figure 5.6 show a significant reduction in number of

visited states and memory usage. The space overhead due to the ellipsoidal

sets that need to be associated with each visited state was limited and it

was offset by the reduction in memory consumption due to the drastic re-

duction in number of visited states. Such a reduction was obtained with

72 Verification of Embedded Control Software

just a handful of conservative state merges: even a single merge can lead

to a large reduction because every state reachable from the merged state no

longer needs to be visited. The approach as implemented showed a signifi-

cant overhead in terms of running time, however, which is probably due to

the fact that the operations involving storing and lookup of ellipsoids have

not been optimized.

Model-Checking-Guided Model Checking
Simulation without Merging with Safe Sets and Merging

Visited states 43,134 25,493
Running time 17 sec 251 sec
Memory usage 90.2MB 64.7MB

Figure 5.6: Visited states, running time, and memory usage for the time
bound T = 90 sec with and without merging of safe states. The number of
state merges was 282.

Chapter 6

Timeline

Work on the topics in this proposal is already underway. Most of the tech-

niques presented here have already been implemented in a prototype tool. I

would like to further develop the implementation, apply it to additional ex-

amples, and extend the existing algorithms to handle more complex systems.

Systematic Simulation. The approach described in Chapter 3 has been

implemented and has been successful in identifying an error in a realistic

example. The implementation is focused on the case of task interleaving.

I would like to look in more detail at models that include a controller im-

plemented as a set of distributed processes communicating over a shared

channels. This type of controllers are commonly used in industry. This ef-

fort would benefit not only the systematic simulation approach itself, but

also the other approaches in this thesis. If time permits, I would like to

integrate the tool with an existing code generator for Stateflow so that the

73

74 Verification of Embedded Control Software

tool could be used directly on MATLAB/Simulink models without manual

intervention.

Approximate Equivalence. Chapter 4 describes an approach for testing

a system by exploring a subset of its behaviors. The behaviors that are

explored depends on a notion of approximate equivalence between states. I

plan to develop and evaluate a few different types of approximate equiva-

lence relations in order to determine the benefits of the different notions of

equivalence as well as their effectiveness.

Conservative Merging. The work in Chapter 5 is the most recent but

also the most interesting. The current implementation demonstrates that a

number of optimizations are necessary to make this approach scale to larger

systems. In this thesis, I plan to explore various ways to improve the per-

formance of the approach. One current bottleneck is the fact that ellipsoidal

sets can only shrink while propagating them backward on a trace. However,

based on the dynamics of the system, it is possible to compute a better esti-

mate for the set of states that are safe. Moreover, the constraints associated

with the equivalence classes of the program equivalence relation often lead to

a further shrinking of the ellipsoidal sets: by taking into account the result

of multiple simulation traces or by exploring additional traces it is possible

to limit this shrinking. Another aspect that I would like to investigate is

the application of this approach to non-linear dynamic systems for which

bisimulation functions can be computed efficiently.

F. Lerda 75

I propose the following timeline for the completion of the thesis:

• November 2007 - January 2008 : Optimizations and heuristics for the

conservative merging algorithm.

• December 2007 - March 2008 : Extend the systematic simulation frame-

work to distributed systems.

• February 2008 - April 2008 : Application of conservative merging to

non-linear dynamic systems.

• February 2008 - April 2008 : Explore different notions of approximate

equivalence.

• May 2008 - June 2008 : Writing of the dissertation.

• July 2008 : Defense of the thesis.

If time permits, I am interested in integrating the current implemen-

tation with an existing code generator for Stateflow and investigating the

use of alternative software model checking techniques and tools within this

framework.

Bibliography

[1] Using Simulink. The MathWorks, 2007.

[2] Thomas Ball and Sriram K. Rajamani. Bebop: A Symbolic Model

Checker for Boolean Programs. In Proc. of the 7th International SPIN

Workshop, 2000.

[3] Oleg Botchkarev and Stavros Tripakis. Verification of Hybrid Systems

with Linear Differential Inclusions Using Ellipsoidal Approximations. In

Proc. of the 3rd International Workshop on Hybrid Systems: Computa-

tion and Control. Springer-Verlag, 2000.

[4] Stephen Boyd, Laurent E. Ghaoui, Eric Feron, and Venkataramanan

Balakrishnan. Linear Matrix Inequalities in System and Control Theory,

volume 15 of SIAM Studies in Applied Mathematics. SIAM, 1994.

[5] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut

Veith. Modular Verification of Software Components in C. In Proc. of

the 25th International Conference on Software Engineering, 2003.

77

78 Verification of Embedded Control Software

[6] Carmen Chicone. Ordinary Differential Equations with Applications.

Springer-Verlag, 2006.

[7] Alongkrit Chutinan and Bruce H. Krogh. Verification of Infinite State

Dynamic Systems Using Approximate Quotient Transition Systems.

IEEE Transactions on Automatic Control, 46(9):1401–1410, 2001.

[8] Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchronization

Skeletons for Branching Time Temporal Logic. In Proc. of Workshop

on Logic of Programs, 1981.

[9] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.

MIT Press, 2000.

[10] Alexandre Donzé and Oded Maler. Systematic Simulation using Sensi-

tivity Analysis. In Proc. of the 10th International Workshop on Hybrid

Systems: Computation and Control, 2007.

[11] Antoine Girard and George J. Pappas. Approximation Metrics for Dis-

crete and Continuous Systems. Technical Report MS-CIS-05-10, Uni-

versity of Pennsylvania, 2005.

[12] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX User’s Guide. 2007.

[13] Thomas A. Henzinger. The Theory of Hybrid Automata. In Proc. of

the 11th Annual IEEE Symposium on Logic in Computer Science, 1996.

F. Lerda 79

[14] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire

Sutre. Lazy Abstraction. In Proc. of the 29th Symposium on Principles

of Programming Languages, 2002.

[15] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and

Claire J. Tomlin. Quadrotor Helicopter Flight Dynamics and Control:

Theory and Experiment. In Proc. of the AIAA Guidance, Navigation,

and Control Conference, 2007.

[16] A. Agung Julius, Georgious E. Fainekos, Madhukar Anand, Insup Lee,

and George J. Pappas. Robust Test Generation and Coverage for Hy-

brid Systems. In Proc. of the 10th International Workshop on Hybrid

Systems: Computation and Control, 2007.

[17] James Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg˙On

Systematic Simulation of Open Continuous Systems. In Proc. of the 6th

International Workshop on Hybrid Systems: Computation and Control,

2003.

[18] Stefan Kowalewski, Sebastian Engell, Jörg Preußig, and Olaf Stursberg.

Verification of Logic Controllers for Continuous Plants Using Timed

Condition/Event-System Models. Automatica, 35(3):505–518, 1999.

[19] Alexander B. Kurzhanski and Istvan Vályi. Ellipsoidal Calculus for

Estimation and Control. Birkhäuser, Boston, 1997.

80 Verification of Embedded Control Software

[20] Flavio Lerda, James Kapinski, Edmund M. Clarke, and Bruce H. Krogh.

Verification of Supervisory Control Software Using State Proximity and

Merging. In Submitted to the 11th International Workshop on Hybrid

Systems: Computation and Control, 2008.

[21] Flavio Lerda, James Kapinski, Hitashyam Maka, Edmund M. Clarke,

and Bruce H. Krogh. Model Checking In-The-Loop. In Submitted to the

27th American Control Conference, 2008.

[22] J. Lions. ARIANE 5 Flight 501 Failure. World Wide Web, July 1996.

http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf.

[23] L. Ljung. System identification: theory for the user. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1986.

[24] Klaus D. Müller-Glaser, Gerd Frick, Eric Sax, and Markus Kühl. Multi-

paradigm Modeling in Embedded Systems Design. IEEE Transactions

on Control Systems Technology, 12(2):279–292, March 2004.

[25] Sebastian Scherer, Flavio Lerda, and Edmund Clarke. Model Checking

of Robotic Control Systems. In Proc. of the 8th International symposium

on Artificial Intelligence, Robotics and Automation in Space, 2005.

[26] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3 4.0.

MIT Press, 2006.

F. Lerda 81

[27] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and

Flavio Lerda. Model Checking Programs. Automated Software Engi-

neering, 10(2):203–232, 2003.

