
Emotion Classification in Children’s Speech Using Fusion of Acoustic and 

Linguistic Features 

Tim Polzehl 
1
, Shiva Sundaram 

1
, Hamed Ketabdar 

1
, Michael Wagner 

1,2
, and Florian Metze 

3 

1 
Quality and Usability Lab, Technische Universität Berlin, Germany 

2
 National Centre for Biometric Studies, University of Canberra, Australia 

3 
interACT, Carnegie Mellon University, Pittsburgh, USA 

{tim.polzehl|shiva.sundaram|hamed.ketabdar}@telekom.de,  
michael.wagner@canberra.edu.au, fmetze@cs.cmu.edu 

 

Abstract 

This paper describes a system to detect angry vs. non-angry 

utterances of children who are engaged in dialog with an 

Aibo robot dog. The system was submitted to the 

Interspeech2009 Emotion Challenge evaluation. The speech 

data consist of short utterances of the children’s speech, and 

the proposed system is designed to detect anger in each given 

chunk. Frame-based cepstral features, prosodic and acoustic 

features as well as glottal excitation features are extracted 

automatically, reduced in dimensionality and classified by 

means of an artificial neural network and a support vector 

machine. An automatic speech recognizer transcribes the 

words in an utterance and yields a separate classification 

based on the degree of emotional salience of the words. Late 

fusion is applied to make a final decision on anger vs. non-

anger of the utterance. Preliminary results show 75.9% 

unweighted average recall on the training data and 67.6% on 

the test set. 

Index Terms: speech processing, meta-data extraction, 

emotion recognition, evaluation 

1. Introduction 

The task of detecting emotions in speech utterances has 

become an active field in human communication research in 

the last decade. Its difficulty lies within the design of pattern 

learning processes capable of interpreting human speech 

behavior like humans would do. This paper describes a 

submission to the open-performance sub-challenge of the 

Interspeech-2009 Emotion Recognition Challenge [1].  

We have developed an end-to-end system using publicly 

available sources and toolkits. The overall system design 

comprises one subsystem, which evaluates a large number of 

acoustic features it extracts from a given chunk, and a second 

subsystem, which evaluates the spoken words it recognizes in 

the chunk.  

The acoustic subsystem extracts a large number of 

acoustic features from the chunk automatically. These 

basically comprise frame-based intensity, fundamental-

frequency and cepstral features, chunk-based statistical 

measures of those features, and features based on the shape of 

the glottal excitation waveform of a central vowel. For testing 

an anger score is calculated for a chunk by means of a 

support vector machine with a radial-basis-function kernel. 

Feature selection and reduction techniques are applied before 

performing classification and evaluation.  

The linguistic subsystem performs a word recognition 

task on each chunk. The anger-non-anger decision is based 

on the a-posteriori anger score of the words learnt during 

training by applying the concept of emotional salience. Each 

subsystem yields its own decision and confidences. A 

decision fusion algorithm combines the scores of the two 

subsystems into the final decision.  

The provided training data comprise 9957 short 

utterances, or “chunks”, from a speech database of children 

who converse with an Aibo robot dog in German.  

2. Feature Extraction  

In general, we considered different feature sources. One, the 

linguistic source, is drawn from the actual words the children 

use to direct the robot. Prosodic and acoustic information 

provide another useful source for characterizing speech 

utterances. We extracted measurements of intensity and 

duration, perceptual loudness and fundamental frequency 

(F0), formants, cepstra, and voice-source characteristics 

obtained by inverse filtering. Feature statistics like means 

etc., as well as relations between voiced, unvoiced and silent 

parts of the chunk were added to the feature vector with the 

overall result of one fixed-length static feature vector per 

chunk. Finally to capture temporal behavior, we appended 

the static vector with the difference (delta) vector. 

2.1. Linguistic Features  

The Emotion Challenge training database provides 

transcriptions of the chunks, and previous work [2,3] shows 

that transcriptions can be used as features for classification of 

emotional content. In order to generate transcriptions also for 

the test data, we developed an automatic speech recognition 

(ASR) system for the challenge.  

Our baseline ASR system was trained on about 14h of 

close-talking “background” speech, recorded from adults 

reading newspaper texts, using the Janus/ Ibis toolkit [4]. The 

acoustic model uses 2000 context-dependent, speaker-

independent acoustic models. These were trained using 32 

Gaussians with diagonal covariance matrices each in a 42-

dimensional MFCC-based feature space after LDA, also 

using VTLN and speaker-based CMN/CVN. The baseline 

language model (LM) was also trained on German Broadcast 

News type text data. 

To adapt this system to the Emotion Challenge, we 

reduced the vocabulary and language model of the original 

system to about 5k words and added domain-specific words 

that appear at least 2 times in the corpus. We then merged the 

respective Maximum Likelihood (ML) update statistics, using 

fixed weights, to derive new acoustic models. For 

development on the training data, we computed speaker-

specific models and evaluated them in a LOSO (leave-one-

speaker-out) method. The language model was adapted to the 



target domain using a context independent interpolation [5] 

of 3-gram background and in-domain LMs, which were 

speaker-specific when used on the training data. 

To classify a chunk, we used the emotional salience as 

proposed by [3], computed either on references or 

hypotheses. The scores of the emotional salience class 

models were used in 2 different approaches, namely feature 

and decision fusion. The results of fusion at decision level are 

given in Section 4. In terms of feature fusion we defined 

statistics on class-dependent emotional salience word scores 

similar to the approach in [2], but could not improve the 

acoustic-online baseline in our combination experiments. 

As the test data did not provide speaker labels, we did not 

use a speaker-adaptive ASR system for testing. We however 

experimented with a speaker-adaptive system that estimated 

CMN/ CVN, VTLN and constrained MLLR incrementally 

over a whole speaker. Results show robust estimates for these 

parameters. Table 1 shows the respective recalls. 

Table 1. Weighted (W) and unweighted (U) average 

recalls (AR) achieved on development (dev) and test 

(eval) data for the baseline (base) and speaker-

adaptive (adapt.) systems in percent 

(%) base dev base eval adapt. dev adapt. eval 

UAR 68.8 62.4 71.2 67.6 

WAR 67.0 58.8 70.3 72.7 

 

Using our implementation, we achieved an UAR of 

71.5% and a WAR of 70.4% on the development data using 

the transcripts. The performance loss incurred through the 

use of ASR is very low. The most emotionally salient words 

were words like “Aibolein”, “pfui”, “stopp”, etc..  

As word error rate (WER) was not the primary target, no 

normalization was performed for scoring. The speaker-

independent system however runs at <30% WER on the 

development data (LOSO method for training), while the 

speaker-adaptive system runs at <20% WER. 

2.2. Acoustic and Prosodic Features 

Previous work [12] showed that acoustic or prosodic 

characteristics show different performance due to different 

database and task design. We therefore extracted a broad 

variety of information from the audio.  

Regarding the group of perceptually motivated acoustic 

measurements we extracted perceived loudness in sone [6], 

intensity in dB and pitch in semitones covering a range of 

150 to 600Hz using a method based on [7]. Due to corpus 

design we adjusted the parameter values so as to mitigate loss 

of too many perceptually weak voiced segments as unvoiced 

and too many pitch octave jumps. The correlation between 

pitch and intensity was included as an independent feature. 

Contours were smoothed using weighted linear regression 

and interpolated using piecewise cubic interpolation. 

Common statistics like the mean, maximum and standard 

deviation, and higher-order statistics like skewness and 

kurtosis were calculated. We also applied a discrete cosine 

transformation (DCT) to the pitch contour, capturing the 

contour shape over the whole chunk. Discrete Fourier 

transforms into the spectral and cepstral domains were also 

calculated.  

Frame-based acoustics were captured in form of 15 

MFCCs and the frequencies and bandwidths of 6 formants, 

from which we calculated the average, standard deviation, 

minimum and maximum for each chunk. We also included 

contours of the spectral flux, the spectral centroid and the 

spectral roll-off point, where the power spectrum was 

weighted with a perception curve before calculating statistics.  

In order to capture voice quality we included spectral 

characteristics of the glottal source, obtained by inverse 

filtering [8] of a prominent pitch period in the chunk and 

taking a pitch-synchronous discrete Fourier transform (DFT) 

[9]. Another feature related to voice quality is the harmonics-

to-noise ratio (HNR). After calculating the HNR contour 

from the autocorrelation lag domain [7] we added its mean, 

maximum and standard deviation to the features. Also added 

were the zero-crossing-rate (ZCR) and the offset of the 

overall elongation.  

As some features tend to only give meaningful values 

when they are applied to specific voice characteristics each 

chunk was partitioned into voiced, unvoiced and silent 

regions using a modified version of [10]. Combining this 

algorithm with our pitch detection we produced a 

voiced/unvoiced/silence grid for each chunk. Considering the 

problem of relative distance to the microphone that was used 

during recordings we set up a number of relative features that 

account for the ratio of features from voiced and unvoiced 

speech segments. We thus calculated a mean relative 

perceptive loudness and a mean relative perceptive intensity 

measurement for all chunks. In order to capture the temporal 

behavior we appended first- and second-order derivatives to 

the contours and their statistics alike.  

All in all we extracted some 1500 features, some 

frequently used in the literature and some rather experimental 

and novel. Table 2 shows the different feature information 

sources and the number of features calculated from them. 

Table 2. Information sources, number of features 

calculated and (unweighted) average recall 

Feature Source Number of Features Average Recall 

ZCR, Elongation, 

Duration, 

Correlation 

10 61.47% 

Intensity 171 68.86% 

MFCC 576 71.10% 

Loudness 171 67.63% 

Formants 216 65.38% 

Spectrum 135 63.65% 

Pitch 236 62.62% 

Linguistic 

Features 
11 49.92% 

Inverse Filtering 33 64.27% 

 

3. Classification 

3.1. Data Preparation 

All our baseline classification performance was estimated 

by averaging the results of 10-fold cross validation. Defining 

a training set we first split the given set randomly into 10 

mutually exclusive parts. In the present case, since the 

number of IDL utterances were approximately twice the 

number of NEG utterances, we first equalized the number of 

samples in each class. To equalize, the IDL samples in each 

fold were randomly split into two equal sub-parts.  The NEG 

samples in that fold were then combined with each of the two 

sub-parts. The average result from the two sub-parts was 

taken to be the performance estimate for the fold. This 
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procedure aims to more clearly determine the effectiveness of 

the features and classifiers used in this work.  Since no 

artificial samples were synthesized, we believe this procedure 

leads to a very conservative and unbiased performance 

estimate. 

3.2. Pretest and Classifier Determination  

The acoustic features described in Section 2 are passed to a 

statistical classifier, in order to build statistical reference 

models for different classes.  Several types of classifiers have 

been proposed in literature for dealing with the problem of 

emotion classification mainly generative models such as 

Gaussian Mixture Models (GMMs) and discriminative 

models such as Artificial Neural Networks (ANNs) or 

Support Vector Machines (SVMs). Generative models learn 

to cover the feature subspace belonging to a certain class. In 

contrast, discriminative models learn boundaries between 

different class feature subspaces in a discriminative way. 

Discriminative models have shown to be superior in terms of 

performance for the task of emotion classification. ANNs and 

SVMs are the most popular discriminative classifiers used in 

the literature.  

We initially used a Multi-Layer Perceptron (MLP) as 

classifier, with feature vectors presented to the input layer 

and emotion labels to the output layer during training. During 

testing, the MLP estimates the posterior probability of each 

emotion class at the output according to the features 

presented at input. These posterior score values are then used 

for the decision.  

We continued our experiments with a Support Vector 

Machine (SVM) as classifier. SVMs view data as two sets of 

vectors in a multi-dimensional space, and construct a 

separating hyperplane in that space. We initially used an 

SVM with a linear kernel function for the experiments. 

However, before applying the features to the SVM, the 

dimensionality of feature vectors were reduced by applying 

different dimensionality reduction techniques which are 

described in the following section.  

According to our experiments, the SVM proved superior. 

In the following we present our experiments and results on 

using SVM classifier with features described in Section 3. 

3.3. Feature Selection 

To get a first insight into the performance of our features we 

evaluated them separately in accordance to the groups 

presented in Table 2. MFCCs performed best in our 

experiments. Measurements of power such as intensity and 

perceptive loudness were also performing reasonably. Note 

that this list gives only a very broad picture of performance 

since it divides into conceptual feature groups rather than 

providing single-feature performance assessment. Also the 

number of features can bias the performance comparison 

between the groups. Table 2 also presents the number of 

extracted features along with their average recall, i.e. the 

number of chunks of a class retrieved divided by the number 

of chunks of that class in the database.  

In order to determine the most promising features for our 

task individually, we applied an Information Gain (IG) filter. 

This entropy-based filter estimate the goodness of a single 

attribute by evaluating its information contribution (gain) of 

information with respect to the required mean information 

that leads to a successful classification. To compensate 

between attributes that show a large difference in variation, 

i.e. also show large differences in information gain, we 

calculated the IG-Ratio (IGR) and ranked our features 

accordingly. Table 3 shows the top 20 ranked features. 

Results are similar to the results from conceptual feature 

grouping, i.e. spectral and power-related features are given 

highest ranks.   

Table 3. Top 20 rankings of the acoustic features 

Rank Feature 

1 mfcc_max_0coeff_wholeUtterance 

2 mfcc_max_0coeff_voicedSegments 

3 intensity_mean_voicedSegments 

4 mfcc_mean_0coeff_voicedSegments 

5 intensity_max 

6 intensity_median_voicedSegments 

7 spectralMagnitude_13_from_inverseFiltering 

8 mfcc_mean_1coeff_voicedSegments 

9 loudness_Delta_max 

10 loudness_Delta_median_voicedSegments 

11 spectrum_Delta_range_centroid_unvSegments 

12 spectrum_mean_flux_wholeUtterance 

13 spectrum_std_flux_unvoicedSegments 

14 spectrum_mean_flux_unvoicedSegments 

15 spectralMagnitude_6_from_inverseFiltering 

16 mfcc_mean_0coeff_wholeUtterance 

17 spectrum_max_flux_unvoicedSegments 

18 loudness_Delta_DCT_1coeff 

19 loudness_DCT_2coeff 

20 spectrum_std_flux_unvoicedSegments 

 

After ranking the features we searched for an optimal number 

of features for inclusion. We determined an optimum at 320 

features using cross-validation as explained above. Figure 1 

shows the resulting graph of unweighted average recall 

against numbers of features passed to the classifier. 

 

Figure 1. Effect of the number of included features on 

average unweighted recall 
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3.4. Optimal Classification 

In the final classification process we extended the linear 

SVM to non-linear classification. We evaluated the use of 

polynomial kernels of different orders experimentally and 

applied a RBF kernel. The combination of SVM with an RBF 

kernel function in turn is very similar to an RBF type of 

Neural Network. We started a grid search to determine the 

optimal settings of the SVM and the kernel for the training 

data. Best scores were obtained with an RBF kernel when 

applying a widened margin constant for the determination of 

the hyperplane.  

Using acoustic/prosodic information only this setup 

resulted in an unweighted average recall of 75.3% with 



corresponding accuracy of 74.4% on the training data. Our 

final predictions on the test data resulted in an unweighted 

average recall of 65.39% and a weighted average recall of 

72.35%. Our final predictions on the test data using linguistic 

information only resulted in an unweighted average recall of 

67.6% and a weighted average recall of 72.7%.  

While incurring a relative small loss in accuracy for both 

linguistic and prosodic/acoustic systems we loose a relatively 

high percentage in unweighted average recall when applying 

our models to the test set.   

4. System Combination  

Early experiments, which included linguistic features 

computed from references as proposed by [2] in the 

(acoustic) feature selection process and classification, did not 

improve recognition rates. We therefore developed and 

optimized separate classifiers on acoustic/prosodic and 

linguistic/textual features and employed a late-fusion 

strategy. To arrive at a joint decision, we computed 

normalized confidence scores for both classifiers by 

computing the rank for a confidence score in its population 

and re-normalizing this to the [0,1] range. We then selected 

the output with higher normalized confidence to be the 

output of the combined system, after an additional constant 

weighting factor was applied to the confidence scores, to 

compensate for the different baseline performance of the two 

classifiers. Overall, confidence scores are not very reliable, as 

their distributions generally have non-positive normalized 

cross entropy (NCE) [11], even after further processing. 

Finally, after applying late fusion of acoustic/prosodic 

and linguistic information we obtained an unweighted 

average recall of 75.9% and a weighted average recall, or 

accuracy, of 76.0% on the development data. The confusion 

matrix of the evaluation on the test data is given in Table 4, 

the corresponding weighted average recall resulted in 72.67 

%, the unweighted average recall in 67.55 %. 

Table 4. Confusion matrix on the test set for anger 

class (NEG) and idle class (IDL)  

 NEG IDL Sum 

NEG              1352 1113 2465 

IDL               1144 4648 5792 

5. Discussion and Conclusion 

This paper presents a system to detect angry vs. non-angry 

utterances of children who are engaged in dialog with an 

Aibo robot dog. The overall system design comprises one 

subsystem, which evaluates a large number of acoustic 

features it extracts from a given chunk, and a second 

subsystem, which evaluates the spoken words it recognizes in 

the chunk.  

The acoustic subsystem extracts a large number of 

acoustic features from the chunk automatically. These 

basically comprise frame-based intensity, fundamental-

frequency and cepstral features, chunk-based statistical 

measures of those features, and features based on the shape of 

the glottal excitation waveform of a central vowel. We 

applied feature selection due to the Information Gain Ratio 

criterion. As a result spectral features and power-related 

features are given highest ranks. After determination of an 

optimal number of features to be passed to classification we 

obtained best classification results using a Support-Vector-

Machine extended by a Radial-Basis-Function kernel 

implementation.  

The linguistic subsystem performs a word recognition 

task on each chunk. The anger-non-anger decision is based 

on the a-posteriori anger score of the words learnt during 

training by applying the concept of emotional salience. We 

improved our scores by applying a speaker-adaptive system 

that estimated CMN/ CVN, VTLN and constrained MLLR 

incrementally over a whole speaker. 

A decision fusion algorithm combines the scores of the two 

subsystems by evaluating decisions and normalized 

confidence scores of both systems. The system performs with 

a weighted average recall of 76.0% and an unweighted 

average recall of 75.9% on the development data. Applied to 

the test data we obtain a weighted average recall of 72.67% 

with a respective unweighted average recall in 67.55%. 
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