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Abstract. Acoustic anger detection in voice portals can help to enhance
human computer interaction. In this paper we report about the perfor-
mance of selected acoustic features for anger classification. We evalu-
ate the performance of the features on both a German and an Ameri-
can English dialogue voice portal database which contain “real” speech,
i.e. non-acted, continuous speech of narrow-band quality. Deploying a
large-scale feature extraction we determine the optimal set of features
for each language. To obtain the ranking we use an Information-Gain
Ratio filter. Analyzing the most promising features we notice a predomi-
nance of MFCC and loudness features. However, for the English database
also pitch features proved importance. We further calculate classification
scores for our setups using discriminative training and Support-Vector
Machine classification. The developed systems show that Emotion Recog-
nition in both English and German language can be processed very sim-
ilarily.

1 Introduction

Detecting emotions in Human Computer Interactive communication is gaining
more and more attention in the speech research community. Moreover, classi-
fying human emotions by means of automated speech understanding analysis
is gaining performance figures to a level that makes it applicable not only for
basic research but also opens up opportunities in deployment systems. Emotion
detection in Interactive Voice Response (IVR) Dialogue systems can be used
to monitor quality of service or to adapt emphatic dialogue strategies [19, 17].
Especially anger detection can deliver useful information to both the customer
and the carrier of IVR platforms. It indicates potentially problematic turns or
slots to the carrier so he can monitor and refine the system. It can further serve



as trigger to switch between tailored dialogue strategies for emotional conditions
to better react to the user’s behavior [11, 3]. Some carriers have also been exper-
imenting with re-routing the customers to the assistance of a human operator
when problems occur. Problems and uncertainties arise from the imbalance in
complexity between human computer interaction and models trained for these
interactions. The difficulty is to capture the various and divers human expression
patterns that convery emotional information by automated measurements.

This paper analyzes the importance of different acoustic and prosodic mea-
surements, i.e. we examine expressive patterns that are based on vocal into-
nation. Applying our system from [12] we capture these expressions extracting
low-level audio descriptors, e.g. pitch, loudness, MFCC, spectrals, formants and
intensity. Current state of the art acoustic recognition systems operate with fea-
ture vectors of static length, i.e. statistics are applied to the descriptors that
are calculated from the whole turn length. These statistics mostly encompass
moments, extrema, linear regression coefficients and ranges of the respective
acoustic contours. Other systems also model the course of acoustic contours by
HMMs or other dynamic methods [16], but are mostly outperformed by static
approaches.

We gain insight into the importance of our features by ranking them due
to their Information-Gain Ratio. Looking at high-ranked features we report on
their distribution and numbers in total as well as in relation to each other. We
compare our features on two different corpora, i.e. an English and a German
corpus both holding telephony conversations with IVR systems.

2 Related Work

Offering as much as 97% accuracy for recognition of angry utterances in a 7
class recognition test performed by humans the TU Berlin EMO-DB [5] bases
on speech produced by German speaking professional actors. Here it is important
to mention that the database contains 10 pre-selected sentences all of which are
conditioned to be interpretable in 6 different emotions and neutral speech. All
recordings have wideband quality. When classifying for all emotions and neutral
speech automatically Schuller [15] resulted in 92% accuracy. For this experiment
he chose only a subset of the EMO-DB speech data that, judged by humans,
exceeded a recognition rate of 80% and a naturalness evaluation value of 60%.
Eventually, 12% of all utterances selected contained angry speech. He imple-
mented a high number of acoustic audio descriptors such as intensity, pitch,
formants, Mel-frequency Cepstral Coefficients (MFCCs), harmonics to noise ra-
tio (HNR), and further information on duration and spectral slope. He compared
different classification algorithms and obtained best scores with Support Vector
Machines (SVM).

A further anger detection experiment was carried out on the DES database [8]
which contains mostly read Dutch speech and also includes free text passages. All
recordings are of wideband quality as well. The main difference to the EMO-DB
is that the linguistic content had not been controlled entirely during recordings.



The people chose their words according to individual topics. The accuracy for
human anger detection for this corpus resulted in 75%. This accuracy bases on
a five class recognition test. Schuller results in 81% accuracy when classifying
for all emotions. Voting for maximum prior probability class would reach an
accuracy of 31% only.

Note that also these results base on acted speech data, containing consciously
produced emotions, performed by professional speakers. Human recognition rates
were obtained by comparing impressions of the labelers during the perception
test with the intended emotions of actors’ performances. In cases where there
is no professional performance, i.e. when looking at natural speech utterances,
we need to rely on the labels of the testers only. To obtain a measurement for
consistency of such corpora the inter labeler agreement measurement can be
applied. It is the ratio of the chance level corrected proportion of times that
the labelers agree to the maximum proportion of times that the labelers could
agree. The inter labeler agreement of two labelers is given by Cohen’s Kappa.
We apply Davies extension of Cohen’s Kappa [6] for multiple labelers to give a
value of coherence among the labelers.

Lee and Narayanan [10] as well as Batliner [1] used realistic IVR speech data.
These experiments use call center data, which is of narrow-band quality. Also the
classification tasks were facilitated. Both applied binary classification, i.e. Bat-
liner discriminates angry from neutral speech, Lee and Narayanan classify for
negative versus non-negative utterances. Given a two class task it is even more
important to know the prior probability of class distribution. Batliner reaches an
overall accuracy of 69% using Linear Discriminative Classification (LDC). Unfor-
tunately no class distribution or inter labeler agreement for his corpus is given.
Lee and Narayanan reached a gender dependent accuracy of 82% for female and
88% for male speakers. He measured inter labeler agreement with 0.45 for male
and 0.47 for female speakers, which can be interpreted as moderate agreement.
For both gender classes, constant voting for non-negative class would mean to
achieve roughly 75% accuracy already. Note that an accuracy measurement al-
lows for false bias since it follows the majority class to a greater extent than it
follows other classes. If the acoustic models fit the majority class to a greater ex-
tent this would lead to overestimated accuracy figures. We therefore emphasize
the use of balanced performance measurements, such as the f1 measure, which
will be discussed in Section 6.

3 Corpora

Nearly all studies on anger detection on narrow-band speech are based on a
singular corpus making a generalization of the results difficult. Our aim in this
study is to compare the performance of different features when trained and
tested on different languages. When comparing existing works on anger detec-
tion one has to be aware of essential conditions in underlying database design.
The most restricted settings would certainly have prearranged sentences per-
formed by professional speakers (one at a time) recorded in audio studios tol-



erating almost no background noise and performing close capturing of speech
signals. Real life speech does not have this setting. The databases we used do
have background noise, people do cross- and off-talk, they are free in choice of
words and would never pronounce themselves as clearly as trained speakers do.
The German database roughly captures 21 hours recordings from a German In-
teractive Voice Response (IVR) portal. The data can be subdivided into 4683
dialogs, averaging 5.8 turns per dialog. For each turn, 3 labelers assigned one of
the following labels: not angry, not sure, slightly angry, clear anger, clear rage
or marked the turns as non applicable when encountering garbage. The labels
were mapped onto two cover classes by clustering according to a threshold over
the average of all voters’ labels as described in [4]. Following Davies extension of
Cohen’s Kappa [6] for multiple labelers we obtain a value of £ = 0.52 which corre-
sponds to moderate inter labeler agreement. Finally, our training setup contained
1761 angry turns and 2502 non-angry turns. The test setup included 190 angry
turns and 302 non-angry turns which roughly corresponds to a 40/60 split of
anger /non-anger distribution in the sets. The average turn length after cleaning
out initial and final pauses is 1.8 seconds. The English database originats from
a US-American IVR portal capable of fixing Internet-related problems jointly
with the caller. Three labelers divided the corpus into angry, annoyed and non-
angry utterances. The final label was defined based on majority voting resulting
in 90.2% neutral, 5.1% garbage, 3.4% annoyed and 0.7% angry utterances. 0.6%
of the samples in the corpus were sorted out since all three raters had different
opinions. While the number of angry and annoyed utterances seems very low,
429 calls (i.e. 22.4% of all dialogues) contained annoyed or angry utterances. In
order to be able to compare results of both corpora we matched the conditions
to the conditions of the German database, i.e. we collapsed annoyed and angry
to angry and created a test and training set according to the 40/60 split. The
resulting training set consists of 1396 non-angry and 931 angry turns while the
final test set comprises 164 non-angry utterances and 81 utterances of the anger
class. The inter labeller agreement in the final set resulted x = 0.63, which also
resembles moderate agreement. The average turn length after cleaning out initial
and final pauses is 0.8 seconds. Details of both corpora are listed in Table 3.

4 Prosodic and Acoustic Modeling

Our prosodic and/or acoustic feature definition provides a broad variety of in-
formation about vocal expression patterns that can be useful when classifying
speech metadata. Our approach is structured into an audio descriptor extraction
unit followed by a unit that calculates various statistics on both the descriptors
and certain subsegments of them.

4.1 Awudio Descriptor Extraction

The audio descriptors can be sub-divided into 7 groups: pitch, loudness, MFCC,
spectrals, formants, intensity and other features. All descriptors are extracted
using 10ms frame shift.



German English

Domain Mobile Internet Support

Number of Dialogs in Total 4682 1911

Duration in Total 21h 10h

Average Number of Turns per Dialog 5.7 11.88

Number of Raters 3 3

Speech Quality Narrow-band Narrow-band
Deployed Subsets for Anger Recognition

Number of Anger Turns in Trainset 1761 931

Number of Non-Anger Turns in Trainset 2502 1396

Number of Anger Turns in Testset 190 81

Number of Non-Anger Turns in Testset 302 164

Average Utterance Length w/o

Initial or Final Turn Pauses in Seconds 1.80 0.84

Average Duration Anger in Seconds 3.27 £2.27  1.87 £0.61

Average Duration Non-Anger in Seconds 2.91 +£2.16 1.57 £0.66

Cohen’s Extended Kappa 0.52 0.63

Table 1. Database comparison of both corpora.

Regarding the group of perceptually motivated acoustic measurements we
extract pitch by autocorrelation as described in [2]. To avoid octave jumps in
pitch estimation we post-process a range of possible pitch values using relative
thresholds between voiced and unvoiced candidates. Remaining octave confu-
sions between sub-segments of a turn are further processed by a rule-based path
finding algorithm. After converting pitch into the semitone domain we apply
piecewise cubic interpolation and smoothing by local regression using weighted
linear least squares.

Another perceptively motivated measurement is the loudness as defined by
[9]. This measurement operates on a Bark filtered version of the spectrum and
finally integrates the filter coefficients to a single loudness value in sone units
per frame. We further filter for the Mel Domain. After filtering a discrete cosine
transformation (DCT) gives the values of the Mel frequency cepstral coefficients
(MFCC). We extract a number of 16 coefficients and keep the zero coefficient.
Although MFCCs are most commonly used in speech recognition tasks they
often give excellent performance in emotion detection tasks as well.

Further spectral features are the center of spectral mass gravity (Centroid),
the 95% roll-off point of spectral energy and the the magnitude of spectral change
over time, also known as spectral flux. These features will be referred to as
spectrals in the following experiments.

Due to telephony speech quality we extract 5 formant center frequencies
estimate the formants’ bandwidths. Taken directly from the speech signal we
extract the contour of intensity.

Referred to as other features we calculate the harmonics-to-Noise Ratio (HNR)
and the Zero-Crossing-Rate and the average amplitude of the time signal. We



add a single coefficient for the correlation between pitch and intensity as an
individual feature. Finally, taken from the relation of pitched and non-pitched
speech segments we calculate durational features such as pause lengths and the
average expansion of voiced segments.

4.2 Statistic Feature Definition

The statistic unit derives means, moments of first to fourth order, extrema and
ranges from the respective contours in the first place. Special statistics are then
applied to certain descriptors. Pitch, loudness and intensity are further processed
by a DCT. Applying DCT to these contours directly we model the behavior over
time. There exist different norms of DCT calculation. We refer to a DCT type
IIT which is defined as:

N—-1
1 s 1
X = §x0+ E xncos[ﬁn(k’+§)} k=0,...,N—1 (1)

n=1

A high correlation of a contour with the lower coefficients indicates a rather
slowly moving time behavior while mid-range coefficients would rater correlate
with fast moving audio descriptors. Higher order coefficients would correlate
with micro-prosodic movements of the respective curves, which corresponds to
a kind of shimmer in the power magnitude or jitter in pitch movement.

However, a crucial task is the time normalization. Dealing with IVR speech
we usually deal with very short utterances that often have command-like style.
We suppose, every turn is a short utterance of one prosodic entity. Consequently
we calculate our statistics to account for whole utterances, i.e. we apply static
feature length modeling. Although this seems suboptimal for longer utterances
that might hold more than one emotion in a single turn we keep this approach
for the current experiments due to the short average turn length.

In order to exploit the temporal behavior at a certain point in time we ap-
pended first (D) and second order (DD) derivatives to the contours and calcu-
lated statistics on them alike.

As some features tend to give meaningful values only when applied to specific
segments, such as voiced or unvoiced segments, we developed an extended ver-
sion of the speech-silence detection proposed by [13]. After having found certain
voiced points we move to the very first and the very last point now looking for
adjacent areas of relatively high zero-crossing rates. Also any non-voiced segment
in between the outer borders is classified into high and low zero-crossing regions
corresponding to unvoiced or silent speech segments. Eventually, we calculate
features on basis of voiced and/or unvoiced sounds both separately and jointly.
In order to capture magnitudes of voiced to unvoiced relations we also compute
this quotient as a ratio measurement. We apply it to audio descriptors such as
intensity and loudness to obtain:

— Ratio of mean of unvoiced to mean of voiced points
— Ratio of median of unvoiced to median of voiced points



— Ratio of maximum of unvoiced to maximum of voiced points

In some utterances we notice an absence of unvoiced sounds. In fact the En-
glish database includes less unvoiced sounds than the German does. This can be
due many reasons. First, standard English language usually entails a lower level
of pressure when producing unvoiced sounds, e.g. fricatives and especially the
glottal ”h” sound. Also the phonological strong aspiration is normally expected
to occur with less pressure in English. Thus in English language these sounds
may be harder to be found. Moreover they may be harder to detect from ZCR
and our detection algorithm may fail. Secondly, this can also refer to a difference
in speaking style. The average utterance length of English samples shows nearly
half the length of German utterances. This could indicate a more command-like
speaking style, e.g. omitting words that are not necessary, consequently being
less outspoken. After all, 16% of all utterances in the German train set and 22%
of all utterances in the German test set were of no unvoiced sound share. For
the English database these figures raised to 27% and 33% respectively.

All in all, we obtained some 1450 features. Table 4.2 shows the different
audio descriptors and the number of features calculated from them. Table 4.2
also shows figures of f1 performance, which will be discussed in the Section
Ranking and Section Classification. Note that the different number of features
can take bias on the performance comparison. Further experiments will report
on individual feature performance by applying feature ranking.

Feature Group Number of f1 Performance on f1 Performance on

Features German DB English DB
pitch 240 67.7 72.9
loudness 171 68.3 71.2
MFCC 612 68.6 68.4
spectrals 75 68.4 69.1
formants 180 68.4 67.8
intensity 171 68.5 73.5
other 10 56.2 67.2

Table 2. Feature Groups and Performance on German and English Databases.

5 Feature Ranking

In order to gain insight about which of our features can be useful for the given
classification task we applied a filter-based ranking scheme, i.e. Information-
Gain-Ratio (IGR) [7]. This measure evaluates the gain in information that a
single feature contributes in adding up to an average amount of information
needed to classify for all classes. It is based on the Shannon Entropy H [18] for a



class distribution P(p1,...,px) of P samples which is measured in bit unit and
defined as

K
H= —Zpi -loga(pi) (2)
i=1

Now let ¥ be the totality of our samples and ¥; € ¥ the subset of elements
that belongs to class index i. The average information needed in order to classify
a sample out of ¥ into a classes i1 ...ix is given by

K
: 7
H) == - toalp)  with  pi= 1 Q
i=1

To estimate the contribution of a single feature every unique value is taken
as partition point. For non-discrete features discretization has to be executed.
Let ¥, ; with j = 1...J bins be the partion blocks of ¥,, holding values of a
single feature x, the amount of information contributed by this feature is given
by

J
Hw) =Y e ) (1

The Information Gain (IG) of a feature is then given as its contribution to
reach the average needed information for classification.

IGW,z) = HW) — H(W|z) (5)

The Information Gain Ratio accounts for the fact that IG is biased towards
features with high number of individual values in their span. IGR normalizes IG
by the amount of total information that can be drawn out of J splits.

Table 3 presents the 15 top-ranked features for the English and the German
corpus according to IGR. To obtain a more general and independent ranking
we performed 10-fold cross validation. The ranking presented accounts for the
average ranking throughout the folds. For the English database almost all fea-
tures are of loudness descriptor origin predominantly capturing the moments
of the contour or its maximum and range applied to the original contour, not
its derivatives. The picture is much more diverse when we look at the German
ranks. Although the loudness features that are present are of the same kind as
those on the English set we note also formant, MFCC and intensity descriptors.

Figure 1 shows the relative distributions of the feature sets grouped to their
audio descriptor’s origin when expanding the feature space from 50 top-ranked
features to 500 top-ranked features. Comparing ranks we notice that the top
50 ranks of the English database are occupied by intensity, spectrals and pre-
dominatly loudness features only. Pitch, formants and MFCC descriptors did
not generated top rank features within the top 100 ranks. However, beyond this



German Database English Database

intensity DCT coeff2 loudness max

loudness std loudness std of voiced points
loudness max loudness std

5th formant bandwidth std loudness mean

5th formant std loudness inter-quartile range

intensity err. of lin.reg over voiced points|loudness mean voiced points
on DD

loudness std of voiced points intensity skewness of voiced points

loudness DCT coeffl on DD loudness inter-quartile range of voiced
points on D

intensity err. lin.reg over voiced points of D|loudness median

loudness inter-quartile range loudness median over voiced points
loudness DCT coeff2 on D loudness DCT coeff16

MFCC coeff15 std over whole utterance |loudness std voiced points on D
loudness mean voiced points loudness DCT coeff26

pitch lin.reg over D of whole utterance loudness DCT coeff12

MFCC coeffl min on voiced segments loudness max unvoiced points

Table 3. Top 15 ranked features for German and English databases.

point pitch features become much more important for the English database than
for the German.

Table 2 already suggests that the audio descriptor groups are of more coun-
terballanced importance for the German database than they are for the English
one. Also the feature distribution in the top-ranks suggest a more heterogeneous
distribution in the German set. In General it seems as for the German set loud-
ness and MFCCs are building the most important descriptors. The more features
the more important becomes the MFCC contours. Note that also here the ab-
solute number of MFCCs features affects the distribution more and more when
the feature space expands.

For the English database it seems as the more features are included, the more
the picture resembles a three-fold situation, i.e. loudness, MFCc and pitch are
of most importance. Also cross-comparing the languages it seems that loudness
is of higher impact for the English language as there are consistently more loud-
ness features among all sizes of feature spaces for the English language. On the
opposite, MFCC descriptors are more important to the German language. Note
that these charts do not tell about how good the classification would be. This
issue is discussed in the following Section.

6 Classification

In order to compare results from different feature sets we calculate classifica-
tion success using the fl1 measurement. The fl measurement is defined as the
arithmetic mean of F-measures from all classes. The F-measure accounts for the
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Fig. 1. Percentage of features within each feature group when considering the 50 to
500 top ranked features. Number of features in total = 1450.

harmonic mean of both precision and recall of a given class. Note that an accu-
racy measurement would allow for false bias since it follows the majority class
to a greater extent than it follows other classes. Since our class distribution is
unbalanced and our models tend to fit the majority class to a greater extent this
would lead to overestimated accuracy figures. To obtain classification results we
apply 10-fold speaker independent cross validation on the training set. We also
keep an holdout set (test set) for evaluation.

For classification we use a Support Vector Machines (SVM). SVMs view data
as two sets of vectors in a multi-dimensional space. Building a miximal margin
in between the classes the algorithm constructs a separating hyperplane in that
space. We used an linear kernel function and applied standardization before
classification, i.e. every feature was mean-substracted and scaled to a standard
deviation equaling one.



Table 2 already gives the f1 measurements for classification of features coming
from single audio descriptors. To determine the optimal number of top-ranked
features to be included into the feature space we move along the IGR ranking
and incrementally include a fixed number of top-ranked features. Figure 2 shows
the development of f1 measurement by incremental expansion.

78
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76

f1 in percent
~ ~ ~
w N (2]

~
N

~
[iy

70 ! ! ! ! ! ! ! ! ! ! ! ! ! ! J
33 66 99 132 165 198 231 264 297 330 363 396 429 462 495

number of top-ranked features in feature space

Fig. 2. Determination of optimum feature number by incremental expansion of the
feature set according to the top ranked features.

The optimal number of top-ranked features to include into the feature space
resulted in 231 for the German database and 264 for the English database.
Looking at figure 1 once more we can clearly see that on basis of the English
database there is a higher number of pitch and loudness features in the top
250 feature space whereas in the German database more MFCC features can be
found. Note that the saw-like shape of graphs in Figure 2 indicate a non-optimal
ranking since some feature inclusions seem to harm the performance. However,
the magnitude of the jitter here is as low as approx. 1% which after all proves
a generally reasonable ranking. If desired, one could also stop at the first local
maxima of the {1 curves resulting in a reduced feature set of 66 features for the
English and 165 features for the German database without loosing more than
1% f1.

In a final step we adjusted the complexity of our classification algorithm
which results in a best score of 78.2 f1 for the English and 74.7 f1 for the Ger-
man database. Previous studies on both corpora yielded a much lower perfor-
mance compared to our new findings. The former system described in [14] with
the English database reached 72.6% f1 while the system described in [4] devel-
oped for the German database reached 70% f1. The performance gain on the



training set of respectively 5.6% and 4.7% f1 in our study can be attributed to
the employment of the enhanced feature sets and the feature selection by IGR
filtering.

Applied to the holdout sets we obtain figures presented in Table 4. For both
sets the features captured more of Non-Anger information that of Anger in-
formation. Consequently the F-meassure of Anger class is always lower as for
the Non-Anger class. We also see a better recall of English Anger. At the same
time we see a better precision in German classification. After all, the overall
performance of the final systems proved equivalent.

Database Class Recall Precison F-Measure fl-Measure
German Non-Anger 88.9%  84.9% 86.7% 77.2%
Anger 63.7%  72.0% 67.6%
English Non-Anger 82.3%  86.0% 84.1% 77.0%
Anger 72.8%  67.0% 69.8%

Table 4. System Performance Figures on Test Sets.

7 Results and Discussion

We have shown that detecting angry utterances from IVR speech by acoustic
measurements in English language is similar to detecting those utterances in
German language. We have set up a large variety of acoustic and prosodic fea-
tures. After applying IGR filter based ranking we compared the distribution
of the features for our languages. Working with both languages we determine
an absolute optimum when including 231 (German database) and 264 (English
database) top-ranked features into the feature space. With respect of the max-
imum feature set size of 1450 these numbers are very close. Also the actual
features included in the optimal size show accordance. Features derived from
filtering in the spectral domain, e.g. mfcc, loudness, seem most promising for
both databases, accounting for more than 50% of all features. However, MFCCs
occur more frequently under the top-rankled features when operating in the
German database, while operating on the English database loudness features
are more frequently among top ranks. Another difference lies within the impact
of pitch features. Although they are not among the top 50 features they become
more and more important when including up to 300 features. They account for
roughly 25% when trained on the English database while the number is as small
as roughly 10% when trained on the German corpus.

One hypothesis for explaining the differences could be that callers may have
dialed in via different transmission channels using different encoding paradigms.
While the English database mostly comprises calls that were routed through
land line connections the German database accounts for a greater share of mobile



telephony transmission channels. Because fixed line connections transmit usually
less compressed speech it can be assumed that there is more information retained
in it. However, it is hard to conclude from the signal quality to the impact on our
emotion detection task. More information transmitted does not automatically
mean more relevance to anger classification.

Another hypothesis for explaining the differences in the results could be the
discrepancy in average turn length. The turn length can have a huge effect
on statistics when applying a static feature length classification strategy. To
estimate the impact of the average turn length we subsampled the German
database to match the English average turn length. We processed the subsamples
analog to the original database. As a result we obtain major differences in the
ranking list when operating on the shorter subset. While MFCC features account
for roughly 35% in the original German database the number drops to 22% on the
subset. Accordingly, this figure becomes closer to the figure of 18% when working
on the English corpus. Consequently we can hypothesize that the longer the turn
the more important the MFCC features become. A possible explanation could be
the increasing independence of the MFCC to the spoken context when drawing
features on turn length. Though 70% of the MFCC features on the original set
are also among the top ranked features on the subset the differences seem to
be concentrated on the features drawn from the voiced parts. Also the higher
coeflicients seem to be affected from replacement. Future work will need to focus
on these results.

On the other hand, loudness and pitch features tend to remain on the original
ranks when manipulating the average turn length. After all we still observe a
large difference between the German and the English database when looking
at pitch features. Subsampling did not have any significant effect, consequently
this difference is not correlated with the average turn length. On basis of this
findings we can further hypothesize that there might exist a larger difference in
pitch usage in between German and English language at a linguistic level.

Finally the procedures of training the labelers and the more precise differ-
ences in IVR design and dialogue domain could be considered as possible factors
of influence as well. Also ,as the English database offers a higher value of inter
labeler agreement we would expect a better classification score for it. After all,
though the classification results on the training sets mirrow this difference they
seem very balanced when classifying on the test sets. However, a difference in
performance between test and train sets which accounts for less than 4% seems
to indicate reasonable and reliable results for our anger detection system on both
corpora.

References

1. Anton Batliner, K. Fischer, Richard Huber, J. Spilker, and Elmar N&th. Des-
perately seeking emotions: Actors, wizards, and human beings. In Proc. ISCA
Workshop on Speech and Emotion, 2000.

2. Paul Boersma and David Weenink. Praat: doing phonetics by computer (version
5.1.04), April 2009.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Felix Burkhardt, van Ballegooy M., and R. Huber. An emotion-aware voice portal.
In Proceedings of Electronic Speech Signal Processing ESSP, 2005.

Felix Burkhardt, Tim Polzehl, Joachim Stegmann, Florian Metze, and Richard
Huber. Detecting real life anger. In Proc. of ICASSP, April 2009.

Felix Burkhardt, M. Rolfes, W. Sendlmeier, and Benjamin Weiss. A database of
german emotional speech. In Proc. of Interspeech 2005. ISCA, 2005.

M. Davies and J.L. Fleiss. Measuring agreement for multinomial data. volume 38,
1982.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. 2nd
edition, 2000.

I. S. Enberg and A. V. Hansen. Documentation of the danish emotional speech
database. Technical report, Aalborg University, Denmark, 1996.

Hugo Fastl and Eberhardt Zwicker. Psychoacoustics: Facts and Models. Springer,
Berlin, 3rd edition, 2005.

Chul Min Lee and S. S. Narayanan. Toward detecting emotions in spoken dialogs.
Speech and Audio Processing, IEEE Transactions on, 13(2):293-303, March 2005.
Florian Metze, Roman Englert, Udo Bub, Felix Burkhardt, and Joachim Stegmann.
Getting closer: tailored humancomputer speech dialog. Universal Access in the
Information Society, 2008.

Tim Polzehl, Shiva Sundaram, Hamed Ketabdar, Michael Wagner, and Florian
Metze. Emotion classification in children’s speech using fusion of acoustic and
linguistic features. In Emotion Challenge Benchmark, Interspeech, 2009.
Lawrence Rabiner and M. R. Sambur. An algorithm for determining the endpoints
of isolated utterances. The Bell System Technical Journal, 56:297-315, February
1975.

Alexander Schmitt, Tobias Heinroth, and Jackson Liscombe. On nomatchs, noin-
puts and bargeins: Do non-acoustic features support anger detection? In Proceed-
ings of the 10th Annual SIGDIAL Meeting on Discourse and Dialogue, SigDial
Conference 2009, London, UK, September 2009. Association for Computational
Linguistics.

Bjorn Schuller. Automatische Emotionserkennung aus sprachlicher und manueller
Interaktion. Dissertation, Technische Universitdt Miinchen, Miinchen, 2006.
Bjorn Schuller, Stefan Steidl, and Anton Batliner. The interspeech 2009 emo-
tion challenge. In Proc. of the International Conference on Speech and Language
Processing (ICSLP), sep 2009.

I. Shafran, M. Riley, and M. Mohri. Voice signatures. In Automatic Speech Recogni-
tion and Understanding, 2003. ASRU ’03. 2008 IEEE Workshop on, pages 31-36,
Nov.-3 Dec. 2003.

C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27, 1948.

Sherif Yacoub, Steven Simske, Xiaofan Lin, and John Burns. Recognition of emo-
tions in interactive voice response systems. In Proc. Eurospeech, Geneva, pages
1-4, 2003.



