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ABSTRACT

We introduce a novel active learning algorithm for speech
recognition in the context of accent adaptation. We adapt a
source recognizer on the target accent by selecting a matched
subset of utterances from a large, untranscribed and multi-
accented corpus for human transcription. Traditionally, ac-
tive learning in speech recognition has relied on uncertainty
based sampling to choose the most informative samples for
manual labeling. Such an approach doesn’t include explicit
relevance criterion during data selection, which is crucial for
choosing utterances to match the target accent, from datasets
with wide-ranging speakers of different accents. We formu-
late a cross-entropy based relevance measure to complement
uncertainty based sampling for active learning to aid accent
adaptation. We evaluate the algorithm on two different setups
for Arabic and English accents and show that our approach
performs favorably to conventional data selection. We ana-
lyze the results to show the effectiveness of our approach in
finding the most relevant subset of utterances for improving
the speech recognizer on the target accent.

Index Terms— Automatic Speech Recognition, Accent
Adaptation, Active Learning

1. INTRODUCTION

Speech interfaces are becoming pervasive among the com-
mon public with the prevalence of smart phones and cloud-
based computing. This pushes the Automatic Speech Recog-
nition (ASR) systems to cater to wide-ranging speakers with
varying accents. Accent adaptation in ASR typically involves
adapting an acoustic model trained on the source accent to
the target accent, using relatively small amounts of adapta-
tion data. It is prohibitively costly to obtain large accented
speech datasets, due to the effort involved in collecting and
transcribing speech, even for a few of the major accents. On
the other hand, for tasks like Broadcast News (BN) or Voice
search, it is easy to obtain large amounts of speech data with
representative accents. However, such datasets seldom have
accent markers or transcriptions. To make use of these speech
collections, it is necessary to identify the most appropriate

subset of data, when transcribed, provide the largest improve-
ment in ASR accuracy for the specified target accent. Active
learning algorithms can aid in finding such a relevant subset
from vast amount of untranscribed data for human annotation,
thereby greatly reducing the cost to build accurate, accent-
specific ASRs.

Active learning is a commonly used machine learning
technique in fields where the cost of labeling the data is quite
high [1]. It has been applied in natural language processing
[2], spoken language understanding [3], speech recognition
[4, 5, 6, 7], etc. Many of the approaches relied on some form
of uncertainty based measure for data selection. The assump-
tion is that adding the most uncertain utterances provide the
maximum information for re-training the classifier in the next
round. Confidence scores are typically used for active learn-
ing in speech recognition [8] to predict uncertainty. Lattice
[6] and N-best [7] based techniques have been proposed to
avoid outliers with 1-best hypothesis. Representative cri-
terion in addition to uncertainty have also been shown to
improve data selection in some cases [9, 7].

Most of these algorithms strive to find the smallest sub-
set from the untranscribed data set, which when labeled and
used to re-train the ASR will have the same effect of using
the entire dataset for re-training, thereby reducing the cost.
However, in the case of accent adaptation using a dataset with
multiple accents, our goal is not to identify the representative
subset but to choose relevant utterances that best match the
target test set. In this paper, we introduce a relevance crite-
rion in addition to uncertainty based informative measure for
data selection to match the target accent. We start with the
ASR trained on a source accent. We use a relatively small,
manually labeled adaptation data to adapt the recognizer to
the target accent. We employ the adapted model to choose
utterances from a large, untranscribed mixed dataset for hu-
man transcription, to further improve the performance on the
target accent. To this end, we calculate cross-entropy based
measure based on adapted and unadapted model likelihoods,
to assess the relevance of an utterance. We combine this mea-
sure with uncertainty based sampling to choose an appropri-
ate subset for manual labeling. We evaluate our technique on



Arabic and English accents and we achieve 50-87.5% data re-
duction for the same accuracy of the recognizer using purely
uncertainty based data selection.

2. UNCERTAINTY BASED INFORMATIVENESS
CRITERION

In speech recognition, uncertainty is quantified by the ASR
confidence score. It is calculated from the word-level poste-
riors obtained by consensus network decoding [10]. As men-
tioned before, confidence scores calculated on 1-best hypoth-
esis are sensitive to outliers and noisy utterances. [6] pro-
posed lattice-entropy based measure and selecting utterances
based on global entropy reduction. [7] observed that lattice-
entropy is correlated with the utterance length and showed N-
best entropy to be an empirically better criterion. In this work,
we also use a entropy-based measure as informative criterion
for data selection. We calculate the average entropy of the
alignments in the confusion network as a measure of uncer-
tainty of the utterance with respect to the ASR. It is given by

Informative score ui =

∑
A∈uEATA∑

A∈u TA
(1)

where EA is the entropy of an alignment A in the confusion
network and TA is the duration of the link with best posterior
in the alignment. EA is calculated over all the links in the
alignment.

EA = −
∑
W∈A

PW log PW (2)

3. CROSS-ENTROPY BASED RELEVANCE
CRITERION

In this section, we derive cross-entropy based relevance cri-
teria for choosing relevant target accent utterances from the
mixed set for human annotation. We formulate the source-
target mismatch as a sample selection bias problem [11, 12,
13] under two different setups. In the first case, the source
data consists mixed set of accents and the goal is to adapt the
model trained on the source data to the specified target accent.
The source model has seen the target accent during training,
albeit it is under-represented along with other accents in the
source data. In the second case, the source and target data
consist of dissimilar accents and the source model is adapted
to an unseen target accent. The following sections elaborate
the derivation for each case.

3.1. Multi-accented case

In this setup, the source data contains a mixed set of accents.
The target data, a subset of the source represents utterances
that belong to a specific target accent. An utterance u in the
data set is represented by a sequence of observation vectors
and its corresponding label sequence. Let X denote the space

of observation sequences and Y the space of label sequences.
Let S denote the distribution over utterances U ∈ X × Y
from which source data points (utterances) are drawn. Let T
denote the target set distribution over X × Y with utterances
Û ⊆ U . Now, utterances in T are drawn by biased sampling
from S denoted by the random variable σ ∈ {0, 1} or the
bias. When σ = 1, the randomly sampled u ∈ U is included
in the target dataset and when σ = 0 it is ignored. Our goal is
to estimate the bias Pr[σ = 1|u] given an utterance u, which
is a measure for how likely is the utterance to be part of the
target data. The probability of an utterance u under T can be
expressed interms of S as

PrT [u] = PrS [u|σ = 1] (3)

By Bayes rule,

PrS [u] =
PrS [u|σ = 1]Pr[σ = 1]

Pr[σ = 1|u]
=

Pr[σ = 1]

Pr[σ = 1|u]
PrT [u]

(4)
The bias for an utterance u is represented by Pr[σ = 1|u]

Pr[σ = 1|u] = PrT [u]

PrS [u]
Pr[σ = 1] (5)

The posterior Pr[σ = 1|u] represents the probability that a
randomly selected utterance u ∈ U from the mixed set, be-
longs to the target accent. It can be used as a relevance score
for identifying relevant target accent utterances in the mixed
set. Since we are only comparing scores between utterances
for data selection, Pr[σ = 1] can be ignored in the above
equation as it is independent of u. Further, we can approx-
imate PrS [u] and PrT [u], by unadapted and adapted model
likelihoods. Substituting and changing to log domain,

Relevance Score ur ≈ log Pr[u|λT ]− log Pr[u|λS ] (6)

The utterances in the mixed set can have different durations,
so we normalize the log-likelihoods to remove any correlation
of the score with the duration. The length normalized log-
likelihood is also the cross-entropy of the utterance given the
model [14, 15] with sign reversed. The score that represents
the relevance of the utterance to target dataset is given by

Relevance Score ur = (−HλT
[u])− (−HλS

[u]) (7)

where

Hλ(u) = −
1

Tu

Tu∑
t=1

log p(ut|λ) (8)

is the average negative log-likelihood or the cross-entropy of
u according to λ and Tu is the number of frames in utterance
u.

3.2. Dissimilar accents case

In this case, source and target correspond to two different ac-
cents. let A denote distribution over observation and label



sequences U ∈ X × Y . Let S and T be the source and target
distributions overX×Y and subsets ofA, US , UT ⊆ U . The
source and target utterances are drawn by biased sampling
from A governed by the random variable σ ∈ {0, 1}. When
the bias σ = 1, the sampled utterance u is included in the tar-
get dataset and σ = 0 it is included in the source dataset. The
distributions S and T can be expressed in terms of A as

PrT [u] = PrA[u|σ = 1];PrS [u] = PrA[u|σ = 0] (9)

By Bayes rule,

PrA[u] =
Pr[σ = 1]

Pr[σ = 1|u]
PrT [u] =

Pr[σ = 0]

Pr[σ = 0|u]
PrS [u]

(10)
Equating LHS and RHS

PrS [u]

PrT [u]
=

Pr[σ = 1]

Pr[σ = 0]

Pr[σ = 0|u]
Pr[σ = 1|u]

(11)

=
Pr[σ = 1]

Pr[σ = 0]

[
1

Pr[σ = 1|u]
− 1

]
As in the previous case, we can ignore the constant terms that
don’t depend on u as we are only comparing the scores be-
tween utterances. The relevance score, which is an approxi-
mation of Pr[σ = 1|u] is given by

Relevance score ur ≈
PrT [u]

PrT [u] + PrS [u]
(12)

Changing to log-domain,

Relevance score ur ≈ log PrT [u]

− log (PrT [u] + PrS [u])

= log PrT [u] (13)

− log

(
PrT [u]

[
1 +

PrS [u]

PrT [u]

])
= − log

(
1 +

PrS [u]

PrT [u]

)
log is a monotonous function, hence log(1+x) > log(x) and
since we are only comparing scores between utterances, we
can replace log(1 + x) with log(x). The relevance score is
then the same as the multi-accented case

Relevance Score ur ≈ log PrT [u]− log PrS [u]

≈ log Pr[u|λT ]− log Pr[u|λS ]

Normalizing the score with to remove any correlation with
utterance length,

Relevance Score ur = (−HλT
[u])− (−HλS

[u]) (14)

4. SCORE COMBINATION

Our final data selection algorithm uses a combination of rel-
evance and uncertainty scores for active learning. The dif-
ference in cross-entropy is used a measure of relevance and

the average entropy based on confusion networks is used as
a measure of uncertainty or informativeness. Both the scores
are in log-scale and we use a simple weighted combination to
combine both the scores [7]. The final score in given by

Final score uF = ur ∗ θ + ui (15)

The mixing weight, θ is tuned on the development set. The
final algorithm for active learning that uses both the relevance
and informativeness scores is given below.

Algorithm 1 Active learning using relevance and informa-
tiveness scores
Input: XT := Labeled Target Adaptation set ; XM := Un-

labeled Mixed set ; λS := Initial Model ; θ := Mixing
weight minScore := Selection Threshold

Output: λT := Target Model
1: λT := Adapt(λS ,XT )
2: for all x in XM do
3: LoglikeS := −CrossEntropy(λS , x)
4: LoglikeT := −CrossEntropy(λT , x)
5: Len := Length(x)
6: RelevanceScore := (LoglikeT − LoglikeS)/Len
7: InformativeScore := −AvgCNEntropy(λT , x)
8: FinalScore := RelevanceScore ∗ θ +
InformativeScore

9: if (FinalScore > minScore) then
10: Lx := QueryLabel(x)
11: XT := XT ∪ (x,Lx)
12: XM := XM \ x
13: end if
14: end for
15: λT := Adapt(λS ,XT )
16: return λT

5. EXPERIMENT SETUP
5.1. Datasets
We conducted active learning experiments on both multi-
accented and dissimilar accent cases. Multi-accented setup is
based on GALE Arabic database. 1100 hours of Broadcast
News (BN) is used as the source training data. It contains
mostly Modern Standard Arabic (MSA) but also varying
amounts of other dialects. LDC provided 30 hours of Levan-
tine annotations on the Broadcast conversations (BC) portion
of the GALE corpus. We assinged Levantine as our target ac-
cent and randomly selected 10 hours from LDC annotations
and created our adaptation dataset. The remaining 20 hours
of Levantine speech is mixed with 200 hours of BC data to
create the Mixed dataset. This serves as our unlabeled dataset
for active learning.

For dissimilar accent case, we chose English WallStreet
Journal (WSJ1) as our source data. It contains 66 hours of
read American English speech. We used British English ver-
sion of the WSJ corpus (WSJCAM0) for adaptation. We ran-
domly sampled 3 hours from WSJCAM0 for our adaptation



set. The remaining 12 hours of British English speech is
mixed with 15 hours of American English from WSJ0 corpus
to create our mixed dataset. The test sets, LM and dictionary
are similar to our earlier setups in [15, 16]. Table 1 provides
a summary of the datasets used.

Table 1. Database Statistics.

Dataset Accent #Hours Ppl %OOV
Arabic

Training Mostly MSA 1092.13 - -
Adaptation Levantine 10.2 - -
Mixed Mixed 221.9 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Training US 66.3 - -
Adaptation UK 3.0 - -
Mixed Mixed 27.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

5.2. Baseline systems
We trained HMM-based speaker-independent systems on
the training data using the Janus toolkit. They are Max-
imum Likelihood (ML) trained, context-dependent, fully-
continuous systems with global LDA and Semi-Tied Covari-
ance (STC) transform. More details on the front-end, training
and decoding framework are explained in [17, 15]. We ini-
tially adapt our baselines systems on the relatively small,
manually labeled, target adaptation dataset. We used semi-
continuous polyphone decision tree adaptation (SPDTS) [15]
for the supervised adaptation. The Word Error Rate (WER)
of the baselines and supervised adaptation systems are given
in Table 2.

Table 2. Baseline and Supervised adaptation WERs.

System # Hours Test WER (%)
SRC TGT

Arabic
Baseline 1100 46.3 53.7
Supervised Adapt +10 51.4 52.1

English
Baseline 66 13.4 30.5
Supervised Adapt +3 21.0 17.9

6. IMPLEMENTATION DETAILS

We use the supervised adapted systems to select utterances
from the mixed set for the goal of target accent adaptation.
Our mixed sets were created by combining two datasets,
American and British English or BC and Levantine Arabic.

We evaluate 3 different data selection algorithms for our ex-
periments: Random sampling, Uncertainty or informative
sampling and relevance augmented uncertainty sampling. In
each case, we select different amounts of audio data and mix
it with the adaptation data. We then re-adapt the source ASR
on the newly created dataset. For this second adaptation, we
reuse the adapted polyphone decision tree from the super-
vised case, but we re-estimate the models on the new dataset
using Maximum A Posteriori (MAP) adaptation.

In random sampling, we pick at random the required num-
ber of utterances from the mixed dataset. The performance
of the re-trained ASR directly depends on the composition of
source and target utterances in the selected subset. Thus, ASR
re-trained on randomly sampled subsets will exhibit high vari-
ance in its performance. To avoid varying results, we can run
random sampling multiple times and report the average per-
formance. The other solution is to enforce that the randomly
selected subset retains the same composition of source and
target utterances in the mixed set. We use the latter approach
for the results reported in this paper.

For uncertainty based sampling, we used average entropy
calculated over the confusion networks (CN) as explained in
section 2. We decode the entire mixed set and choose ut-
terances that have the highest average CN entropy. In the
case of relevance augmented uncertainty sampling, we use
a weighted combination of relevance and uncertainty or in-
formativeness scores for each utterance. The relevance score
is derived from adapted and unadapted model cross-entropies
with respect to the utterance. We calculate cross-entropy or
average log-likelihood scores using the lattices produced dur-
ing decoding. The uncertainty score is calculated using aver-
age CN entropy as before. We tuned the mixing weights on
the English development set and we use the same weight (0.1)
for all the experiments. We selected 5, 10, 15, 20 hour bins
for English and 5, 10, 20, 40, 80 bins for Arabic. We choose
utterances for each bin and combine it with the initial adap-
tation set, re-adapt the ASR and evaluate it on the target test
set.

Table 3 shows WER of the oracle and select-all bench-
marks for the two datasets. The oracle involves selecting
all the target (relevant) data for human transcription, that
we combined with source data to create the mixed dataset.
The selected data is added to the initial adaptation set and
used to re-adapt the source ASR. We note that in the case
of Arabic, the source portion (BC) of the mixed dataset can
have additional Levantine utterances, so oracle WER is not
the lower bound for Arabic. Select-all involves selecting the
whole mixed dataset for manual labeling. From Table 3, we
can realize the importance of the relevance measure for active
learning. In the case of Arabic, one-tenth of relevant data pro-
duces better performance on the target test set than the whole
mixed dataset. The case is similar for English, where half of
the relevant utterances help ASR achieve better performance
than presenting all the available data for labeling.



Table 3. Oracle and Select-all WERs.

System # Hours Target WER
Arabic

Oracle 10 + 20 48.7
Select-all 10 + 221.9 50.8

English
Oracle 3 + 12 14.2
Select-all 3 + 27 14.9

7. ACTIVE LEARNING

The results for active learning for Arabic is shown in Figure 1.
It is clear from the plot that the weighted combination of rele-
vance and informative scores perform significantly better than
uncertainty based score and random sampling techniques. We
observe a 1.7% absolute WER reduction at the peak (40hours)
for the weighted score when compared to the CN entropy
based data selection technique. Also, with only 5 hours, the
weighted score reaches WER of 49.5% while the CN-entropy
based technique required 40 hours of data to reach a similar
WER of 49.8%. Thus the combined score requires 87.5%
less data to reach the same accuracy of CN-entropy based
sampling. It is also interesting to note that our algorithm has
identified additional Levantine data than the oracle from the
generic BC portion of the mixed set which resulted in further
WER reductions.

Fig. 1. Active learning results for Arabic

Figure 2 shows the equivalent plots for English. The com-
bined score outperforms other techniques interms of the WER
and reaches the performance of the oracle benchmark. It ob-
tains similar performance with 10 hours of data (14.5%) com-
pared to CN-entropy based technique at 20 hours (14.8%),
thus achieving a 50% reduction in labeling costs.

8. ANALYSIS

In this section we analyze influence of relevance score in
choosing the utterances that match the target data in both
the setups. We plot the histogram of both CN-entropy and

Fig. 2. Active learning results for English

weighted scores for each task. Figure 3 shows the normalized
histograms for the American and British English utterances
in the mixed set. We note that the bins for these graphs are in
the ascending order of their scores. Data selection starts with
the high-scoring utterances, hence the utterances from the
right side of the plot are chosen first during active learning.
Figure 3(a) shows the entropy scores for source (American
English) and target (British English) are quite similar and
the algorithm will find it harder to differentiate between rel-
evant and irrelevant utterances based solely on uncertainty
score. Figure 3(b) shows the influence of adding relevance
scores to uncertainty scores. In this case, the target utterances
have higher scores than source utterances and the algorithm
chooses relevant ones for re-training the ASR.

(a) Entropy (b) Weighted Score

Fig. 3. Histogram of source and target scores for English.

Figure 4 shows similar plots for Arabic. The distinction
between CN-entropy and the weighted score in source/target
discrimination is less clear here compared to English plots.
However, we can still see that target utterances achieve better
scores with weighted combination than the CN-entropy score.
We observed many of the utterances from ‘LBC NAHAR’
shows, part of the BC portion of the mixed set, ranked higher
in the weighted score. The plot of LBC scores in the his-
togram shows these utterances from the BC portion have
high scores in the weighted case. They are recording of the
‘Naharkum Saiid’ (news) programmes from Lebanese Broad-
casting Corporation originating from the Levantine region
and likely to have Levantine speech. This observation shows



that the relevance score identifies additional Levantine speech
from the BC utterances.

(a) Entropy (b) Weighted Score

Fig. 4. Histogram of source and target scores for Arabic.

9. CONCLUSION AND FUTURE WORK

We introduced cross-entropy based relevance score to aug-
ment uncertainty sampling based active learning in speech
recognition for the goal of accent adaptation. We showed that
our algorithm can achieve similar accuracy with only 12.5-
50% of the utterances selected by uncertainty based technique
for the two tasks in Arabic and English accents. We analyzed
influence of relevance score in data selection and showed that
its capable of identifying appropriate utterances that match
the target set, from the untranscribed data with varying ac-
cents. Future work includes incorporating semi-supvervised
training [16] incombination with active learning for further
improvements. We also plan to explore the use of relevance
scores in unsupervised discriminative training [18].
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