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Yajie Miao', Mohammad Gowayyedl, Florian Metze', Xingyu Na?, Tom Ko3, Alex Waibel®

!Carnegie Mellon University, Pittsburgh, PA 15213
Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
SHuawei Noahs Ark Research Lab, Hong Kong, China

ABSTRACT

Recent work has successfully applied the connectionist tem-
poral classification (CTC) loss function to automatic speech
recognition (ASR). Applied upon deep recurrent neural net-
works (RNNs), CTC learns the alignments between speech
frames and label sequences automatically, which removes the
need for pre-generated frame-level labels. Although showing
promising performance, CTC has received insufficient inves-
tigation in comparison to the existing hybrid approach. This
paper presents an extensive exploration of CTC-based model
training. On large-scale acoustic modeling tasks, we empir-
ically study the optimal configuration and architectural vari-
ants for CTC. With large amounts of training data, CTC mod-
els are observed to outperform the state-of-the-art hybrid sys-
tems. Also, detailed experiments reveal that CTC can be read-
ily ported to other languages other than English, and can be
enhanced by employing improved feature front-ends.

Index Terms— CTC, LSTM, RNNs, acoustic modeling,
speech recognition

1. INTRODUCTION

The introduction of deep neural networks (DNNs) and recur-
rent neural networks (RNNs) as acoustic models has achieved
tremendous success for automatic speech recognition (ASR)
[1, 2, 3, 4]. In the hybrid paradigm, DNNs/RNNs are used
to classify speech frames into labels which are normally
clustered context-dependent (CD) states. These labels are
pre-generated by an initially trained Gaussian mixture model
through forced alignment. Model training can then be car-
ried out with the cross-entropy objective function which is
likely to be followed by sequence training. Recently, an al-
ternative loss function, connectionist temporal classification
(CTC) [5], has been proposed for sequence labeling prob-
lems with variable-length inputs and outputs. With “blank”
symbols inserted between labels, CTC constructs frame-level
paths as intermediate representations to bridge frame-level
network outputs with label sequences. When applied to
acoustic modeling, CTC automatically learns the alignments
between speech frames and labels. Thus, CTC removes the
need for pre-generated frame-label labels and thereby the

building of the initial GMMs. Used together with deep RNN
models, CTC has been shown to achieve the state-of-the-art
performance on various large-scale acoustic modeling tasks
[6,7,8,9].

Although performing promisingly, CTC has received sub-
stantially less investigation than the hybrid HMM/DNN ap-
proach. Most of the existing CTC work is constrained to
particular tasks/scenarios. For instance, although showing
promising results on English, the application of CTC on other
languages has not been reported in literature. In this paper, we
present an extensive empirical study to investigate how CTC
training behaves under various conditions. Our exploration
focuses on the following aspects:

e Optimal configuration. CTC commonly uses deep
RNNs with the Long Short-Term Memory (LSTM)
units as acoustic models. Motivated by past work on
LSTMs [10], we initialize the bias vector of the LSTMs
forget gates to larger values (e.g., 1.0 and 2.0). This
initialization is observed to bring consistent gains for
CTC training. Also, our experiments reveal how the
amounts of training data affect the performance of CTC
models.

e Architectural variants. We study two architectural vari-
ants of CTC models. First, a convolution layer is added
following the input features and prior to the LSTM lay-
ers. The resulting ConvLSTM architecture achieves
slight improvement over the vanilla LSTM. Second, we
compare a uni-directional LSTM model with the bi-
directional LSTM, and observe that the uni-directional
model performs 10% worse than the bi-directional one.

e Language Expansion. Due to language diversity, it is
intriguing to study how CTC works on various lan-
guages other than English. In this work, we port CTC
to a task of transcribing Mandarin conversational tele-
phone speech [11]. By directly modeling thousands of
Mandarin characters, CTC achieves the state-of-the-art
results on this task.

e Front-ends. Apart from the raw acoustic features (e.g.,
MFCC:s, filterbanks), the HMM/GMM and HMM/DNN



paradigms exploit advanced front-ends (e.g., fMLLRs,
VTLNs). This paper empirically verifies the applica-
bility of these front-ends in the context of CTC models.

2. REVIEW OF CTC

The connectionist temporal classification (CTC) approach [5]
is a loss function for sequence labeling problems where the
inputs and the label sequences have variable lengths. Instead
of employing pre-generated frame-level labels, CTC automat-
ically learns the alignments between speech frames and their
label sequences (e.g., phonemes or characters). In previous
work [6, 7, 9], the acoustic models used together with CTC
are normally deep RNNs architectures using the LSTM units
[12] (which we will consistently refer to as LSTMs). The
nodes in the softmax layer of the LSTM model correspond
to the original labels, as well as a special blank label which
estimates the probability of emitting no label at a time step.
CTC trains the LSTM model to maximize In Pr(z|z), the
log-likelihood of the label sequence z given the inputs x.

To bridge the frame-level LSTM outputs with the utterance-
level label sequences, CTC introduces an intermediate repre-
sentation called the CTC path. A CTC path is a sequence of
labels at the frame level, allowing repetitions of the blank to
be inserted between labels. The label sequence can be repre-
sented by a set of all the possible CTC paths that are mapped
to it. The likelihood of z is then evaluated as an aggregation
of the probabilities of its CTC paths:
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where ®(z) is the set of CTC paths corresponding to z. With
this formulation, Pr(z|z) can be evaluated using a forward-
backward algorithm over a trellis that compactly encodes

®(z). The likelihood of the label sequence z is then com-
puted as:
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where the variable o} represents the total probability of all
CTC paths that end with label [,, at frame ¢, and can be recur-
sively computed from o ; and o~'. Similarly, the back-
ward variable 3} carries the total probability of all CTC paths
that starts with label [,, at ¢ and reaches the final frame 7". The
quantity y;* represents the posterior of the label w outputted by
the LSTM network.

The loss function becomes differentiable with respect to
the LSTM outputs. The gradients of the loss function with
respect to the outputs y¥ of the LSTM softmax layer can be
computed as
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where Y (z,k) = {u|z, = k} defines an operation on the
label sequence that returns the elements of z which have the
value k. These errors are back-propagated through the soft-
max layer and further into the LSTMs to update the model
parameters.

When CTC is applied to acoustic modeling, incorporat-
ing lexicons and language models into decoding has been
a challenge. Our previous work [9] proposes a generalized
decoding method based on weighted finite-state transducers
(WFSTs). In this method, individual components (CTC la-
bels, lexicons and language models) are encoded into WF-
STs, and then composed into a comprehensive search graph.
The WFST representation provides a convenient way of han-
dling the CTC blank label and enabling beam search during
decoding.

3. OPTIMAL CONFIGURATION

We first explore the optimal configuration of the LSTM mod-
els for CTC training. Our experiments in this section are
conducted on the Switchboard conversational telephone tran-
scription task.

3.1. Experimental Setup

We use Switchboard-1 Release 2 (LDC97S62) as the train-
ing set which contains over 300 hours of speech. For fast
turnarounds, we also select 110 hours from the training set
and create a lighter setup. CTC training uses a deep bi-
directional LSTM architecture as the acoustic model. On
the 110-hour and 300-hour setups, the LSTM network con-
sists of 4 and 5 bi-directional LSTM layers respectively. At
each layer, both the forward and the backward sub-layers
contain 320 memory cells. Inputs of the LSTM model are 40-
dimensional filterbank features together with their first and
second-order derivatives. The features are normalized via
mean subtraction and variance normalization on the speaker
basis. Initial values of all the model parameters are randomly
drawn from a uniform distribution with the range [—0.1,
0.1]. Model training adopts an initial learning rate of 0.00004
which is decayed based on the variation of the accuracy
of the hypothesis labels with respect to the reference label
sequences. CTC training models context-independent (CI)
phones. Totally we have 46 labels including phones, noise
marks and the blank.

Our decoding follows the WFST-based approach pre-
sented in [9]. The label posteriors generated by the LSTM
model are normalized with the label priors estimated from
the training transcripts. A trigram language model (LM) is
trained on the training transcripts. This LM is then interpo-
lated with another trigram LM trained on the Fisher English
Part 1 transcripts (LDC2004T19). We report results on the
Switchboard part of the Hub500 (LDC2002S09) test set.



3.2. Results

Table 1 presents the results of the resulting CTC-trained
acoustic models under various settings. A key configuration
of LSTM models is the initialization of the forget gate bias
vector. Most of the existing work has simply initialized the
bias vector with small random weights. Although working
well on many application, this initialization effectively de-
cays the gradients back-propagated at each time step. This
issue can be resolved simply by initializing the bias to a large
value [10]. In our experiments, we set the initial values of
the forget gates bias vector uniformly to 1.0. From Table
1, we can see that this initialization brings consistent gains
over the initialization with small random values. The WER
is improved by 3.9% and 3.8% respectively on the 110-Hour
and 300-Hour setups.

In Table 1, we also compare the CTC models against
the hybrid HMM/DNN and HMM/LSTM models. The hy-
brid systems are constructed by following the standard Kaldi
recipes [13]. As with CTC models, inputs of the hybrid
model are filterbank features as well. For space limit, we
are not describing the details of the hybrid model training.
Interested readers can refer to [14] for more details. We ob-
serve that on the 110-hour setup, the CTC model performs
slightly better than the hybrid DNN model, but is still behind
the hybrid LSTM model. In contrast, when we switch to the
complete 300-hour setup, the CTC model outperforms both
hybrid models by a large margin. This comparison prelim-
inarily shows that the advantage of CTC training becomes
more obvious when the amount of training data increases.
The validity of this observation needs to be further verified
on even larger datasets.

Table 1. Comparisons of the CTC, hybrid DNN and hybrid
LSTM models on the two training sets and with different ini-
tializations for the forget-gate bias (FG Bias). “Small ran-
dom” refers to initialization with small random values, while
“constant 1.0” means that the bias vector is set to 1.0.

[ Set [ Model | FGBias [ WER%

CTC Small Random 20.7

CTC 1.0 19.9

10-Hour | —7r e BN — 202
Hybrid LSTM — 19.2

CTC Small Random 15.7

Complete CTC 1.0 15.1
p Hybrid DNN - 16.9
Hybrid LSTM — 15.8

4. ARCHITECTURAL VARIANTS

This section focuses on investigating two architectural vari-
ants of the LSTM model. Within the hybrid approach, previ-

ous work [15] shows the benefits of combining convolutional
neural networks (CNNs) and DNNs with LSTMs. In this pa-
per, we examine this combination in the context of CTC train-
ing. Specifically, a 1-dimensional convolution layer along the
frequency axis is placed over the input features (i.e., prior to
the LSTM layers). This convolution layer is followed by a
max-pooling layer which shrinks the sizes of feature maps
by 3 times, and finally by the LSTM hidden layers. From
Table 2, we can see that this combined architecture, ConvL-
STM, gives slight improvement (0.3% absolute) over the pure
LSTM. However, training of ConvLSTM is observed to be not
stable, partly because the outputs from the convolution layer
have a high dimension and therefore increase the size of the
LSTM layers. More optimization and extensive results will
be conducted in our subsequent studies.

As with most of the CTC work, we have used bi-directional
LSTMs for CTC training. A criticism of the bi-directional
structure lies in the temporal latency, which hampers the
deployment in real-world applications. In Table 2, we also
present the result when our acoustic model is constructed
with uni-directional LSTMs. In this case, the dimension of
the memory cell is 640, making the uni-directional model
have approximately the same size as the bi-directional net-
work. Applying uni-directional LSTM causes XX.X% rela-
tive WER degradation (XX.X vs 19.9%).

Table 2. Comparisons of various network architectures with
CTC training on the 110-Hour Switchboard setup.

Model WER%
LSTM 19.9
ConvLSTM 19.6
Uni-directional LSTM XXX

5. LANGUAGE EXPANSION

We further evaluate CTC training on the HKUST Man-
darin Chinese conversational telephone speech recognition
task [11]. The training and testing sets contain 174 and 5
hours of speech respectively. The LSTM model contains 5
bi-directional LSTM layers, each of which has 320 mem-
ory cells in both the forward and the backward sub-layers.
On this setup, CTC models the characters directly. Data
preparation gives 3667 labels including English characters,
Mandarin characters, noise marks and the blank. Table 3
reveals that CTC training achieves the CER of 35.47%.
This number is superior than the numbers (both hybrid
HMM/DNN and HMM/LSTM) reported in the Kaldi reposi-
tory https://github.com/kaldi-asr/kaldi.



Table 3. %CER of the CTC model achieved on the HKUST
Mandarin corpus, and the comparison with the best number
reported in the Kaldi repository.

Model CER%
CTC 35.47
Kaldi’s best number ' | 35.93

6. FRONT-ENDS

In the existing hybrid approach, the inputs of the DNN or
LSTM models are enhanced by feature learning based on the
GMM models, or by feature enrichment with additional fea-
tures. This section focuses on more advanced front-ends in
addition to the aforementioned filterbank coefficients.

6.1. Speaker Adaptive Features

When building GMM models, we can estimate linear trans-
forms to project the original acoustic features into a speaker
adaptive (SA) feature space. Two most commonly used types
of transforms are vocal tract length normalization (VTLN)
[16] and feature-space maximum likelihood linear regression
(fMLLR) [17]. In the hybrid approach, the effectiveness of
fMLLR and VTLN features has been sufficiently verified for
DNN models. In [14], the hybrid LSTM model with VTLN-
transformed filterbanks performs consistently better than the
model with the raw filterbanks. In this section, we study the
utility of SA features for CTC model training. Specifically,
we transform the filterbank features with VTLNs estimated
by a GMM model. The LSTM model in CTC is trained over
these VTLN-trasformed filterbanks. On the Switchboard se-
tups, Table 4 presents the results of the CTC models with dif-
ferent front-ends. As the case with hybrid systems, for CTC
models, the VTLN-FBank front-end generates better WERs
than the original FBank features. This confirms that SA fea-
tures are also applicable to CTC training. Estimating the SA
feature with VTLN has the drawback that CTC training now
has dependency on GMM models. However, in practice, we
may have access to user attributes, such as gender and age, to
replace the VTLN factors. These attributes can be exploited
to obtain SA features and thus improve CTC acoustic models.

Table 4. Comparisons of various front-ends with CTC train-
ing on the Switchboard setups.

Set \ Model \ Feature WER%
CTC FBank 19.9
H0-Hour -~ =TI NFBank | 192
Commlete |CIC FBank 15.1
p CTC | VILN-FBank | 14.6

6.2. Pitch Features for Tonal Languages

Another way to enhance speech front-ends is to integrate dif-
ferent types of features together. In particular, the Pitch fea-
tures have been found to be beneficial for tonal languages
(e.g., Mandarin, Cantonese and Vietnamese) [18]. On our
Mandarin setup (Section 5), we propose to incorporate the
Pitch features into CTC model training. The Pitch features
are extracted using the method described in [18]. Append the
3-dimensional Pitch and the 40-dimensional FBank features
gives us a 43-dimensional feature vector at each frame. On
the Mandarin test set, the CTC model with these appended
features obtains the CER of 34.79%, outperforming the CTC
model only with FBank.

Table 5. %CER of the CTC model on the HKUST Mandarin
corpus with different features.

Feature CER%
FBank 35.47
FBank+Pitch | 34.79

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extensive study regard-
ing the CTC technique for training acoustic models. To
be aligned with the aspects listed in Section 1, our conclu-
sions can be summarized as follows. 1) Initializing the bias
vector of the LSTMs forget gates to a large value (1.0) is
found to give nice gains. Also, the advantage of CTC gets
more obvious on larger amounts of training data. 2) The
ConvLSTM architecture, with a convolution layer inserted
before the LSTM layers, achieves slight improvement over
the vanilla LSTM. Switching from the bi-directional to the
uni-directional LSTM degrades the recognition accuracy by
10%. 3) The performance of CTC models can be improved by
speaker adaptive front-ends, or by front-ends enriched with
additional feature types. 4) The application of CTC results
in the state-of-the-art performance on the HKUST Mandarin
corpus.

For our future work, we are interested to investigate the
characteristics of CTC in the decoding stage, e.g., how to
perform speaker adaptation [14] for CTC models. Also, we
would like to extend the convolution in the ConvLSTM archi-
tecture to both the time [19] and the frequency dimensions.
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