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Abstract 
 Functional Magnetic Resonance Imaging (fMRI), a brain imaging technique, has 
allowed psychologists to identify what parts of the brain are involved in various tasks.  
Recently, Mitchell et al (2003) have used fMRI in a novel way: to infer from it a person’s 
mental states using machine learning algorithms.  Wang, Hutchinson, and Mitchell 
(2003) have extended these algorithms to make predictions across subjects, using hard-
coded common representations.  We have gone further to develop cross-subject 
clustering, a method of learning common representations.  This method not only offers 
the theoretical advantage of learning, but also appears to offer the empirical advantage of 
improved cross-subject predictions.  The empirical studies were limited to a single 
dataset (Sentence-then-Picture), however, so further work is needed to confirm its general 
utility.  Several of our other experiments demonstrate that unsupervised learning 
generally attains accuracies nearly as high as those of supervised learning across subjects, 
and in some cases higher.  Finally, we briefly catalog several other less successful 
approaches to the cross-subject prediction problem. 
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1  Introduction 
 Functional Magnetic Resonance Imaging (fMRI), a brain imaging technique, has 
allowed psychologists to identify what parts of the brain are involved in various tasks.  
Recently, Mitchell et al (2003) have used fMRI in a novel way: to infer from it a person’s 
mental states using machine learning algorithms.  This research could eventually lead to a 
“virtual sensor” of mental state, which would grant unprecedented insight into the human 
mind. 



 Wang, Hutchinson, and Mitchell (2003) have extended this research to make 
predictions across subjects.  They studied three representations common across subjects: 

1)  ROI average: the average activation of all voxels in each Region of Interest 
(ROI) 
2)  ROI active average (n): the average activation of the n most active voxels in 
each ROI 
3)  Talairach coordinates: the standard brain coordinate system 

With these common representations, classifiers trained on data from several training 
subjects tested well on data from new subjects. 
 Yet despite this good performance, these common representations have several 
limitations.  Most notably they hard-coded.  Hence they lack the flexibility of learned 
common representations.  Furthermore, they require the knowledge of experts in 
neuroanatomy to map out corresponding spatial regions on different brains.  And 
arguably, common representations shouldn’t be based on spatial regions at all.  Instead, 
they should feature the common types of activation behaviors, wherever they may be 
found. 
 This project addressed these shortcomings of the earlier approaches with the 
method of cross-subject clustering, described in the next section.  We also discuss several 
less successful alternative approaches in section 3. 
 
2  Cross-subject clustering: learning common features 
 
2.1  Algorithm Description 
 This algorithm learns a representation common across subjects by partitioning the 
collective voxels of all subjects into clusters, which have associated Gaussian 
distributions for each class at each time step of the experiment.  Simultaneously, it learns 
the maximum likelihood class labels of any unlabeled examples from any subjects.   
 To initialize, the algorithm randomly assigns class labels to unlabeled examples, 
initializes each cluster with a randomly selected single voxel, and assigns each voxel to 
the cluster that maximizes the likelihood of its data.  Then it iterates, EM-style: 

1)  Given all example class labels and voxel cluster assignments, for each cluster 
find the Gaussian distributions that maximize the likelihood of all of its voxels’ 
data. 
2)  Given all clusters’ distributions and example class labels, for each voxel for 
each subject, find the cluster that maximizes the likelihood of its data. 
3)  Given all clusters’ distributions and voxel cluster assignments, for each 
unlabeled example of each subject, find the class label that maximizes the 
likelihood of all of the voxels’ data. 

Pictures of the distributions for five clusters before and after learning are shown in 
figures 1 and 2.  A less successful alternative approach clustered voxels based on the 
Euclidean distances between their time courses and used the means of their time courses 
as cluster centers (see section 3.3).  The idea of using a distance metric that incorporated 
the example class labels was inspired by the approach of Toft et al (1997). 
 



          
Figure 1.  Five clusters after initialization.  For each cluster, Figure 2.  The same five clusters after ten iterations.  The two  
the Gaussian distributions from all 16 time courses are shown classes (blue and green) are better separated within the clusters. 
superimposed. 
 
 
2.2  Results 
 For an empirical comparison of these algorithms, we assessed three types of 
classifiers: single-subject classifiers, leave-one-subject-out classifiers, and unsupervised 
classifiers.  Single-subject classifiers (using leave-one-example-out accuracies) provide a 
baseline accuracy for evaluating cross-subject predictors.  Leave-one-subject-out 
classifiers train on all but one subject and test on that subject.  Unsupervised classifiers, 
both single-subject and cross-subject, provide an alternative approach to making 
predictions about new subjects.  We experimented with all of these methods using the 
Sentence-then-Picture data and variably on data from all twelve subjects and from only 
the five best subjects.  All classifiers used voxels normalized by the 
“transformIDM_normalizeTrials” function.  Below are brief descriptions of all of the 
classifiers and tables of the accuracies on all twelve subjects and on the best five. 
 
Single-subject classifiers 
Single-subject ROI active 20 average* (SS ROIact): Gaussian Naïve Bayes (GNB) 

applied to the averages of the 20 most active voxels in each ROI 
Single-subject active 200 * (SS act): GNB applied to the 200 most active voxels 
Single-subject clustering active 200 (SS cl): clustering (as in cross-subject clustering, but 

with voxels from a single-subject) applied to the 200 most active voxels using 5 
clusters and 5 iterations 

Single-subject ROI average* (SS ROIall): GNB applied to the averages of all voxels in 
each ROI 

 
Leave-one-subject-out classifiers 
L1SO cross-subject clustering active 200 (L1SO cl): cross-subject clustering applied to 

the 200 most active voxels, using 15 clusters and 10 iterations 

                                                 
* These classifiers were previously studied by Wang, Hutchinson, and Mitchell (2003), and were 
reproduced for these experiments.  We could not exactly reproduce the earlier results: our accuracies are 
significantly lower.  The most likely source of the discrepancy is in the subtleties of normalization.  Other 
possible sources of differences are our use of 12 subjects instead of 13 and the subtleties of the selection of 
active voxels. 



L1SO ROI average* (L1SO ROIall): GNB applied to the averages of all voxels in each 
ROI 

L1SO ROI active 20 average* (L1SO ROIact): GNB applied to the averages of the 20 
most active voxels in each ROI 

 
Unsupervised classifiers 
Unsupervised cross-subject clustering active 200 (UCS cl): cross-subject clustering 

applied to the 200 most active voxels with no class labels given for any examples 
for any subjects.  The resulting representation is common across subjects.  The 
algorithm used 15 clusters and 10 iterations. 

Unsupervised single-subject EM spherical ROI active 20 average (USS ROIact): EM for 
Gaussian Mixture Models applied to the averages of the 20 most active voxels in 
each ROI for each subject individually.  EM learned one multivariate Gaussian 
for each class.  The covariance matrices of the Gaussians were assumed spherical.  
This is the unsupervised version of GNB with the distributions for all voxels at all 
time steps for both classes assumed to have equal variances.  We used the Netlab 
toolbox for Matlab for the EM algorithm (available at 
http://www.ncrg.aston.ac.uk/netlab/). 

Unsupervised single-subject clustering active 200 (USS cl): clustering applied to the 200 
most active voxels for each subject individually (to yield subject-specific 
representations).  The algorithm used 5 clusters and 10 iterations. 

 
All 12 subjects 
     Subject      Mean 
 1             2             3             4             5             6             7             8             9             10           11           12         
SS ROIact 0.9750    1.0000    1.0000    1.0000    0.9000    0.8000    0.8500    0.9000    0.8750    1.0000    0.8500    1.0000    0.9292 
SS act 0.9000    1.0000    0.9750    1.0000    0.9000    0.8750    0.8250    0.9500    0.9000    1.0000    0.8000    1.0000    0.9271 
SS cl 0.8500    1.0000    0.9500    0.9750    0.9000    0.7500    0.8500    0.9000    0.9000    1.0000    0.7750    1.0000    0.9042 
SS ROIall 0.8750    0.9000    0.9750    1.0000    0.9250    0.6750    0.8750    0.8000    0.9250    0.9750    0.7750    1.0000    0.8917 
 
L1SO cl 0.7500    0.9750    1.0000    1.0000    0.9250    0.8500    0.8750    0.9000    0.9000    1.0000    0.8000    1.0000    0.9146 
L1SO Rall 0.6250    0.7750    0.9250    1.0000    0.9250    0.7250    0.8500    0.7750    0.8250    0.9750    0.8000    0.9250    0.8438 
L1SO Ract 0.5750    0.8750    0.9500    1.0000    0.9000    0.8000    0.8250    0.7250    0.8000    0.9500    0.8500    0.8750    0.8437 
 
UCS cl 0.6500    0.9250    0.9750    1.0000    0.9250    0.8500    0.8750    0.9250    0.8750    0.9750    0.5250    1.0000    0.8750 
USS Ract 0.6250    1.0000    1.0000    1.0000    0.9000    0.8000    0.6000    0.9250    0.8750    0.9750    0.7750    1.0000    0.8729 
USS cl 0.6250    0.9500    0.9250    1.0000    0.9000    0.6250    0.8250    0.6250    0.8750    1.0000    0.7750    1.0000    0.8438 
 
Best 5 subjects (3, 4, 9, 10, 12) 
    Subject    Mean 
  3  4   9   10    12 
SS ROIact     1.0000    1.0000    0.8750    1.0000    1.0000  0.9750 
SS act  0.9750    1.0000    0.9000    1.0000    1.0000  0.9750   
SS cl  0.9500    0.9750    0.9000    1.0000    1.0000  0.9650 
SS ROIall     0.9750    1.0000    0.9250    0.9750    1.0000  0.9750 
 
L1SO cl  0.9750    1.0000    0.9000    1.0000    1.0000     0.9750 
L1SO ROIall  0.9750    1.0000    0.9000    0.9750    1.0000     0.9700 
L1SO ROIact 1.0000    1.0000    0.8750    0.9750    0.9750  0.9650 
 
UCS cl  1.0000    1.0000    0.8750    1.0000    1.0000  0.9750 
USS ROIact 1.0000    1.0000    0.8750    0.9750    1.0000  0.9700 
USS cl  0.9250    1.0000    0.8750    1.0000    1.0000  0.9600 



2.3  Analysis 
Several trends are apparent in the data: 
 
1)  Excellent performance of cross-subject clustering 
 The L1SO cross-subject clustering algorithm is easily the best predictor for new 
subjects for the data from all 12 subjects.  It achieves 91.5% accuracy, about 7% better 
than the L1SO ROI classifiers (84.4 %) and 4% better than the unsupervised classifiers 
(87.5%).  Moreover, it performs better than the corresponding single-subject clustering 
classifier’s accuracy of 90.4% and nearly as well as the original single-subject GNB 
classifier (SS act), which had 92.7% accuracy. 

The L1SO cross-subject clustering algorithm performs similarly well on the 5 best 
subjects, making it the best predictor for new subjects on this dataset. 
 
2)  Excellent performance of unsupervised learners 
 All three unsupervised classifiers perform at least as well as the L1SO supervised 
classifiers based on the ROI representations.  Two of them achieve accuracies of 87.5%, 
about 3% higher than the accuracies of the L1SO ROI classifiers (84.4%), and only 4% 
lower than the accuracy of the best cross-subject predictor (L1SO cross-subject 
clustering, with 91.5%).  In the case of the ROI representation, it’s interesting to observe 
that it’s better to use unsupervised learning to look for patterns within a subject’s own 
data than to try to make predictions based on known patterns from other subjects.  Cross-
subject clustering, however, benefits from labeled data from other subjects.  In fact, it 
even benefits from unlabeled data from other subjects: for unsupervised learning, using 
cross-subject clusters outperforms using subject-specific clusters. 
 
3)  Excellent performance of all methods on 5 best subjects 
 At least on this dataset, for the best 5 subjects the choice of cross-subject 
classifier is inconsequential: all achieve about 97% accuracy, which is as good as the 
single-subject predictor accuracies. 
 
4)  ROI methods suffer from negative transfer, but cross-subject clustering does not 
 As noted above, when restricted to the five best subjects, all methods perform 
similarly well at about the 97% accuracy level.  Yet the ROI methods perform 
significantly worse on these subjects when the other 7 subjects are included: accuracies 
drop from 97% to 93% and from 96.5% to 91.5%.  In effect, there is negative transfer 
from the bad subjects.  The cross-subject clustering approaches, however, resist this 
effect: one accuracy drops slightly from 97.5% to 96.5% and the other actually increases 
from 97.5% to 98%! 
 
2.4  Cross-subject clustering vs. ROI approaches    
Advantages of cross-subject clustering 
 
1)  Better classification accuracies 
 On all 12 subjects for the Sentence-then-Picture data, the L1SO cross-subject 
classifier achieved an accuracy of 91.5%, about 7% better than the ROI approaches, 
which both had accuracies of 84.4%. 



 
2)  Learned common representation 
 Cross-subject clustering, unlike the ROI approaches, learns its common 
representation.  This provides autonomy and adaptability: no expert is needed to identify 
ROIs or Talairach coordinates, and the common representation is specifically suited to 
the given classification task. 
 
3)  Activation-based common representation 
 Arguably, it’s better to extract common features by similar behavior than by 
similar location.  Cross-subject clustering does this.  ROI representations and Talairach 
coordinates do not. 
 
4)  Representation of individual differences and selective transfer 
 Cross-subject clustering allows any distribution of voxels among clusters.  As a 
result, if one subject has more voxels of a particular type, it can represent that individual 
difference.  It can also naturally incorporate similarities and differences among subjects 
through the similarities and differences of their voxel distributions.  Selective transfer 
results. 

The data evidence this effect.  As noted in the previous subsection, unlike ROI 
methods, cross-subject clustering resists negative transfer. 
 Finally, we note that the balance between subject conformity and individual 
freedom in the common representation can be regulated by the number of clusters.  Fewer 
clusters enforce greater conformity. 
 
5)  Variable resolution 
 By changing the number of clusters, one can control the “resolution” of cross-
subject clustering.  By contrast, ROI representations have fixed resolution, given by the 
number of ROIs. 
 
Disadvantages of cross-subject clustering 
 
1)  Classifier-specific common representation 
 The cross-subject clustering algorithm presented here is based upon the Gaussian 
naïve maximum likelihood classifier: the clusters are chosen so as to maximize the 
likelihood of the data under the naïve Gaussian model.  By contrast, the ROI and 
Talairach coordinate representations can easily be combined with any classifier. 
 This limitation can be addressed by several extensions of the algorithm, which are 
discussed in the next section. 
 
2)  Limited form of common representation 
 The cross-subject clustering common representation is based on groups of voxels.  
Granted, the ROI representations are similarly limited to averages of groups of voxels.  
But there are many other conceivable common representations.  We note that the ROI 
representations could easily be adapted to be based on groups of voxels (sharing 
Gaussian distributions among voxels) instead of averages of groups of voxels.  Similarly, 



the cross-subject clustering algorithm can be adapted for other types of common 
representations.  See the next section. 
 
3)  Slowness 
 The cross-subject clustering algorithm is significantly slower than the ROI 
approaches.  A single run for all 12 subjects using 15 clusters and 10 iterations can take 
10 minutes.  Hence the time for computing all leave-one-subject-out accuracies can be a 
few hours.  By contrast, the ROI approaches can do this in less than a minute.  Of course, 
this might be expected since the cross-subject clustering algorithm has to learn its 
common representation, while the ROI approaches have hard-coded common 
representations. 
 
2.5  Extensions and variations 
 The cross-subject clustering algorithm is composed of three parts: the algorithm 
for searching the space of possible clusterings, the type of feature derived from each 
cluster, and the performance measure of the resulting features.  It uses an EM-like 
procedure to search for clusters, groups voxels in each cluster, and measures the 
effectiveness of a grouping by the likelihood of the data under the maximum-likelihood 
naïve Gaussian model.  Although there are not any obvious better search algorithm 
alternatives, there are several promising alternative features and measures of features: 
 
Alternative features from clusters   

One alternative feature type is the average of the group of voxels in a cluster.  
Some preliminary experiments suggested this did not do as well as simply grouping. 
 
Alternative measures of features 

Most measures attempt to quantify the separation of the data in the resulting 
feature space.  Several statistical measures, based on distances of means and inter- and 
intra- class variances, can be used.  In some sense, these are independent of the classifier, 
and the resulting features could be used by any classifier.  Another way to quantify the 
resulting separation of the data is by the training success of a classifier.  This algorithm 
uses the likelihood of the data under the maximum likelihood naïve Gaussian model.  
One could easily substitute the margin of a SVM classifier, or a measure based on the k-
nearest neighbor classifier. 
 
There are also a number of other simple extensions of the algorithm: 
 
Select n most useful voxels 
 There is no reason why every voxel must belong to a cluster.  It would be easy to 
select only the n most useful voxels.  On each iteration, after assigning all voxels to 
clusters, the n most useful voxels could be identified by the likelihood of their data under 
the current model.  The rest could be discarded for the rest of the iteration (hence having 
no effect on the new example class labels or new clusters’ distributions). 
 
Incorporate spatial bias: cluster by ROI 



 To incorporate a spatial bias, one can perform the clustering separately for each 
ROI.  Preliminary experiments on this method suggested it did not work as well. 
 
Online version 
 This version of the algorithm is offline: it clusters the test subject’s voxels with 
those of the training subjects.  An alternative is the online approach, in which the training 
subjects are clustered first and then the test subject is added. 
 
3  Other approaches 
 
3.1  Colearning neural networks 
 We first explored this multi-subject learning model in a Spring 2004 Independent 
Study project.  The model, shown in figure 3, has individual linear transformations to a 
common representation for each subject and a shared function mapping these common 
features to the cognitive state classification. 

 
Figure 3.  The colearning neural network model. Figure 4.  Here the curve has been fit to the data of one 

subject  (the blue points).  Gradient descent was unable 
to fit the data of another subject (the green points) to 
the learned model.  Instead, it found a local minimum 
that matches only the largest bumps. 

 
The model can represent a large space of features: all linear transformations of the 

voxel inputs.  In particular, this space includes both the ROI average and ROI active 
average representations. 
 The Spring 2004 project suggested the model needed bias to cope with only 40 
examples per subject for an input space of over 100 dimensions.  It also revealed the need 
for a better theoretical understanding of the model. 
 In response to this need, this project investigated the general properties of the 
colearning neural net model through experiments on several synthetic datasets.  We 
considered three levels of complexity of the shared function: lines, sine waves, and 
polynomials.  We also gave new subjects both offline and online treatment.  In general, 
the desired common representation was the global minimum, but there were also scads of 
inferior local minima.  Figure 4 shows an example.  This difficulty was serious enough 
on these toy problems to warrant abandoning the model. 



 Yet in many ways, cross-subject clustering provides what colearning neural nets 
failed to deliver.  By incorporating bias through narrower classes of features and 
classifiers, it succeeded in learning common features. 
 
3.2  Voxel matching 
 This algorithm matches individual voxels of different subjects by activation 
behavior, much the same way that Talairach coordinates matches voxels by spatial 
location.  We experimented with mapping the test subject’s voxels to those of the training 
subject and vice versa.  The former worked better.  Using this method with several 
different training subjects produced several alternative classifiers for the test subject.  
Taking votes from these on class label predictions yielded an effective cross-subject 
classifier.  Here are its accuracies for predictions about the five best subjects using the 
200 most active voxels for each, un-normalized: 
 
     Subjects    Mean  
   1             2             3             4             5                    
Voter matching 0.9250    1.0000    0.8750    1.0000    0.9875  0.9575 
 
Although this method does well, cross-subject clustering supersedes it.  Cross-subject 
clustering provides a similar activation-based common representation, but with more 
subjects, with variable resolution, and with better results. 
 
3.3  k-means clustering by Euclidean distance 
 See Dimitriadou et al (2003) for a comparison of clustering methods for fMRI.  
Before investigating cross-subject clustering, we experimented with clustering voxels 
based on the Euclidean distance between their time courses.  For single-subjects, this 
performed better than using all voxels but not as well as using ROI averages.  Clearly, the 
distance metric used for cross-subject clustering is superior. 
 
3.4  ICA, PCA, discriminant analysis 
 See Calhoun et al (2003) for an overview of the application of ICA to fMRI.  
Preliminary results of classifiers based on these methods were discouraging.  Given the 
unnormalized data of one subject, FastICA first extracted 200 principal components from 
the original voxels and then extracted 200 independent components from these.  GNB 
applied to these features achieved an accuracy of 65%, compared to 70% when applied to 
the original voxels.  A preliminary experiment on a form of PCA was similarly 
disappointing.  Based on the limitation that ICA and PCA don’t consider class labels, we 
developed a method to extract components that separate the data by class label.  As we 
later discovered, it was similar to the existing discriminant analysis method.  At any rate, 
it had mixed results. 
 A fundamental difficulty with these approaches to feature extraction is how to get 
features common across subjects from them.  Perhaps the features for different subjects 
could be matched. 
 
4  Further research and conclusions 
 



4.1  Further work 
 This project presents many opportunities for further research.  Here are a few 
possible future research directions: 
 
Experiments on other datasets 
 This work only evaluated the performance of cross-subject clustering on the 
Sentence-then-Picture dataset.  To confirm its general utility, it needs to be applied to a 
variety of other datasets. 
 
Extensions of the algorithm 
 There are many simple and potentially useful extensions of the cross-subject 
clustering algorithm.  See section 2.5 for a description of these. 
 
Combining multiple experiments 
 To analyze data from multiple experiments using cross-subject clustering, there 
are two obvious approaches: 
 1)  Cluster across experiments 

This simple extension of the algorithm should identify voxels with similar 
behavior on a variety of tasks.  With many tasks, this should produce a 
good general-purpose common representation. 

 2)  Cluster for each experiment individually 
Then one can compare the roles of voxels based on cluster memberships 
for different experiments. 

 
4.2  Conclusions 
 Based on experiments with the Sentence-then-Picture data, the cross-subject 
clustering algorithm appears to have both empirical and theoretical advantages over ROI 
approaches.  Further experiments on other datasets are needed to confirm its general 
utility.  Several other experiments demonstrate that unsupervised learning is an effective 
method of making predictions about new subjects.  This shows promise for the goal of 
automatically identifying mental states. 
 
4.3  Further information 
 More information on all aspects of this work is easily available.  We have a 
comprehensive log detailing the experiments discussed in this paper and referencing 
Matlab code and workspaces. 
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