
Departamento de Informática

Mestrado em Engenharia Informática

Design and Implementation of a Design and Implementation of a
Behaviorally Typed Programming System Behaviorally Typed Programming System

for Web Servicesfor Web Services

Dissertação de Mestrado

Filipe David Oliveira Militão (26948)

Orientador: Prof. Doutor Luís Caires

Part 1 – Introduction (~10 min)

● Motivation

● What is a Behavioral Type?

● Why do we need Behavioral Types?

● Overview (programmer's perspective)

● Contributions

Motivation

● Increasing software complexity

- requires more sophisticated tools
- faster feedback on possible errors
- cut back errors only detectable at runtime

● Web Services

- many standards (WSDL, etc)
- dynamic combination of services
+ automatic type compatibility checks
- behavior “assumed” compatible

→ ease Web Services use/composition
→ statically check concurrent compositions

What is a Behavioral Type?

Imagine a monster with a strange habit of squashing
cats and then cook them into pancakes or tea right
before going to sleep.

What is a Behavioral Type?

Imagine a monster with a strange habit of squashing
cats and then cook them into pancakes or tea right
before going to sleep.

Monster Type
- squash(Cat)
- makePancakes(Cat)
- makeTea(Cat)
- sleep()

What is a Behavioral Type?

Imagine a monster with a strange habit of squashing
cats and then cook them into pancakes or tea right
before going to sleep.

Monster Type
- squash(Cat)
- makePancakes(Cat)
- makeTea(Cat)
- sleep()

Behavior
1º squash cat
2º pancakes or tea
3º sleep

What is a Behavioral Type?

Imagine a monster with a strange habit of squashing
cats and then cook them into pancakes or tea right
before going to sleep.

Monster Type
- squash(Cat)
- makePancakes(Cat)
- makeTea(Cat)
- sleep()

Behavior
1º squash cat
2º pancakes or tea
3º sleep

Behavioral Type = Type + Behavior

Why do we need Behavioral Types?

● statically check a program's correct flow of calls
(ignoring possible trapped errors)
● benefits: avoids less obvious errors such as
opened file/sockets not being safely closed after
use (could lead to possible loss of data)

● Behavioral checking includes:
- verifying termination in the use of a behavior
(correct resource discard)

- checking branches, loops and exceptions in a
flexible way

- deciding if/when a behavioral type can be
replaced by another behavior

Overview – Programmer's perspective (I)

Don't Panic Airlines wants to create a simple
Web Service for its customers and requires:

● all clients must be authenticated (logged in)

● it's possible to choose a special package, although
some might be sold out

● in the case of booking a simple flight there's an
additional option of also booking a return flight

● it should also be possible to list all available flights

● “at most, only one purchase per log in / session”

(requirements)

Overview – Programmer's perspective (II)

class DPA {

login(string username, string password) { ... }
logout(){ ... }

specialPackage(string type) throws SoldOut { ... }

bookDestination(string dest){ ... }
bookReturnFlight(){ ... }

printAllAvailableFlights(){ ... }

}

(initial approach to the problem)

Overview – Programmer's perspective (II)

class DPA {

login(string username, string password) { ... }
logout(){ ... }

specialPackage(string type) throws SoldOut { ... }

bookDestination(string dest){ ... }
bookReturnFlight(){ ... }

printAllAvailableFlights(){ ... }

}

can be called freely

only available on specific situations

(identifying behavioral and “free” methods)

Overview – Programmer's perspective (III)

In order to restrict the use of those methods, we
define a specific usage protocol to be applied to

anyone using the class.

This protocol is only related to the method's
name, not their return type or arguments.

Overview – Programmer's perspective (IV)

login ; logout

(sequence protocol)

Overview – Programmer's perspective (IV)

login ;
(bookDestination ; bookReturnFlight?)

 +
specialPackage

 +
stop

; logout

(adding external choices to the protocol)

Overview – Programmer's perspective (IV)

login ;
&choose(

(bookDestination ; bookReturnFlight?)
+

specialPackage[SoldOut: choose]
+

stop
)
; logout

(adding internal choice [SoldOut exception] and recursion point [choose])

Overview – Programmer's perspective (V)

class DPA {

usage login ;
&choose(

 (bookDestination ; bookReturnFlight?)
+ specialPackage[SoldOut: choose]
+ stop

) ; logout

login(string username, string password) { ... }
logout(){ ... }

specialPackage(string type) throws SoldOut { ... }

bookDestination(string dest){ ... }
bookReturnFlight(){ ... }

printAllAvailableFlights(){ ... }

}

(the complete class definition with a behavioral protocol)

usage protocol for class DPA

Overview – Programmer's perspective (VI)

requestFlight(DPA s){

s.login(“usr”,”pwd”);

//...

s.logout();

}

(using the behavioral class DPA - sequential part of the protocol)

login ; &choose(
 (bookDestination ; bookReturnFlight?)
 + specialPackage[SoldOut: choose] + stop) ; logout

Overview – Programmer's perspective (VI)

requestFlight(DPA s){

s.login(“usr”,”pwd”);
s.printAllAvailableFlights();

if(?){
//choice 1

}
else{

//choice 2
};

s.logout();

}

(using 2 of the 3 possible external choices)

login ; &choose(
 (bookDestination ; bookReturnFlight?)
 + specialPackage[SoldOut: choose] + stop) ; logout

Overview – Programmer's perspective (VI)

requestFlight(DPA s){

s.login(“usr”,”pwd”);
s.printAllAvailableFlights();

if(?){
s.bookDestination(“Lisbon”);
if(?){ s.bookReturnFlight(); }

}
else{

try{
s.specialPackage(“around the world 80”);

}catch(SoldOut out){
//never mind then...

}
};

s.logout();
}

(mixing internal and external choices)

login ; &choose(
 (bookDestination ; bookReturnFlight?)
 + specialPackage[SoldOut: choose] + stop) ; logout

Contributions

● Design of the programming language yak

● Design and formalization of a behavioral type
system

● Implementation of a fully functional
proof-of-concept prototype

Contributions

● Design of the programming language yak
- simple (minimalistic)
- Java “inspired” (similar syntax)
- apply main features of the type system

● Design and formalization of a behavioral type
system

● Implementation of a fully functional
proof-of-concept prototype

Contributions

● Design of the programming language yak

● Design and formalization of a behavioral type
system

- behavioral termination
- behavioral ownership
- branching
- loops
- exceptions (new approach in behavioral types)
- ...

● Implementation of a fully functional
proof-of-concept prototype

Contributions

● Design of the programming language yak

● Design and formalization of a behavioral type
system

● Implementation of a fully functional
proof-of-concept prototype

- language parser
- interpreter
- run-time system (WS using HTTP+XML)
- type checker (based on DFA manipulation)
- examples
- available for download

Part 2 - How it works (~7 min)

● Protocol

● Program's Structure

● Type System

Protocol (I)

● Describes sequences of (allowed) behavioral calls
● Any protocol may include:

● method's names
● exceptions types
● recursion labels

● empty behavior: stop (behavior of basic types)
● operators:
a + b choice
a ; b sequence
a* repetition
&label(a;stop+label) (limited) recursion
a[Error: b];c exceptions

Protocol (II)

● Can express more complex behaviors like
“repeat on error”:

&start(hello[NoReply: start];goodbye)

● + operator → “external” choice
● The programmer may choose freely any of the given options

● exceptions → “internal” choice
● The internal logic of the class decides to change the allowed

protocol and “announces” the change as an exception

● Internally, the protocol is converted to a
Deterministic Finite Automaton (DFA)

Program's Structure

Program's Structure

All static variables must be #stop

Note: basic values are all stop (boolean#stop, etc)

Program's Structure - Distribution

Program's Structure – Distribution Example

//server @localhost:8180

interface Hello{
string say();

}

class RemoteHello{
string say(){

return “I'm remote”;
}

}

//client

interface Hello @“localhost:8180”

class RemoteHello @“localhost:8180”

class Main{

 main(){
Hello newer = new RemoteHello();
Lib.println(newer.say());

 }

}

HTTP
+

XML

REST inspired URL format:
(protocol)://(ip:port)/yak/Type/Instance#/Method

type interface: http://localhost:8180/yak/RemoteHello
constructor: http://localhost:8180/yak/RemoteHello//RemoteHello

instance: http://localhost:8180/yak/RemoteHello/1
method invocation: http://localhost:8180/yak/RemoteHello/1/say

Program's Structure

Zooming on a single class

Program's Structure – Class internals (I)

fields
(always private)

methods
(always public)

Program's Structure – Class internals (II)

non behavioral
methods
(free use)

behavioral
methodsusage

Example – File interface

interface File{
 usage &start((
 (openRead ; read*) +
 (openWrite; write*) +
 (openReadWrite; (read+write)*)
 ; close
)[openRead, openWrite, openReadWrite
 -> FileNotFound: stop+(changeFile;start) |
 read, write
 -> IOException: close])

 changeFile(string name);

 openRead() throws FileNotFound;
 openWrite() throws FileNotFound;
 openReadWrite() throws FileNotFound;

 string read() throws IOException;
 write(string content) throws IOException;
 write(string content, integer offset) throws IOException;

close();

integer size();
string name();

}

usage
protocol

behavioral
methods

free
methods

Program's Structure – Fields permissions (I)

Non behavioral methods can be
called in any context.

Therefore, to avoid inconsistencies
they see all fields as constants with a

stop behavior.

Program's Structure - Fields permissions (II)

Behavioral methods are called in
specific contexts.

To verify each method correctly uses
the class' fields we do a consistency

check so that each method uses a
field's behavior correctly.

Consistency check

Program's Structure – Internal calls

For additional flexibility, the usage
protocol is only related to anyone
using the class from the “outside”.

Code inside the class' body is allowed
to call any of the class' methods.

code “importing”
recursion

Code Import

Recursion

Program's Structure

Zooming on a
single method

Program's Structure

Any local variable must fulfill its
behavior before the method ends.

Program's Structure

A a = new A(); // a -> A#a;b;c
m(a); // a -> A#c
a.c(); // a -> A#stop

Program's Structure - Ownership

Program's Structure - Ownership

// only 1 unique (full) owner
A a = new A();// a → A#a;b;c
a.a(); // a → A#b;c

A#b;c b = a; // a → A#stop b → A#b;c
A#stop c = b; // b → A#b;c c → A#stop

Program's Structure

if-else while/repeat exceptions
(try-catch + throw)

Exceptions (try-catch + throw)

Subtyping

Replacing a behavioral type with another,
while still obeying behavioral expectations

Subtyping

Replacing a behavioral type with another,
while still obeying behavioral expectations

Example - Order

interface Order{
usage review*;buy?
/* ... */

}

class TravelOrder{
usage (packageAlaska+packageArtic)[SoldOut: stop]+
 (flight;hotel); (review*; buy?)
/* ... */

}

class HotelOrder{
usage bookGroup+bookPenthouse+bookRoom* ;
 breakfast? ; dinner? ; (review*; buy?)
/* ... */

}

class User{
map<Order> orders;
/* ... */

}

Can hold HotelOrders or TravelOrders as
long as their only remaining behavior is

(review*;buy?)
missing (subtype-wise) behavioral
methods will never be called

(can't be used anymore)

Protocol Simulation (I)

● choices:
“main” more / “temp” less
→ Hidden choices in “temp”

● exceptions:
“main” less / “temp” more
→ «Useless» catches

Protocol Simulation (II)

Type System

● Simplified syntax (no “syntax sugar”)

● Only the core features of the language

● Basic typing judgment:

Type System – if else

Type System – try-catch and throw

Part 3 – Closing Points (~3 min)

● Related Work

● Conclusions

● Future Work

Related Work (I)

Behavioral verification is a very broad topic.

There are several different approaches to the
same core problem.

A quick overview of some of the most closely
related work...

Related Work (II)

- Atsushi Igarashi and Naoki Kobayashi.
 Resource usage analysis. 2002.

- Futoshi Iwama, Atsushi Igarashi, and Naoki Kobayashi.
 Resource usage analysis for a functional language with exceptions. 2006.

+ complex protocol expressiveness
(even tough somewhat confusing)
+ concurrency
+ (some) exception handling

- ML based (functional language)
- no practical algorithms for
checking (only formal type system)

Related Work (III)

- R. DeLine and M. Fahndrich.
The fugue protocol checker: Is your software baroque. 2003.

+ pre/post + state-machine
+ subtyping and parameter check

- no exception handling
- requires extensive annotations

Related Work (IV)

- Simon Gay, Vasco T. Vasconcelos, and Antonio Ravara.
Dynamic interfaces. 2007.

+ pre/post + session-types
+ inheritance and subtyping

- more limited approach:
no self calls
no behavioral termination

 no behavioral exceptions
no ownership

Related Work (V)

 - Raymond Hu, Nobuko Yoshida, and Kohei Honda.
Session-based distributed programming in java. 2008.

+ session-type based

- focused on channel
communication (only)
- complex syntax
- not language transparent
- pairwise composition of
protocols
- no behavioral exceptions

Related Work (VI)

- Cosimo Laneve and Luca Padovani.
The must preorder revisited. 2007.

- Giuseppe Castagna, Nils Gesbert, and Luca Padovani.
A theory of contracts for web services. 2008.

- (only) focused on the contract layer

+ flexible and interesting operations

+ sub-contract very similar to our behavioral sub-typing

Example – WS-CDL (wrapper)

class Service{
 usage &l(login [InvalidLogin: l] ;
 &q(query;
 (q + logout +
 &p(purchase[InvalidPayment: p+logout | OutOfStock: q+logout])

)))

 login(string username, string password)
throws InvalidLogin { ... }

 Catalog query(string query) { ... }

 string purchase(Purchase purchase)
throws InvalidPayment, OutOfStock { ... }

 logout() { ... }
}

Image from: Laneve, Padovani. The must preorder revisited – an algebraic theory for web services contracts

Conclusions

+ minimalistic experimental language

+ formal description of the type system

+ working prototype (and publicly available)
(parser + interpreter + type checker + run-time system)

+ some interesting examples

Future Work

> soundness proof

- concurrency

- prototype improvements:
query (object pool) by protocol
protocol expressiveness
error messages friendliness
improve/simplify code base
...

The End.

Yak prototype
(http://ctp.di.fct.unl.pt/yak/)

http://ctp.di.fct.unl.pt/yak/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

