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Summary

The growing use of the Internet as a global infrastructure for communication between dis-
tributed applications is leading to the development of a considerable amount of technologies to
ease the deployment, description and data exchange among services and thus improve their in-
teroperability. There is also a growing interest in the use of the “software as a service” business
model where a software vendor develops and hosts applications to be used by its clients over
the Internet. The use of these Web Services is provided through an API describing the inter-
face of the service that can hide how the service provider hosts the application. This approach
allows for the creation of an abstraction layer that offers additional capabilities without increas-
ing the maintenance cost usually linked to the management of those machines (like software
and hardware updates or just application/system configuration).

However, the main tools provided by the standards and existing technology to combine
these services usually only account for limited automatic verification techniques (based on
standard signature checking of methods in interface descriptions) and thus relying the behav-
ioral compatibility among services to the programmer. The programmer then becomes depen-
dent on the quality of the documentation and the development time available to manually (and
without formal guarantees) assure the correctness of the code.

In this thesis, we propose a behavioral type system, in the context of yak, a prototype script-
ing language for web services, that enhances traditional typecheckers by allowing to statically
check the correct usage of services (as remote or local objects). Our language uses behavioral
annotations in the protocol descriptions, similar to regular expressions, that are translated to
deterministic finite automatons during the typechecking phase. The intent of this work is to
ease the creation and deployment of Web Services by providing a friendly integration of be-
havioral type concepts within a practical programming language, so to make the use of these
services (with behavioral descriptions) transparent and effortless to the programmer. We also
provide a full implementation of the interpreter, behavioral typechecker and run-time support
system for the yak language, that may be used to develop prototypical systems and experiment
with web services and behavioral types.

Keywords: Web Services, Behavioral Typechecking, Resource Usage Analysis, Type System,
Type Inference, Scripting Language.
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Sumário

A crescente utilização da Internet como meio de comunicação entre aplicações levou ao de-
senvolvimento de tecnologias para a disponibilização, descrição e comunicação entre serviços
como consequência da heterogeneidade do código e das máquinas envolvidas. Deste modo,
há também um grande interesse no fornecimento de “software como serviço” onde uma em-
presa desenvolve e disponibiliza aplicações ao seus clientes por intermédio da Internet. Os
clientes dialogam com estes Web Services através de APIs que descrevem a interface do serviço
e escondem o modo como este está alojado nos servidores. Assim, permitem criar um nı́vel
de abstracção relativamente ao fornecimento de capacidades diversas sem impor o custo de
manutenção normalmente associado à sua gestão (tal como por exemplo, manutenção de hard-
ware ou configuração e actualização das aplicações).

Contudo, as principais ferramentas disponibilizadas pelas normas e tecnologias actual-
mente existentes para a combinação destes serviços apenas permitem uma verificação au-
tomática limitada (baseada na comparação das assinaturas dos métodos descritos nas inter-
faces) e deste modo delegam a garantia de compatibilidade de comportamentos para o pro-
gramador. Este fica então dependente da qualidade da documentação e da disponibilidade de
tempo necessário para garantir manualmente (e sem garantias formais) a adequação da sua
solução.

Nesta tese propomos um sistema de tipos comportamental, no contexto de yak, um protótipo
de uma linguagem de scripting para Web Services que complementa a verificação de tipos
tradicional ao garantir estaticamente a correcta utilização de serviços (tanto remotos como lo-
cais). Esta linguagem permite a descrição do comportamento por intermédio de anotações adi-
cionais, sob uma forma semelhante a expressões regulares, que são traduzidas em autómatos
finitos deterministas para a verificação. O objectivo deste trabalho é facilitar a disponibilização
e criação de Web Services (com informação comportamental) através da incorporação de mecan-
ismos na própria linguagem que tornam estes elementos transparentes ao programador e de
utilização imediata. Disponibilizamos ainda a implementação completa do interpretador, sis-
tema de tipos comportamental e sistema de execução para a linguagem yak, suficientes para o
desenvolvimento de sistemas experimentais com Web Services e tipos comportamentais.

Palavras-chave: Web Services, Tipificação Comportamental, Análise de Utilização de Recursos,
Sistema de Tipos, Inferência de Tipos, Linguagem de Scripting.
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1
Introduction

1.1 Motivation

As applications grow in complexity and size so does the need for more advanced and helpful
tools to assist the programmer in the development of software. As such, one of the many
concerns of computer science is to provide techniques to easily and quickly verify the correction
of the created code.

However, there are important limitations to the type of properties that can be extracted from
a given program without falling into undecidable situations (cf. the halting problem). To tackle
this limitation it is usually relied on approximations of the actual solution which are generally
helpful enough, even if sometimes they can only provide conservative results. As a result, the
concept of typeful programming [1] emerges, which bases itself on the notion of properties that
can be statically verified.

Consequently, a typechecker is a system compatible with this methodology which includes
rules to verify the abstraction, polymorphism, subtyping and modularity of a program. How-
ever, although their usefulness to program development is unquestionable, the limitations of
modern type systems are becoming ever more apparent with the increase in complexity and
dynamic combination of software components (for instance, with the increasing use of concur-
rency) as well as code reuse from different sources (that some times are only accessible through
remote interfaces).

The concept of Web Services is based on the idea of interoperable communication between
machines over a network. As a consequence of the growing interest from the industry, the most
relevant aspects of this topic are subject to various specifications and standards, that cover dif-
ferent topics such as data format or even interface description/specification. This normaliza-
tion eases the exchange of information between entities. However, the limitations described

1



1. INTRODUCTION 1.1. Motivation

above are only made more clear since the interfaces are mostly related to abstract types and
leave the description of the correct use of services to the documentation. In other words, this
means that it is then in charge of the programmer to obey them and as such it poses inevitable
scalability issues.

There is no single commonly accepted point of view to this problem. This situation leads to
the existence of several different research choices for checking a type’s behavior. One approach
imposes conditions to each function / procedure that must be proved correct (i.e. pre/post
conditions), there are already some more practical applications of this technique (for example
ESC/Java [2]). Another approach focus on the ideia of combining an automaton with a type [3]
which will then serve as basis for behavioral validation.

In this work we build on the latter (“state-machine”) approach, centered on the verification
of more standard types combined with flow restrictions imposed by a deterministic automa-
ton. The concept of automata is well-known, and benefits from solid theoretical foundations
that provide a broad set of known properties as well as efficient algorithms to handle such
structures. Therefore, this topic is thoroughly explored in many textbooks covering the sub-
ject [4]. As a result, automata are widely used in a diverse set of scenarios, namely (related to
the context of this work) in the verification of regular expressions, which will serve as the basis
for our annotation syntax for describing the allowed behavior of a service usage protocol.

We incorporate our type system in a Java like scripting language for Web Services. In-
stead of focusing in the efficiency of the code, scripting languages have become a relevant
programming concept for allowing to quickly and easily test new ideas with minimal coding
and also by drastically reducing the hassle of getting the code to run. This languages usually
rely on a small interpreter which runs the scripts instead of compiling the code directly to ma-
chine code. As such, these languages can provide an abstraction from the hardware on which
they will run. Consequently, they can also offer more complex language constructions or fea-
tures with the intent of easing the rapid development of applications (like automatic memory
management, etc). Currently, their use covers a broad number of use cases from code execu-
tion in a web browser (JavaScript), automatizing of system administration tasks (UNIX shell),
game programming (Lua, UnrealScript), construction of graphical user interfaces (Python) and
many other situations. Due to the large number and quality of available libraries for building
languages and interpreters, this kind of proof-of-concept prototyping technique is generally
preferred as it eases the experimentation of new features without requiring too much program-
ming work.

In conclusion, there is currently the need of designing and studying mechanisms for auto-
matic verification of the correct use and combination of services, as a complementary correct-
ness certification to the currently widely used type systems. Hence, the adoption of behavioral
specifications at the programming language level can very positively impact the expressiveness
and robustness of emerging technological contexts such as the one of Web Services, which is the
main focus of this thesis, without demanding much more effort from the common programmer.

2



1. INTRODUCTION 1.2. Context and description

1.2 Context and description

The core of the problem is to decide before a program is run (i.e. statically) if it obeys the
declared behavior, more specifically if its behavioral types are correctly used in the application
code. Therefore, we intended not only to verify (even if in a somewhat conservative way) the
correct flow of calls but also assure the completeness of an object’s behavior1. This implies that
trapped errors (like zero divisions, etc) are beyond the scope of this problem and as such will
remain as possible sources of inconsistencies.

Without this kind of check there is always the possibility of some less obvious errors to be
present in the code. For instance, situations where opened files/sockets are not safely closed
after use, that could lead to loss of data or even unexpected sequences in the communication
between two peers causing abnormal behavior from either party.

This problem can be approached from several different points of view. In the context of
this work, we are interested in taking the Web Services approach by looking at the sequences
of requests not only from the method invocation perspective but also as a service invocation.
Therefore, the behavior declaration is also the protocol to which the service is expected to obey.
Thus, our problem is broad enough to include the verification of the correct combination of
different services as well as single objects.

As a result of this, we are required to assure the following situations:

• termination in the use of a protocol/behavior.

• reconcile the behavior of possibly different execution branches (if-else) in the most flexible
way.

• correction of the behavior during and after a loop (while/repeat).

• safely interchange of behavioral values both in a method return and also as an argument
to a method call, with specific implications to the termination of a protocol/behavior.

• check the consistency of a class body with the declared usage protocol, that includes the
possibility of recursive (internal) methods and the storing of behavioral values.

• expand normal subtyping to include behavior, while retaining the same kind of modu-
larity and flexibility as traditional type systems.

• correctness of behavior in the presence of exceptions.

Our type system is completely implemented into a fully functional prototype, with which
prototypes of type safe distributed applications based on Web Services may be rapidly con-
structed, without much knowledge of details of the underlying technology.

1By “conservative way”, we mean that our type checker may reject correct solutions, but will only accept correct
ones, being the set of correct ones still large enough to allow lots of expressiveness for the programmer. This
situation is expected, since in general a type system must be sound, but rarely complete.

3



1. INTRODUCTION 1.3. Related work

Some other additional situations are left as possible future work (namely the handling of
communication security, inheritance and concurrency) as our intention is to focus solely in the
most important sequential constructions of yak, the language we have developed in this work.

1.3 Related work

This work includes several lines of research, using ideas from slightly different topics. For
instance, the core problem of behavioral verification is to ensure a program correctly uses its
resources. As such, this description includes several points of view which are reflected in some-
what distinct research choices. Therefore, it ranges from more local approaches (that look at
specific aspects of programming languages) to more global views of the problem (that focus
the analysis in more abstract elements like services or software components). The scope cho-
sen for this thesis does not fit into a single topic and so ends up covering some situations in
different points of that range.

In [3] Nierstrasz suggest the use of automata for this kind of behavioral verification by
proposing a change in the underlying concept of type theory. He argues the abandoning of
the more traditional functional (lambda calculus) based typification and instead conceptual-
ize an object as a process rather than a function in order to handle issues of concurrency and
non-uniform service availability. Although there is no formally defined type system, he no
longer handles state changes indirectly and develops the idea of using automata to check the
correction of his regular types. On his type framework proposal, he also expands the concept
of a service as a contract which guarantees a specific behavior in regards to message exchanges
during the lifetime of a type. In other words, this contract defines a protocol with the relevant
information on how to correctly use the type in a way that it is possible to statically assure the
code’s conformance with that description. He then formalizes the principle of request substi-
tutability and what it means to satisfy the client’s expectations (request satisfiability). He also
includes subtyping for his regular types in a way to ensure consistence with the principle set
out by Wegner and Zdonik [5], where an instance of a subtype can always safely replace an
instance of the supertype in any context it was expected. This subtyping relation assures that
the subtype always understands the same requests as the supertype while also providing com-
patible answers. In general, this article served as an important starting point for a wide range
of research on the topic by defining a more concrete development ground.

Nonetheless, the need to impose additional checks was already reflected in several previous
papers but without the formal perspective suggested by Nierstrasz. For example, the Procol
language [6] uses a protocol (regular expression with variables and guards) that is translated
into an equivalent non deterministic finite automaton to decide on how an objects’ methods
can be legally used. Thus, at run-time, each object is place in a process supervised by a guard
that determines its readiness to receive requests effectively shielding access to methods in ac-
cordance with the defined protocol. Although this is not a static checker, it already includes the
concept of restricting the use of functions/methods to special contexts described by the proto-
col.
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1. INTRODUCTION 1.3. Related work

The general idea of behavioral verification split into several paths, even though they may
share some common issues. Usually, the assurance of behavioral correctness revolves around
the use of protocols (which are then translated into finite automata) to model the expected
behavior. However, its specification method may vary with the most common descriptions
being:

• directly through the listing of transitions [3, 7, 8, 9]

• through the use of syntax similar to regular expressions [10, 11, 12, 13, 6, 14]

There are still some other notations, such as graphical description of the connections in
the automaton. However, these are mostly useful to ease the understanding of examples and
theoretical concepts. Therefore, they usually do not appear (or at least directly) in program-
ming languages other than in special tools designed to help the construction or specification of
software architectures [15].

The choice for the notation to describe the protocol becomes rather irrelevant since it is
usually possible to convert between different formats, even though sometimes this is not a
trivial task. As such, the choice seems mostly related to clarity and ease of use in the particu-
lar language developed in the article. Furthermore, even when the format is similar, different
solutions make use of additional notation syntax to increase the expressiveness of that particu-
lar description which means, even though the notations may resemble, there are usually small
changes in the constructions of each paper’s proposal.

The real use of these protocols also varies depending on when the behavioral verification
actually takes place:

• run-time - where the breach of protocol raises an error [6]

• compile time - the code is statically checked to assure correctness in the use of the proto-
col [3, 8, 10, 11, 12]

• design time - using a more formal specification language (like Web Service Conversation
Language or Architecture Description Language) that only helps at the design stage [15]
or that is then fed to an automatic code generator who guarantees the correct combination
of certain operations on each of the participants in accordance to the described protocol [7,
14].

It is also frequent for the solutions to end up combining more than one method of verifica-
tion to provide additional safe guards that may arise from limitations in the implementation or
the checking methods themselves.

Finally there are different ways to choreograph the interacting entities, in other words, it is
possible to describe the interconnection of different services/components from two points of
view:

5



1. INTRODUCTION 1.3. Related work

• business protocols (global) [11, 16, 17] - sees the service as a whole, as a single global
entity which may encapsulate several distinct elements. Thus, the different elements
are seen as having a single common goal and as such the protocol aims to combine the
different stakeholders into the global picture. There is even a standard developed by the
W3C for a language to describe this kind of situation, the Web Services Choreography
Description Language.

• end-point (local) [12, 13, 10] - only seeks to ensure compliance with the protocols on each
individual types. Therefore, each entity declares its own personal protocol but leaves
enough freedom on the programmer side to combine the various actors while still ensur-
ing behavioral correctness.

In both cases the type system guarantees the correct use in accordance to the sequences
allowed by the protocol. The main difference between the two lays in the chosen point of
view to face the conceptual and more abstract service type that is handled by the typechecker.
Both have their share of advantages and weaknesses, for example: on one hand the local view
is more flexible allowing services that were developed independently to be easily combined
without changing their protocols; on the other hand a global interconnection improves the
documentation and clarifies how the interaction is actually carried on at dialogue layer. It is
also important to notice that these two modes are not completely disjoint as they can share
some results and it is even possible to map the global view into the local one [18].

Since our work is heavily inspired by [10], our type system is based on regular expression
like protocol descriptions that are used to statically check (at compile time) the code correctness.
We also use the more local approach by considering each object as a possible end-point of the
global behavioral system. Nonetheless, our proposal also includes many deviations from that
article, for instance, we also check for behavioral correctness at run-time (although this is done
only for debugging reasons and not actually required by the type system).

As a consequence of these many different variations of this problem, it is difficult to identify
related work without excluding some that, while not exactly in the same line as ours, include
relevant contributions to the more broader topic. Therefore, we first introduce more closely
related work and afterwards briefly mention some other relevant articles.

In [18] Carbone, Honda and Yoshida relate the two different paradigms for behavioral com-
munication description (global and local) using a formal calculi based on session types. They
manage to map these different perspectives while preserving the type structures by exploring a
theory of end-point projection. On a later paper [19], they create a type system that allows for
structured exceptions based on session types which guarantees the coordination on exception
handling among communicating peers. This kind of exception types have some resemblance to
ours since they also account for changes on the expected communication flow when an abnor-
mal situations is raised. However, session types take a more business protocol point of view
while our approach is more end-point related.

In following work Hu, Yoshida and Honda [20] present an implementation of a language

6
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and run-time for session-based distributed programming with additional features like session
delegation and subtyping. In spite of using Java as the host language, their approach requires
additional session specific syntax (besides the expected protocol notations). Also, their use
of exceptions does not seem to fit in the same category as our behavioral exceptions since it
looks more of a communication layer error handling than actual protocol level behavioral con-
trol. Nonetheless, they expand many interesting features related to session based programming
with minimal run-time overhead.

Ravara, Vallecillo and Vasconcelos [11] propose an extension to the description of soft-
ware component interfaces to include behavioral information through the use of session types.
Therefore, they describe how a pairwise complex interaction between components can be pro-
vided in a high level specification. They also include a decidable proof system for this proposal.

The use of session types has some interesting possibilities as they allow for reduced com-
plexity when checking communication compatibility, even though this will result in some loss
of flexibility as a consequence of their pairwise composition. In the view of the fact that each
element in the pair contains the inverse behavioral definition, the need to explicitly describe
this can become a burden for more (local) object uses and as such these types are better fit for
more global behavioral compositions.

Both Laneve and Padovani [17] as well as Castagna, et al. [16] follow a similar path but in
a more close relation to Web Services contracts. As such, they define a specification language
for services contracts and some advanced search mechanisms. They formalize the relation of
services compatibility and the correct replacement of services in accordance to the provided
protocols. The last paper develops an interesting use of filters as a basis for the sub-contract
relation, which allows for a greater degree of freedom in the querying for services compatible
with a specific protocol.

These two articles are very close to what we define for subtyping our behavioral types, even
though we model internal choices directly as explicit exceptions instead of considering them as
a more “peaceful” situation that may occur during the dialogue between the services. Nonethe-
less, this is mostly a choice in semantics linked to our own language proposal as internally they
look (and behave) very similarly.

Kobayashi and Igarashi [12] take a solely local approach to what they call the resource usage
analysis problem. They create a behavioral type system for a ML-like functional language and
therefore similarities with our work are not directly visible. Also, their protocol expressiveness
goes much beyond our own with some additional constructions. However, it is not quite clear
if their use is just intended to help the formal proof of correctness or if it is suppose to have
any practical role in a real world programming language. As most of the previously described
work, they make extensive use of the traces concept, a heap which stores the relevant behav-
ioral information up to a specific point in the code, instead of relying directly in automata. In
subsequent work [13], Iwama, et al. expand that language to include exception handling in a
behavioral sense similar to ours, since they accounts for changes in the correct use of a resource
upon the raising of an exception (i.e. a change of behavior after an error).

The Vault programming language [21] created by DeLine and Fähndrich allows the pro-
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grammer to define small resource management protocols that the compiler can statically en-
force. These protocols can specify the order or conditions required to access or use a resource.
Nonetheless their approach uses many and complicated annotations that cause a steep learn-
ing curve, even though this extension to the C language proved sufficiently powerful to handle
their test cases. In [9, 8] they expand the type system to include objects and implement it in
a modular static checker for languages that compile to the Common Language Runtime. This
Fugue system, uses the Common Intermediate Language code with special annotations to ver-
ify, at compile time, some behavioral restrictions without causing changes in the executable
code. These annotations are small rules attached to the methods of an object which group
together to create specific usage protocols. The language itself has some resemblance to the ex-
perimental extended static checker for Java (ESC/Java [2]), that finds common programming
errors in the code through a series of additional comment syntax that enables programmers to
formally specify design aspect in pre and post condition form. However, the type of annota-
tions available in Fugue go a step further by allowing the description of each node that forms
an object’s state machine that is a kind of verification that more closely resembles the one pro-
posed in this dissertation. However, it actually splits the allowed protocols in two sets: one for
controlling the access to resources (allocation and release of resources) and state machine proto-
cols. With the first protocol it guarantees (in all paths in every method) that an object will not be
used before its allocation or after it is released. With the second kind, the programmer can con-
strain the order of a method call to specific contexts allowed by the state machine. Additionally,
it can also verify special conditions in the arguments allowing it to expand the check to more
well defined domains (like SQL querys, etc). It also includes a set of rules for class subtyping
based on a simplified version of behavioral subtypes proposed by Liskov, et al [22]. However,
it does not include mechanisms for exception handling or concurrency. The relationship with
this dissertation has more to do with the use of state machines for protocol validation since we
do not use pre and post conditions in our type system. There are numerous variations of this
kind of behavioral check with some additional work from the same authors [23] in regards to
message passing.

In [24] Gay, Vasconcelos and Ravara expand a concept similar to the previous machine state
based behavioral checking but also include session types. Therefore, in their object oriented
language each method’s availability is restricted by the use of pre and post conditions and also
a session type which provides a global specification of its use. They also consider inheritance
and subtyping relation for these dynamic interfaces. Although we have some similarities with
this definition (as our types also implicitly change their interfaces based on the allowed behav-
ior), they impose several flexibility limitations many of which (like self calls and behavioral
completeness) we include in our type system.

Additionally, the following set of articles, although not directly related to our line of work
(in the sense their approach follows a slightly different problem) present interesting alternative
points of view to some of the objectives we intend to achieve.

Rumpe e Klein [15] describe an automaton model for the design phase of software engi-
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neering defining an operational semantics based on stream processing functions. The behavior
is model through the use of automata (represented in diagrams) to describe the overall system,
sub-systems and individual objects. With the created model, they discuss refinement rules
(including inheritance) and their application for the construction of software.

Lee and Xiong in [25] use an interface automaton to add a behavioral type system for the
Ptolemy II software framework. This framework supports concurrent component composi-
tion according to diverse models of computation. By extending the use of interface automata
beyond the static typechecker and into run-type checking, they enable a safer dynamic compo-
nent use.

Pavel, et al. [7] approach the problem from a viewpoint more related to software compo-
nents composition by using a formal description based on Behavioural Interface Description
Languages and explicit protocols. They develop the idea of using Symbolic Transition Systems
as a basis for such interface description language. As a result, the actual component code is
only accessible through a controller that protects the object from behavioral inconsistencies.
Their implementation in Java is based on the use of code generators for those interfaces that
will wrap the protocols and channels and effectively control the communication between the
different components, forcing it to obey the specification. The use of channels allows for com-
plete location abstraction as well as the notification of invalid requests.

In [14] Plasil et al, developed a technique to specify the behavior of a software compo-
nent through a protocol similar to a regular expression. Therefore, they extend a Component
Description Language (SOFA) with behavioral notations to describe precisely which order of
method calls are allowed. They give special attention to the refinement of the design process so
that such protocols appear in three levels of abstraction (interface, frame and architecture) and
thus allowing the compliance verification to occur at design time as well as during execution.

Some of the previously mentioned articles include prototypes in their language propos-
als [6] or extend existing ones with their contributions [8, 7, 7, 25, 2].

The solution developed in here uses parts of several different ideas, even if modifying some
concepts in accordance with our intended use. For example, to solve the problem of behavioral
assignments we used concepts similar to those present in linear types but in a behavioral con-
text. Even the proposed behavioral type system can also fit into a type and effect system if each
behavioral restriction is looked at as a side effect of an object’s method call.

Finally, the most closely related work was developed by Caires [10] since we follow a more
practical path to the approach described in that article. This work is also the natural evolution
of the type system in [26] (diploma thesis) by correcting and expanding many features as well
as presenting a formal definition for the type system.

Web Services enjoy from an extensive coverage filled with standards, proposals and lan-
guages or libraries that help in the use of this concept, offering features that reduce the overall
burden of creating or using them. However, the most common solutions are based on the use of
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Web Services Description Language [27] for service description combined with SOAP 2 as the
data exchange message protocol. Both are (currently) W3C recommendations that use a spe-
cial XML scheme as basis for their format. Consequently, their enormous flexibility leads to an
excessive complexity and verbosity which cause a steep learning curve for anyone using them
directly. Despite this drawback, these technologies enjoy from greater acceptance by many
companies (Google, Microsoft, etc) and therefore are present in the most common frameworks
(Java 1.6, .NET 3.0, etc). There are however alternative methodologies, for instance Amazon
Web Services also provides an alternative REST 3 interface. This style of architecture was intro-
duced by Roy Fielding and is defined by a set of general principles particularly in relation to
the simplicity, structure and organization of resources.

There is also a wide support for Web Services in a large number of scripting languages, usu-
ally using the combination of WSDL and SOAP. The Judo Language 4 is a full featured scripting
language that includes (besides traditional features like concurrency and other object oriented
elements) support for scripting communication to WSDL, JDBC and other services. It also in-
cludes threads as a primitive construction in the language itself with explicit synchronization
mechanisms through the use of the lock/unlock primitive. Others more widely used scripting
languages (like Python 5, Perl 6 and Ruby 7) rely on external libraries instead of providing syn-
tax specifically designed to be used for Web Services. Finally, there are languages more focused
on the client side of Web Services (like JavaScript and its extension E4X 8, JavaFX, etc).

Since our work also handles interactions between services, there is some connection with
the Web Services Choreography Description Language [28] developed by the W3C. WS-CDL
defines a specific XML format that serves as basis for describing the detailed sequence of mes-
sages two peers may use during their conversation as seen from a more global point of view
(the behavior visible from the outside). Since this is just a description language, it does not
include concrete mechanisms for behavioral verification and instead is intended to serve more
as a modelling tool that can later be fed to a code generator or type system that determines the
correctness of the code with the described interface. The choreography description contains
useful constructions to express parallel composition and exceptions as well as the usual stan-
dard constructions seen in normal regular expressions. This language follows the same design
principle as WSDL and as such ultimately suffers from the same verbosity condition even for
small examples of information exchange. Therefore, since we are more interested in explor-
ing the principles of behavior verification, we will use a different and more simplistic format
that better fits our needs instead of providing the extensive capabilities to express all possible
choreography situations of the WS-CDL specification.

2Simple Object Access Protocol
3Representational State Transfer
4http://www.judoscript.com/judo.html
5http://www.python.org/
6http://www.perl.org/
7http://www.ruby-lang.org/en/
8ECMAScript for XML
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In conclusion, in this dissertation we will address some of the issues concerning behavioral
types in an object oriented language (with a syntax similar to the Java programming language).
Our scripting language will have a static behavioral typechecker that will also be able to com-
bine and use Web Services in accordance to their behavioral contract. In the future, this feature
will not only prevent inconsistencies but also facilitate a more dynamic mix of services, as long
as they provide a compatible protocol. From a services programming point of view, this kind
of features are not that much explored in spite of the growing interest from the scientific and
industrial communities.

1.4 Proposed solution

One of the main goal of this work is to define techniques to statically check a program behav-
ior, using types to describe behaviours, and studying associated algorithmic techniques, based
on the manipulation of some kind of finite state automata, to implement them. Behaviors are
described by means of a regular expression like protocol that is then translated into a deter-
ministic finite automaton to be used by the typechecker. Thus, we consider a behavioral type
to be the composition (e.g, in a pair) of a normal type (something like a Java type) with the
behavioral information (the protocol that restricts the use of the type - mostly its methods - to
a set of specific contexts given by the automaton).

The proposed solution is based on the creation of a set of typing rules and algorithms that,
when applied to a specially annotated program, will reason about its behavioral correctness.
We also desire to minimize inevitable exclusions of programs that, even tough correct (at run-
time), do not fit into the created type system restrictions. Therefore, we intend to minimize as
much as possible the occurrence of false positives (in the identification of incorrect programs)
by focusing not only on the rules’ simplicity but also on their flexibility.

In order to do this kind of check we must consider the program’s normal and exceptional
flow as we intend to apply these conditions to all sequential constructions available in the
created prototype language.

To get the general idea of this work, consider the program example in Figure 1.1.

In it we define a simple class Travel that has three methods and a usage protocol. This
protocol defines the specific sequence of calls that anyone using the object must obey in order
to fulfill its behavior. Therefore, the entry point of the program (the main method of the Main

class) creates an instance of the Travel class and uses it correctly in terms of behavior since
the protocol reaches a valid termination state (stop) at the end of the main method’s scope.
There are many additional notations and more complex constructions (if-else branching, while
loop, etc) that will be presented in detail in the following chapters but this example should be
sufficient to get the general feel of the language and how our behavioral type concept works.

This system will be implemented in a prototype language (not only in terms of language
constructions but also in the sense that the available framework is not in the same league as Java
or other professional languages). It should, however, have a sufficiently large set of features so
that it is easy to experiment with the proposed type system.
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class Travel{
usage flight;hotel;order

flight(){}
hotel(){}
order(){}

}

class Main{
main(){

Travel t = new Travel(); //Travel#flight;hotel;order
t.flight(); //Travel#hotel;order
t.hotel(); //Travel#order
t.order(); //Travel#stop

}
}

Figure 1.1: A first example.

We also intend to provide some minimalistic code distribution facilities (based on syn-
chronous communication). These will be focused on easy deployment of services which be-
come available to be used through a web interface. In order to simplify their launch we will let
the most important properties to be set as command line arguments and handle most of the dis-
tribution in a transparently way to the programmer. Therefore, we will have special syntax to
declare remote types and variables which will only require the very essential information (the
resource location) to reach a workable state. The prototype hides all remote requests so that
there is very little difference on the source code regardless of the real location of an object. All
objects are automatically exposed to the outside world when the program is launched and the
server starts listening to requests on the given port number after the initialization. Although
there are some security concerns that will not be addressed, the main idea is to ease the use
of this communication layer with minimal programmer intervention which should reduce the
learning curve and let him focus his attention on the more relevant code.

The decision to rely on the HTTP protocol for all inter-object communication was based on
its extensive use on the Web Services community, the possibility of invoking method directly
from the web browser and also its abilities to easily circumvent the most common communica-
tion obstacles (like firewalls). We also felt it was important to provide a simple XML base type
as this kind of information structure is widely used on the Internet and it should be helpful for
communicating with a browser.

The creation of these rules and algorithms implies some guarantees related to their temporal
and spatial complexity with special attention to their use in the prototype language. However,
given the additional set of restrictions to obey as well as since this is an initial experimental
version of the implementation, we do not expect to obtain complexity results at the same level
as the normal type systems. As such, our approach to the implementation will focus mostly
on design decision for each isolated statement as the overall complexity of the type system can
potentially become exponential for certain programs.

The validation of the type verification rules will forcefully be by means of strict formal-
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ization. In terms of the prototype, its construction will be checked based on a set of test files
which will assure the coherence of the main practical results with the expected created restric-
tions. Finally, we also include a simple run-time obedience mechanism as a kind of “safety net”
that will flag any error when the use of an object breaks the behavior described by its protocol
(although it does not check the fulfillment of the protocol, only that the sequences of calls are
valid).

1.5 Contributions

In this section, we summarize this thesis work, highlighting the main contributions. The main
goal was to bridge the gap between the theoretical study of behavioral types in general, and
their concrete application in a scripting language, actually usable in practice to construct dis-
tributed systems based on Web Services technology. This program revealed to include many
challenging aspects, ranging from language design, definition of a type system, study of tech-
niques to formalize it, and the definition of practical type checking algorithms, based on stan-
dard regular language theory, but overcoming many challenges related to how to map complex
mechanisms such as parameter passing and exceptions. The main contributions are then the
design and implementation of an expressive type system for Web Services, based on behavioral
types, and the design and implementation of a scripting language for Web Services based on it.

1.5.1 Design and formalization of a behavioral type system

The main goal of this work is the definition of a behavioral type system including a formal-
ization of the typing rules. We intend in future work to develop a full correctness proof of the
typing system, in this work we preferred to validate the approach experimentally, concentrat-
ing on the algorithmic aspects of the typechecker, and of its integration in a scripting language,
adequate to construct distributed applications.

Our approach is only meant to handle purely sequential code (no concurrency constructs).
However, we deal with exception handling mechanisms, which have not been much explored
in the literature; we develop here new techniques to flexible deal with exceptional behavior.
Analysing the behavioral flow of a sequential program is split in checking the following pro-
gramming language constructions:

• method availability, a behavioral type must limit the use of some methods (here called
behavioral methods) to the specific context given by the type’s protocol;

• behavioral termination, the protocol has to be completely satisfied in the sense that an
object cannot fall out of scope with some incomplete behavior remaining;

• if-else, branching implies that each of those separate paths must be correct and the merg-
ing of behaviors (afterwards) must not cause inconsistencies;

• while, loops require the validation of a possible repetition in the code;
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• exceptions, this includes both throwing and catching of exceptions which must account
for the jump in the program flow from the raise point to the catch branch while controlling
the behavioral correctness of all accessible variables; In particular, we propose a technique
to compile the alternative behavioral flow patterns induced by exceptions into the same
underlying automata, thus providing an uniform treatment of exceptions in the context
of the other constructions.

• classes, the class body must respect its behavioral protocol internally by correctly using
any behavioral field and externally by being independent of any possible external side
effects that might cause inconsistencies. It must also account for any internal call that
may occur on a method body, which includes the possibility of recursion;

• variable control, by using a kind of behavioral linearity (an object’s behavioral view can-
not be owned by more than one type). Thus, we control aliasing and also allow for storing
and retrieving behavioral types;

• call control, an object’s behavior can be completely passed to a method (which results
in the lost of ownership) or instead only borrowed for the call scope (and therefore, the
initial variable remains as that object owner);

• subtyping, code abstraction and modularity is an important feature of any programming
language and therefore it is important to understand when a behavioral type can safely
replace another.

Besides checking usual properties of object-oriented programs, such as method availabil-
ity, our type system ensures that systems will comply with the declared protocols, even in
a distributed setting, based on published behavioral specifications enriching what is usually
available in WSDL declarations.

Although the type system was formalized using a standard type inference system, which
declaratively specifies valid typing judgments, we also designed algorithmic syntax directed
techniques, based on manipulation of finite automata, intended to provide a reasonably effi-
cient implementation of our system.

1.5.2 Design of the programming language yak

We designed a prototypical language (named yak) with a syntax similar to the Java program-
ming language which will serve as the base for the prototype. This language is not intended
to provide a fully featured development framework, but it already features a basic set of tools
needed to experiment and build appropriate examples to demonstrate the main features of our
type system.

1.5.3 Implementation of a proof-of-concept prototype

An interpreter, typechecker, and run-time support system for the yak language was imple-
mented, and is available for download at [29].
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This prototype also includes a small server to launch the created services scripts (using
Java Servlets). The interface description uses a specific XML format and the communication
protocol will rely on HTTP. We use the REST methodology for the resource organization (in
terms of URL structure). The validation of the prototype is based on a set of test files that check
the conformance of the main aspects of the implementation in relation to the expected behavior.
The examples are also available in the yak website [29].

1.6 Document overview

The rest of this document is structured as follow: this introduction is proceeded by a chapter
with the formal presentation of the yak language and type system (its formal specification,
typing judgments, etc.); next, a few examples highlight some of the language’s possibilities in
regards to the flexibility of the behavioral description; the third chapter describes the imple-
mentation of the prototype, its most important algorithms and how they guarantee behavioral
correctness. The last chapter presents the conclusion and some possible future work.

There is also an appendix at the end that includes the full listing of the examples as well as
some other minor language details and features.
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2
The Yak Language and Type System

In this chapter we introduce the main aspects of the yak language and type system. In the first
section the general syntax and an informal semantics is presented, followed by a section with
a detailed description of the type system. Finally, this chapter ends with short remarks about
the general idea of the solution.

As said in the introduction, this language is similar to a very simplified version of the Java
language and as such its syntax and semantics should have a very familiar layout and execution
model. Therefore, their presentation will be kept intentionally short. Also note that this is
the simplified syntax that removes some redundant constructions (syntax sugar) in order to
simplify the formalization of the type system. However, those additional constructions can be
easily checked by simply combining the set of rules presented here.

The type system description uses a progressive approach in the sense that each rule is
slowly introduced along side all (newly) needed operators. On each new definition we also
give some examples to better express the general intention.

The main principle of this system is to consider a behavioral type as a pair of a Java-like type
with a behavior described in a protocol. This behavior dynamically modifies the type to control
the sequence of allowed method calls so that all possible run-time situations will produce valid
call traces (in accordance to its regular-expression-like usage protocol).

2.1 The language: syntax and informal semantics

In this scripting language a program unit is simply a set of classes which entry point is the
main() method of the Main class (if it is defined).

As usual, each class contains a group of fields and methods (see figure 2.11). Any field must

1Note that any “...” means repetition is allowed.
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have an unique name and method overload is type agnostic (no more than one method with
the same name and number of arguments, even if their types are different). The constructor
is simply a method without a return type and the same name as the class. Additionally, each
method must always declare all exceptions it might throw.

As expected, the body of a method may contain any expression which will be evaluated
when the method is called. The usual set of construction is allowed (figure 2.2): E;E is the
sequential composition in the sense that the left expression is evaluated before the right one;
variable declaration, which appends a new variable with the given name to the current run
environment (it is always initiated with the default value of null); the assignment expression
changes the content of a variable to the result of the evaluated expression; class instantiation
(object creation) can only be made with the new expression; return causes the current method
to end its evaluation and return the given expression as the result; throw throws an exception
with the result of the evaluation of its expression. The block expression is used to create a
new sub environment that is automatically destroyed after use. Finally, three control flow
expressions: an if else which executes the if body or the else one if the given condition
evaluates to true or false, respectively; a while loop that cycles the body until the condition
turns false (the repeat expression is similar to the while except that the condition is always
true); and a try catch which catches any exception thrown by the evaluation of the try

body. There is also the usual method call construction which invokes a method with the given
name and argument number in the target object. Method arguments may also add an owned

annotation (described later) which allows (in the type system) for special behavior for that
variable’s content.

Types (figure 2.3) in this language are just a pair of the name of a class (or basic type)
followed by the allowed usage pattern. This usage protocol is either the described in the class
declaration or a more restrictive version of it. The usage protocol is a regular expression like
construction with the normal choice, sequence and repeat syntax. Then there is also some more
specific elements like stop for the empty behavior, simple recursion and behavioral exceptions
(exceptions that cause a change in the object’s allowed protocol). Identifiers in the protocol refer
to a method’s name (regardless of the number of arguments) except on behavioral exceptions
where N is meant to be the type of the thrown exception of the method to which it is attached.
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U ::= //program unit
U U //units

| C //class definition

C ::= //classes
class ID {

usage P //usage pattern

( T ID; )* //fields

( T ID( T ID , ... ) throws N , ... { E } )* //methods
}

Figure 2.1: Abstract syntax for program unit and classes.

E ::= //expressions
INTEGER | DOUBLE | STRING | XML | true | false | ID

| this | null
| E;E | ( E ) |
| T ID //variable declaration
| ID = E //assign
| new ID( E , ... ) //class instantiation
| return E
| throw E
| { E } //block
| if( E ) E else E
| while( E ) E
| repeat E //checkable "while(true) E"
| try E catch( N ID ) E
//calls
| this.ID( E , ... )
| ID.ID( E , ... )

Figure 2.2: Expressions.

T ::= void | owned N#P | N#P

N ::= //names
integer | double | string

| boolean | xml | object | ID

P ::= //protocol
(P) | ID

| P* //0 or more
| P+P //option
| P;P //sequence
| stop //empty
| &ID ( P ) //recursion
| ID[ N: P | ... ] //behavioral exception (changes behavior after throw)

Figure 2.3: Types and protocols.
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class Bottle{
usage open;(drink[Empty: recycle])*;close

integer remaining;

void Bottle(){
remaining = 250;

}

void open(){ }

integer drink(integer amount) throws Empty{
remaining = remaining.subtract(amount);
if( remaining.isLessOrEqualsThan(0) )

throw new Empty();
return remaining;

}

void close(){ }

void recycle(){ }
void recycle(string station){ }

}

Figure 2.4: Bottle example.

The example on figure 2.4 is intended to model the use of a small bottle. In order to drink
its content it must be opened first and forcefully closed after use. Drinking over the available
limit causes an exception to be thrown that forces the requirement of calling the recycle method.
This example also shows that there are no special operators to the basic types, all operations
(subtraction, etc.) are only available through normal method calls. All labels in the usage
protocol refer to methods independent of their number of arguments (the use of recycle in
the protocol refers both to recycle/0 and recycle/1). The following example (figure 2.5)
shows a valid use of the previously defined Bottle class.
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class Main{
void main(){

Bottle#open;(drink[Empty: recycle])*;close bottle = new Bottle();
bottle.open();
try{

integer drink = 2;
while(drink){

bottle.drink(50);
drink = drink.subtract(1);

}
}
catch(Empty error){

bottle.recycle();
return;

}
bottle.close();

}
}

Figure 2.5: Use of the Bottle class.

2.2 SubTyping

Our definition of subtyping for these behavioral types obeys the substitutability principle.
Therefore, a behavioral type may be safely replaced by any of its subtypes without causing
any errors in the program.

Note, however, that we do not have any syntax or a concrete implementation of the notion
of inheritance. This is why we use a type comparison based on the internal structure of a class
(method’s signatures and usage protocol) so that we still can have some additional flexibility.

(stopped top)

∆ ` �
∆ ` object#stop

(stopped sub top)

∆ ` N <: object P
stop
−→ stop

∆ ` N#P <: object#stop

We do not have an abstract behavioral top type as there is no way to create an object that can
safely replace any possible (non stopped) protocol. However, we do have a stopped top type
as a normal object without behavior. Thus, as these two rules specify, any type is a subtype of
this top if its internal class type is a valid subtype of object (always true, by definition) and if its
behavior is stoppable (that is, if it can be safely stopped - even if it still has some other optional
behavior left).

(ownership)

∆ ` A <: B
∆ ` A◦ <: B◦

∆ ` A <: B
∆ ` A• <: B•
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The ownership flag is a disjoint relation: a type is either owned or not. Thus this condition
can only be met if both have the exact same ownership value.

(reflection)
A ∈ ∆

∆ ` A <: A

(transitivity)
∆ ` A <: B ∆ ` B <: C

∆ ` A <: C

(subsumption)
∆ ` a : A ∆ ` A <: B

∆ ` a : B

The defined subtyping rules obey the expected relations of subsumption (explained above),
transitivity (a subtype of a another type is also a subtype of all the other type’s supertypes) and
reflection (a type is both a subtype and supertype of itself).

(method subtype)

∆ ` A′i <: Ai ∆ ` R <: R′ {N0, ..., Nn} ⊆ {N ′0, ..., N ′m}
∆ ` m(A0, ..., An)[N0, ..., Nn]R <: m(A′0, ..., A′n)[N ′0, ..., N ′m]R′

Method subtyping also follows the traditional conditions imposed by usual object-oriented
type systems. Consequently, a sub-method must not throw more exceptions than its super-
method, the return type of the sub-method must be a subtype of the super-method’s return
and the opposite relation for each of the method’s arguments, as usual.

Before introducing the conditions for more specific class typification, it is important to re-
member that all behavioral methods will only be “visible” if the current usage protocol contains
them. Therefore, it is not needed to require their existence in a subtype if the protocol does not
contain that method. In other words, a behavioral method is only needed to be in the sub-
type if its call is allowed to occur within the protocol since otherwise it will always be hidden
and never used (thus never causing inconsistent behavior). This is a direct consequence of the
restrictions imposed by the protocol on a class’ available methods.

All behavioral compatibility is done through means of simulating protocols. This operation
is very flexible and allows for additional conditions in the amount and allowed number of
choices and exceptions. Its description is in section 2.2.1 and therefore all references to it in
here will be more superficial. In a nutshell, this operation is an expanded transition system that
allows for a protocol to be forwarded not only by a single label, but also by another complete
protocol. The resulting protocol is either stop when there is no behavior left, or contains the
remaining behavior.
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(class subtyping)

A[PA; ;MA] ∈ ∆ B[PB; ;MB] ∈ ∆

∀mB ∈MB ⇒ ∃mA ∈MA : mA <: mB

∀b ∈ PB ⇒ (b ∈ PA) ∨ (b /∈ UB ∧ b /∈ UA ∧ b /∈MA)

∀b /∈ PB ⇒ b /∈ PA

UA
UB−→ stop

∆ ` A#UA <: B#UB

Normal subtyping requires the subtype to completely fulfill the supertype’s behavior. In
our case, this is translated into the requirement that the simulation operation at the subtype’s
protocol must be able to reach a stopped position after simulated with the supertype’s proto-
col. This means any complete path in the supertype will also complete the behavior on the
subtype and therefore (together with normal subtyping) the expectations of the supertype are
thus completely fulfilled by the subtype.

For each method in the supertype there must be a compatible one in the subtype. How-
ever, for the reasons stated above, it may miss those methods that are both behavioral and not
included in the future behavior protocol since they cannot legally be used. Thus, for all be-
havioral methods in the supertype (those belonging to the PB) each one either belongs to the
protocol of A (and is also behavioral) or, if it is missing from A’s methods list then it cannot
appear in the current usage of either B or A (it cannot belong to UA nor UB).

(class partial subtyping)

A[PA; ;MA] ∈ ∆ B[PB; ;MB] ∈ ∆

∀mB ∈MB ⇒ ∃mA ∈MA : mA <: mB

∀b ∈ PB ⇒ (b ∈ PA) ∨ (b /∈ UB ∧ b /∈ UA ∧ b /∈MA)

∀b /∈ PB ⇒ b /∈ PA

UB
?−→ Q

UA−→ V
?−→ stop

∆ ` A#UA ≺: B#UB

Partial types are exactly like normal subtypes with the main difference residing in the pro-
tocol condition. In this case, it allows for a simply include condition in the sense that the partial
subtype only has to satisfy a specially cut section of the partial supertype. Partial types are only
meant to express a valid behavior contained inside some other, larger, type. This is particularly
useful to account for partial uses of a type’s behavior in variables, arguments of methods, etc.
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class Q{ class W{
usage a;b*+d*;c usage a;b;c

a(){ ... } a(){ ... }
b(){ ... } b(){ ... }
c(){ ... } c(){ ... }
d(){ ... } }

}

Figure 2.6: Q and W examples. Both the defined classes have their method’s bodies omitted as
they are irrelevant to this section.

Considering the two examples in figure 2.6, with the previously defined sub-typing and
partial-typing rules we can now conclude that the following relations are valid:

Q <: W Q <: Q#a; b; c W#a; b; c <: Q#a; b; c W ≺: Q W#b ≺: Q

and these invalid:
W <: Q Q#a; b; c <: Q Q ≺: W#b

Note that:

Q = Q#a; b ∗+d∗; c

W = W#a; b; c

Considering the more real world example in chapter 3. From it, we can see that:

File#close ≺: File#openRead; read∗; close

Block#(cut+ bend+ weld+ paint)∗ <: Block#bend∗;weld∗; paint?

The second example (section 3.3) shows how partial subtypes help to generalise a container
by only requiring to know a small path of the complete protocol. Therefore, all *Order classes
are partial subtypes of Order that can then be stored inside a client’s wishlist after filling the
specific behavioral requirements. As such, the following relations are true (note that since the
protocols of the *Order classes are quite large, they are omitted):

Order#review∗; buy? ≺: TravelOrder

Order#review∗; buy? ≺: FlightOrder
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2.2.1 Simulation

The purpose of this operation is to forward the behavior by a well defined sub-behavior. It can
be just a normal transition (if the sub-behavior is a simple label) or it may be a more complex
operation when the forwarding protocol contains more than just the basic constructions.

It follows the simple template: Protocol Forward−→ Remaining where Protocol is the simulat-
ing protocol and Forward is the simulated one. Remaining is the result of the operation with
those two arguments that is, the behavior left after Protocol has been used as if it were just
Forward.

This simulation operations is the basis of most of the substitution conditions. Therefore, this
operation can also be seen as having to decide when a temporarily substitution of behavior is
allowed. As such this leads to the major design condition for these rules: the sub-behavior (the
forward protocol) can not surprise the simulation behavior and thus it has to be coherent with
him in terms of allowed freedoms of choice.

This brings some consequences to the choice and exception rules that should be mostly
intuitive and are easily understood with appropriate examples.

a+ b+ c
a+b−→ stop

The protocol of the forwarding behavior does not need to account for all possible choices in
the target behavior, this can be seen as those extra choices being ignored and thus not causing
any unpredictable error. However, the opposite of this situation is not valid since additional
choices in the simulated expression can not be matched by the forwarded protocol. As in the
example, this means the protocol a+ b can be used as a replacement of a+ b+ c by just ignoring
the c branch. Obviously, the opposite is invalid.

a[N : b]
a[N :b|M :c]−→ stop

The case with exceptions is the opposite situation. The forwarding protocol can declare
a larger number of thrown errors (in this case a[N : b|M : c]) than the simulated protocol
(a[N : b]) and still be valid since all those extra exceptions can be safely ignored (they will
never be thrown by the smaller protocol, any catching done will actually be “unnecessary”
from his point of view but will not cause unexpected errors).

A very similar approach (but from a more Web Services contract related perspective) can be
found in [17, 16] as previously mentioned in the related work section.
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P
P−→ stop

(1)
P ∗

stop
−→ stop

(2)
P ∗

P ∗
−→ P ∗

(3)

P
M−→ N

P ∗
M−→ N

(4)
P ∗;P ∗ M−→ N

P ∗
M−→ N

(5)

P
Q−→ N

P +O
Q−→ N

(6)
O

Q−→ N

P +O
Q−→ N

(7)
P

M−→ N

P ;Q M−→ N ;Q
(8)

P
M−→ O O

T−→ N

P
M ;T−→ N

(9)
P

M−→ V P
N−→W

P
M+N−→ V ∩W

(10)

T{b/&b(T )} M−→ U

&b(T ) M−→ U
(11)

T
M−→ stop

&b(T )
&b(M)−→ stop

(12)

Ei
Ci−→ Vi id;Q

id;N−→W

id[n0 : E0|...|nn : En];Q
id[n0:C0|...|nn:Cn|...];N−→ V0 ∩ ... ∩ Vn ∩W

(13)

1 This rule is the normal transition in a regular expression but with a more generic approach
in the sense that it not only allows for a simple labeled transition but also any transition
with the same behavior as the forwarded expression.

2, 3 As expected, the repetition construction can be removed without the need of any specific
label (and thus not needing to appear in the forwarding behavior). Additionally, it can
also consume itself as the simulated behavior while keeping the same behavior after-
wards. This relates to the unlimited repetition nature of the P∗ construction.

4, 5 The simulating behavior may be forwarded inside the star operator or may also require
the unfolding of this repetition in order to build the appropriate matching expression.

6, 7 A choice in the forwarded protocol means the simulated behavior needs only to be valid
in one of those branches.

8 This rule allows for the simulating protocol to be a prefix of the simulated expression. By
matching the head of the expression (partially or completely if N becomes stop) the be-
havior can then continue with the normal protocol.

9 A sequence construction in the forwarding behavior requires its simulation to be split in two,
one for the left and the other for the right side of the sequence. The result on the first side
must be served as the starting point for the right side simulation.
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10 A choice construction (in the forwarding behavior) is more complex to simulate since it
requires each branch to be independently processed with the forwarded behavior. The
calculation of the intersection for each simulation branch will result in an expression that
is valid for all of those choices while also hiding the (now internal) decision from which it
was generated. This intersection operation is meant to be the normal regular expression
intersection and as such will not be described in this text (but can be found in [4]).

11 Recursion unfolding by replacing all labels with the recursive expression.

12 The recursive construction is simulated correctly if its body is completely matched by the
body of the simulating expression.

13 The exception simulation rule has some similarities with the choice construction but with
the choice being made by the possibly internal decision caused by a raised exception. In
this case the intersection is not only with the result of each exception branch but also with
the normal path (without any raised error).

Note: to use some of these rules it might be needed to do some stop stuffing, this is allowed

and intentional (example, for matching the expression a[I : b]
a[I:b|O:p]−→ stop with any rule).

It is also allowed for the reversed situation (stop unstuffing) by simply removing this
identifier on the head of an expression.

Next we will present some practical examples of the use of these rules. In this section we
use the previously introduced formal rules to reach the goal. In a later section, these same
examples will be used to show the general idea of the implemented simulation algorithm.

Example 1
(1)

a
a−→ stop

(4)
a∗

a−→ stop
(8)

a∗; a∗ a−→ stop; a∗
(−)

a∗; a∗ a−→ a∗

(5)
a∗

a−→ a∗
(3)

a∗
a∗−→ a∗

(9)
a∗

a;a∗−→ a∗

Example 2

(previous example with rule 1 instead of 3)
a∗

a;a∗−→ stop
(6)

a∗ + b∗
a;a∗−→ stop

(1)
c

c−→ stop
(9)

a∗ + b∗; c
a;a∗;c−→ stop
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Example 3

(1)
a

a−→ stop
(8)

a; c; c∗ a−→ stop; c; c∗
(−)

a; c; c∗ a−→ c; c∗
(6)

(a; c; c∗) + (b∗; c) a−→ c; c∗

(1)
b

b−→ stop
(4)

b∗
b−→ stop

(8)
b∗; c b−→ stop; c

(−)
b∗; c b−→ c

(7)
(a; c; c∗) + (b∗; c) b−→ c

(10)
(a; c; c∗) + (b∗; c) a+b−→ c

(1)
c

c−→ stop
(9)

(a; c; c∗) + (b∗; c)
(a+b);c−→ stop

Example 4

(1)
b

b−→ stop

(1)
a

a−→ stop
(−)

a; stop a−→ stop
(13)

a[I : b]; stop
a[I:b|O:p]−→ stop

(−)
a[I : b]

a[I:b|O:p]−→ stop

Example 5
(1)

a
a−→ stop

(8)
a; b∗ a−→ stop; b∗

(−)
a; b∗ a−→ b∗

(1)
a

a−→ stop
(8)

a; b a−→ stop; b
(−)

a; b a−→ b
(13)

a[I : a; b∗]; b
a[I:a]−→ b
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2.3 Type System

The main purpose of any type system is to check and assure the validity of a set of properties in
a program. In order to do this kind of reasoning it relies on well defined typing rules. Therefore,
each construction on the program syntax has one or more rules that impose specific constraints
to be checked or applied to that particular block of code. Once the type system covers all
possible syntax constructions it is then possible to prove the soundness of the whole system in
regards to the properties it is intended to vouch.

Each rule is meant to be the building block that forms the complete type system. However,
even these rules are also themselves built using additional building blocks based on formal
logic to described the explicit conditions they require. Besides normal logic, it is also frequent
to use special types of judgments which have a more friendly syntax (making the description
easier to read and write).

Before introducing the format of our main typing judgment it is important to first take
note of the general idea of this type system. As described above, the main goal is to assure
the correctness of the behavior on all used objects. This behavior is described by a protocol
(that has a syntax similar to a regular expression) which is then attached to a kind of type
normally used in object oriented languages. As the program flows, the allowed behavior of the
objects is changed by each language construction in some specific ways. Therefore, our basic
typing judgment needs to account for these side-effects by having have a special position for
the resulting modifications.

(typing judgment)

∆before ` E : Tresult 7→ ∆after

Judgment notation All judgments follow this template on which the type check of an expres-
sion E in the environment ∆before results in a type Tresult and causes side-effects on the initial
environment turning it into environment ∆after.

Please mind that throughout this presentations we try to keep the overall notations simple
by avoiding introducing new symbols and instead rely on indexes to differentiate among pos-
sibly ambiguous elements/constructions. For example, all environments share the letter ∆ but
an appropriate label is used in its index should there be more than one (different) instance of it
in the same rule. Also note the names used as expressions (E), types (T ), etc. are intentionally
referring to the respective grammar construction. Each additional symbol or operation will be
introduced and described as its role becomes relevant for detailing the intricate concepts of a
rule.

The main target of this type system are classes. They allow for the creation of new behav-
ioral types and their methods are the only section in the grammar that may contain expres-
sions. Therefore, a class is a type that includes a set of variables (fields, always private) and
methods (always public). It also defines a usage protocol that restricts the availability of some
of the methods to specific traces given by that behavior protocol. Since the use of any field is
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forcefully split among a class’ methods, it is necessary to verify their behavioral correctness by
checking the internal consistency of the class. For this the type system must not only verify
the behavior in normal expressions, but also their behavioral context given by the possible call
scenario allowed for that method as expressed by the class’ usage protocol.

2.3.1 Basic constructions

We will now describe two constructions (sequence and block) since their simplicity should help
to get the general idea of the type system without having to understand many of its details.
From the grammar constructions it should be clear that these two elements will always be
checked from within a method’s body (as that is the only place they can appear). Therefore,
their typing environment will already be fully built and therefore this rule only needs to focus
on the effects produced to it.

(sequence)

∆ ` E0 : T0 7→ ∆′ stopped(T0) ∆′ ` E1 : T1 7→ ∆′′

∆ ` E0;E1 : T1 7→ ∆′′

sequence This expression starts by checking the left side and proceeds afterwards with the
checking of the right one. Since this is a sequential construction any side-effects produced by
the left side must be carried on as the starting point for the checking environment of the E1

expression. However, the result of checking E0 is not stored anywhere and will be lost after its
evaluation. This situation justifies the additional requirement of the resulting type to be in a
stopped state (definition 1) so it can be safely discarded without the danger of losing references
to objects with incomplete behaviors. Also note that the environment after this construction
is checked is the one resulting from all the right side validation, therefore all the changes are
chained in a sequential order.

(block)

∆ ]∆block ` E : T 7→ ∆′ ]∆′block stopped(∆′block)
∆ ` {E} : T 7→ ∆′

block A block expression allows for the creation of a new sub environment with a well de-
fined scope. Since its life is limited to the curly brackets, any variable declared inside it will
automatically become unreachable after the block ends. From a behavioral point of view these
soon to be destroyed objects must all be in a stopped condition in order to avoid some left over
protocol. Since we do not allow for duplicated names in the environment the disjoint union
(definition 2) is used to split the environment resulting from the checking of E into the one
that will be lost (∆′block) and the remaining one (∆′). Finally, note that any expression inside
the block is checked with the new environment in place but only the side-effects in the initial
environment are considered for the final resulting one (∆′).
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Environment notation The environment (∆) is a special structure that holds all types (de-
clared classes) and variables that are reachable in the current scope. It also holds a checking
context that will only be described later. It is not allowed to have duplicated names in the
environment and therefore each name uniquely identifies a variable or type.

When it is needed to explicitly use the empty environment the symbol ∅ is used.

Variable notation Each environment variable has a static type related to the typing annota-
tion in the source code and a dynamic type that stores the changing state during the typecheck.
The static type expresses what the variable is allowed to save (write) and the dynamic part
contains the current state of its content (read). Since the dynamic type may change on each call
the information must be stored separately. We chose to allow for a variable to refine an objects’
allowed behavior by restricting the protocol into something more specific. This means that on
an assignment the allowed behavior can be shortened into some more particular case. This will
only be shown on some rules further down but it is necessary to understand the why of the
variable separation into static and dynamic parts.

This information obeys the syntax x : Tstatic× Tdynamic for a variable labeled x stored in the
environment.

Example 6 (Environment notations) Examples of environment notations containing only variables
(no other previously declared types or context shown).

∅: empty environment.

(x : Tstatic × Tdynamic), (y : Tstatic × Tdynamic): environment with variables labeled x and y.

Definition 1 (Stopped) Any type or environment is stopped if and only if it does not have any behavior
left in it. A void type is also accepted as stopped. The environment version of this condition is just an
iteration over all variable it contains, note that the stopped condition is only applied to the dynamic type
of a variable since it is the one that stores the changing behavior.

stopped(T ) = stopped(N#P )⇔N#stop

stopped(void)⇔true

stopped(∆)⇔∀(x : T ×D) ∈ ∆ : stopped(D)

Definition 2 (Environment split / concatenation ) This operations splits and environment (∆) into
a set of smaller ones (∆x) which are disjoint among themselves. The complementary operation takes a
small set of disjoint environments (∆x) and merges them into one (∆).

∆ = ∆0 ] ... ]∆n (disjoint split)

∆0 ] ... ]∆n = ∆ (disjoint concatenation)
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This operation can be interpreted as either a disjoint split of the environment into two (or more) different
ones or a concatenation of two (or more) disjoint environments depending on the flow of the operation.

Definition 3 ( Environment contains ) An environment (∆) contains an element if that element is
stored inside it.

T ∈ ∆: a type is in an environment if it contains that type’s declaration.

x ∈ ∆: a label is in an environment if it contains a variable with that name.

An environment may contain several elements inside it. Therefore, this operation accepts different kinds
of arguments that all search over an environment.

2.3.2 Control flow

We will now present the most relevant control flow expressions that are responsible to operate
the normal flow of a program (as opposed to the exceptional flow on section 2.3.5). Thus, it is
needed to consider the expected order the evaluation may use so that all possible behavioral
situations can be handled by these rules.

(if else)

∆ ` Econd : boolean 7→ ∆cond ∆cond ` Eif : T 7→ ∆if ∆cond ` Eelse : T 7→ ∆else

∆ ` if(Econd) Eif else Eelse : T 7→ ∆if u∆else

if-else An if else expression is a fork in the code flow that has a possible merge point at
its end. This split path starts after the condition (which will select the flow at run-time) and
therefore both branches use its resulting environment (∆cond) as their initial state. Since this
construction is also meant to be used as a conditional expression, the resulting type of both
branches must be the same. However, the same restrictiveness for the environment would
be rather strong and intrusive. Therefore, this rule just requires an environment that can be
safely used regardless of the selected branch. This intersection operation (definition 4) merges
the two environments from those different flows. This means that after this expression, the
environment contains the shared behavior of both branches and the check can proceed inde-
pendently of the chosen branch. (note that a return/throw in any of the branches will result
in an empty environment which is a predictable argument for the intersection)

In the environment intersection operation (definition 4) we use the concept of behavioral
subtype (subtype <: supertype) that was described in section 2.2. As a quick remainder, our
behavioral subtype borrows an initial condition from normal object oriented type systems in
regards to method and argument compatibility. However, this condition is then extended to
add the behavior of types into the equation. It also remains faithful to the concept of allowing
any code using a specific type to be safely replaceable by any of its subtypes without causing
any unexpected errors. Thus, a subtype must always have a compatible behavior with the
super-type (it has to allow itself to be used with the supertype protocol) even if it also allows
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for some additional freedom of use. A very simple example is T#a + b <: T#a, note that the
reversed relation is invalid.

Definition 4 (Environment intersection) The intersection of environment ∆A and ∆B contains
each variable (x) contained in both of those environments. However, while the variable keeps the same
static type (T ), its dynamic type (D) must be a valid subtype of the variable’s dynamic type on both
environment ∆A (DA) and ∆B (DB).

∅ u ∅ =∅

∆ u ∅ =∆ ∅ u∆ = ∆

∆A u∆B ={(x : T ×D) : (x : T ×DA) ∈ ∆A ∧ (x : T ×DB) ∈ ∆B ∧ (D <: DA) ∧ (D <: DB)}

This operation gives the common “future” shared by both environments. This implies that for each
common variable its dynamic type must either be in an accept state or that there exists at least a single
common path to reach one (or more) accept states. This is more easily expressed as the resulting dynamic
type being a subtype of the two intersecting terms. The empty environment is ignored by this operation
for having no influence on the result. With the exception of the empty environment, this operation is
only valid if both environments share the same number and name of declared variables and if each pair
of similarly named variables has the same static type.

In our case the subtype relation is used to extract the minimal behavior shared by both dynamic types
as the subtype condition effectively trims all non shared behavior between DA and DB . In algorithmic
form, this shared path can be easily obtained by simply intersecting the two protocol expressions.

Example 7 (Environment intersection)

(x : Tx ×A#a; a; a), (y : Ty ×B#a+ b+ c), (z : Tz × C#((a; c) + (b; c∗)); (w ∗+y))

u

(x : Tx ×A#a∗), (y : Ty ×B#c+ d+ e), (z : Tz × C#(a+ b); c∗;w)

=

(x : Tx ×A#a; a; a), (y : Ty ×B#c), (z : Tz × C#((a; c) + (b; c∗));w)

Example 8 (Invalid environment intersection)

(x : Tx ×A#a; a; a) u (x : Tx ×A#stop) = ERROR

Our while and repeat expressions share a common base with the main difference resid-
ing in the loop condition. The while loop tests on each iteration the condition to determine
if it should continue or not. On the other hand, the repeat expression will never stop (and
thus, at run-time, is equivalent to a while loop with an always true condition). The necessity
for this (apparently) redundant repeat construction arises from the need to statically know the
probability of encountering this forever-loop without breaking the modularity and abstraction
of the typing rules. Its practical use will only be made clear on a later example which makes
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use of recursion on exceptions (see section 3.1 method loopOpenRead).

(while)

∆ <: ∆w ∆w ` Econd : boolean 7→ ∆cond ∆cond ` E : T 7→ ∆w stopped(T )
∆ ` while(Econd) E : void 7→ ∆cond

while This construction allows for a cyclic evaluation of the condition and body until the
condition no longer holds true. Therefore, it follows a sequence of evaluations that always
ends after that condition. For this reason, the environment after a while loop is the result from
the side-effects produced by the check of Econd.

The resulting type from the condition must be of boolean nature so that a choice can always
be made. Note that this is one of the basic types and as such it will never leave any incom-
plete behavior (it is always equivalent to boolean#stop). However, the resulting type from the
evaluation of the body (T ) might be more complex so, before the type falls out of scope, it is
required for it to be in a safe state (i.e. stopped, as defined above).

The while loop can have more side-effects than just the one caused by the evaluation of
the condition. These cases can occur when there is some choice done in the body of the while
that influences the allowed behavior after this expression (a case similar to using the while
as a pseudo if). In order to account for this, the environment subtype condition (definition 5)
is used to select an environment (∆w) that is both the one with the largest behavioral freedom
and yet still accepts the body of the while. Note that this filter is done before the check of the
condition or the body and thus the environment before the condition and after the body are the
same (which will allow for the loop to continue).

The situations covered by this rule are further described in the implementation section with
actual examples (see section 4.3.2).

Definition 5 (Environment subtyping) An environment (∆A) is a subtype of another environment
(∆B) if for each commonly labeled variable (x) its dynamic type (DA) is a subtype of the dynamic type
in the supertype environment (DB).

∆A <: ∆B ⇔ ∀x : (x : T ×DA) ∈ ∆A ∧ (x : T ×DB) ∈ ∆B ⇒ DA <: DB

Example 9 (Environment subtyping)

(x : Tx ×A#a∗), (y : Ty ×B#a+ b+ c), (z : Tz × C#c[N : b+ c|E : a∗])

<:

(x : Tx ×A#a; a; a), (y : Ty ×B#a), (z : Tz × C#c[N : b|E : stop|R : a; a])

Note the inverse relation is invalid.

(repeat)

∆ ` E : T 7→ ∆ stopped(T )
∆ ` repeat E : void 7→ ∅
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repeat This expression is in every sense equal to a while with an always true condition but
without requiring the static checker to look “deep” into the resulting type of the condition.
Also, since there is no syntax to abort this loop, the environment after it is always empty as the
code afterwards is unreachable.

behavioral linearity So far the rules created assume there is no interference in the behavior
of each expression evaluation. However, to cause this restriction it is necessary to use a kind of
behavioral linearity. This condition is modeled by an ownership flag that is intended to express
if a type has an exclusive view of the object’s behavior in the sense that no one else can know
its current allowed behavior. Therefore, an owned type has special permissions to store and
control the object. Note, that for the stopped protocol (#stop) its value is irrelevant since there
is no behavior to cause interferences. As such, in this case, the flag is only shown if there is
some other important side-effect.

Type notation The two basic versions of the type notation (short (T ) and full (N#P )) can
have an additional ownership specifier: T ◦ for an owned type or T • for a non-owned. When the
owned flag is not explicitly give (like in T ) it means any owned value (owned or non-owned) is
allowed and it will not be changed in that rule. Thus, the type keeps its ownership value even
if its current behavior may change. The owned flag is always explicitly expressed with one of
the two previous annotations if the value is required to change or have a concrete value. It is s
also possible to assign the ownership value to a label with the notation T s (ownership value is
labeled s).

(return)

∆ ` E : T ◦ 7→ ∆′ ]∆′fields stopped(∆′) 〈Ω; Θ〉 ∈ ∆

(...�Method(...)[...]Treturn � ∆fields−after) ∈ Ω

∆fields−after /∆′fields T <: Treturn

∆ ` return E : void 7→ ∅

return The return expression requires the knowledge of two contextual information which
is related to the current method under check: the return-type and the fields state after the
method.

The first is needed to check if the returned-type is a valid sub-type of the method return-
type, as also required by any other type systems with methods/functions. The possession of
a type must be always completely transferred on a return expression. The need to require
this ownership arises from the fact that the return-type can have some (non stopped) behav-
ior. However, the method call construction does not force the immediate use of this behavior
and therefore it could be interleaved with other calls which could cause unpredictable prob-
lems (due to type abstraction) if some internal field is just “borrowed” to the outside of a class
(instead of completely transferred).

This return construction causes the termination of the current method execution by re-
turning the evaluated expression. All local (stack) variables will become out of scope as a
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consequence of this action. Therefore, all of them must be in a stopped state so no incomplete
behavior is left behind (note this must also be true to the method’s arguments).

Also note that the environment becomes empty after the check of this expression since the
flow of the program stops.

Finally, the local fields of the class must be in a consistent state with the environment after
the call, in other words, the behavior of all fields must be compatible (intersection-wise) in ev-
ery possible return so that the state of the class after a call is always coherent (i.e. it does not
diverge to different paths in the same method - this kind of behavior is avoided since it could
cause results that are not statically enforceable by requiring the behavior to be dependent on
a specific return expression within the method). This is done by using the reversed intersec-
tion (definition 6) of the method end environment (the state of the fields after the method ends)
with the environment after the return expression is checked.

It is time to introduce the environment’s contextual information which stores the previously
mentioned environment’s state at the end of the method. This is a consequence of all checks
only happening inside the class consistency check (explain further down) and therefore it is
always possible to know which class and which method the verification is currently testing.

Context notation (methods) As implied by the return rule, one of the information stored in
this structure is the state of the environment on each method call. It contains the behavioral
situation of each field variable both after the call ends and also before it starts. This map of
methods is store inside Ω on the contextual information (〈Ω; Θ〉) of an environment and follows
the template: ∆before � Method � ∆after. The other structure in the environment (Θ) is
related to the exceptions and will only be presented in that section.

Method notation The template m(Targ0 n0, ...)[Texcp0 , ...]Treturn{Ebody} is used for all meth-
ods: m is the name of the method and the exceptions list (inside []) can be omitted if the method
does not throw any exception. Actually, any omission in a complex structure is equivalent to a
“do not care” value in order to simplify the rule’s notation.

Definition 6 (Environment reversed intersection) The reversed intersection of environments ex-
presses that ∆A is the result of intersecting environment ∆B with some other environment ∆unknown.

∆A /∆B
4
= ∆A = ∆B u∆unknown

The previously (valid) environment intersection example can also be applied to this case by simply re-
arranging the terms to the appropriate positions.

2.3.3 Variables

Variables are the crucial structure for tracking behavior in our type system. Consequently, all
behavior changing actions will have effects in the variables state. Remember that all variables
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have two internal types: one static - the source code type annotation; and the other dynamic -
the previously mentioned changing behavior. This kind of change is what causes the environ-
ment to suffer possible side-effects on each check.

These rules require a basic notion of partial subtyping (subtype ≺: supertype). This relation
is similar to normal subtyping with some differences on the behavioral side, namely a partial
subtype is only require to partially satisfy the behavior of its supertype. This means a partial
subtype behavior is contained somewhere inside the behavior of the supertype allowing a safe
(but only temporarily) use of it. A simple example: N#b ≺: N#a; b; c (the inverse is invalid).

(variable declaration)

x /∈ dom(∆) Tclass ∈ ∆ T ≺: Tclass

∆ ` T x : void 7→ ∆ ] (x : T ◦ × stop(T ))

variable declaration A variable declaration simply appends a new variable structure to the
environment with the given label. As usual, it is required for the label to be unique in the
environment (no variable x must be inside the domain of the initial environment). Note the
static type has the owned flag set as all declared variables always require the ownership of
type (this does not include method’s parameters as their declaration can allow for non owned
arguments). The initial content of a stack variable is stopped since there is no real content in it
yet.

Definition 7 (Stop type/environment) Any stop structure is either void or has a stop pattern.

stop(T ) =stop(N#P ) = N#stop

stop(void) =void

stop(∆) ={(x : T × stop(D)) : (x : T ×D) ∈ ∆}

This operation just filters out any behavior that might be inside the type or environment to which it is
applied to.

We do not differentiate among stack, field or argument variables as their typing rules are
all the same. However, their creation and use has special conditions which are presented in
further sections. For now it is just important to know that non owned variables are basically
constant (as they cannot receive any new content) and field variables have their behavior split
among possibly several class methods.

(assignment)

∆ ` E : T ◦ 7→ ∆′ ∆′ = ∆′′ ] (x : T ◦static × Tdynamic)

stopped(Tdynamic) T <: Tstatic

∆ ` x = E : void 7→ ∆′′ ] (x : T ◦static × T ◦static)
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assignment To avoid some conflicts in the value of the ownership flag, all variables of a non
owned type are read only (constants). This is intended to removed situations where the own-
ership flag might change in different executions paths (like in an if else). Thus, the assign-
ment rule requires an owned type as the static type of the variable. Because of this, and since
an owned type expresses the absolute possession of that object, before an assignment can take
place it is required the previous content to be stopped since its ownership will be lost.

The subtype relation is used to assure the complete ownership can move to this variable
without some incomplete behavior being left behind. Also note that since the previous test
is valid, the type can now be safely exchanged to the more restrictive version declared in the
static type of the variable.

(variable owned read)
∆ = ∆′ ] (x : T ◦static × T ◦dynamic)

∆ ` x : T ◦dynamic 7→ ∆′ ] (x : T ◦static × stop(Tdynamic))

variable owned read Behavioral linearity implies the ownership value must be uniquely kept
by a variable. As a result, an owned read must force the old owner to completely lose the pos-
session of that type. This is caused by stopping the dynamic type it contained while returning
the owned view of the same type to the reader.

(variable non-owned read)

∆ = ∆′ ] (x : Tstatic × Tdynamic) Tdynamic = N#V V
W−→ Q

∆ ` x : N#W • 7→ ∆′ ] (x : Tstatic ×N#Q)

variable non-owned read Although we require a sort of linearity for the ownership of a type
this can be somewhat circumvented by non-owned read. This read models a kind of borrowed
ownership where the use of a type is strictly limited to well defined protocol. With this rule, a
type can be passed as an argument to a method without becoming stopped as long as its state
after the call is predictable (and its ownership is not required). In other words, if the method
uses the object in such a way that its protocol can be forwarded to another valid point then the
type can still be used correctly afterwards.

The predictability of the type’s sub-use is calculated by simulating the non-owned use (W )
on the complete behavior (V ). This operation (with the format Protocol Forward−→ Remaining) is
completely defined in the section 2.2.1.

2.3.4 Calls

Method calls will cause a transition in the current behavior of a object. As explained in the
previous section, only variables control the allowed behavior and therefore method calls can
only occur on objects stored inside these structures. By requiring this we also avoid numerous
situations where new instances or returned values might be lost without having completed
their behavior. As such, this condition will force all values to be stored and thus eliminating
the danger of lost references to incomplete (with some behavior left) objects.
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However, not all calls will cause a modification of behavior. Since not all class’ methods
may appear in the usage protocol, we decided to allow those method to be freely used. This
means that a protocol will only restrict the use of a subset of all class’ methods. We hereby call
behavioral methods those whose name is contained in the initial usage protocol on the class
declaration and thus can only be called in specific allowed contexts (described by the class’
protocol). This can only happen if the non behavioral calls do not cause any change in the
class fields state. This will have more clear implications on the consistency check described in
section 2.3.8.

All following rules share some common aspects, namely: all require for the method to exist
in the class’ method list; behavioral methods must belong to the class’ protocol (expressed by
m ∈ Protocol) except for non-behavioral ones (m /∈ Protocol). The other shared condition, is
related to the evaluation of the arguments in a call.

call argument check In order to avoid possible interference in the evaluation of each argu-
ment it is required the disjoint split on the evaluation of each one of them. Although the own-
ership flag correctly avoids cases where the duplicated use of the same object could cause inter-
ferences, it is insufficient to stop errors on non-owned reads. In this case, since the non-owned
reads explicitly (only temporarily) break behavioral linearity for the borrowing of a section of
behavior, it is necessary to have additional conditions to avoid the same kind of interferences
that might occur if we did not have the owned flag. Therefore, it is required for all arguments
to be environmentally disjoint in the sense that each resulting argument object cannot be over-
lapping with a previously calculated one. If this were not the case some non owned types could
be passed as two distinct arguments and the check of the method’s body would not be able to
detect it as it assumes all arguments have disjoint behaviors (i.e., there is no relation between
the behavior of two arguments).

Before stating the call rules it is just necessary to introduce the class’ notation.

Class notation The format of the structure for the class’ content isName[Usage;Fields;Methods].
The Usage contains the behavior (protocol) of the class, Fields contains a map of the class’
fields, Methods contains the methods and the constructors.

(behavioral method call)

T ∈ ∆ T = N [Protocol; ...;Methods] m ∈ Protocol m(T s0
0 , ..., T sn

n )[...]Tr ∈Methods

∆ = ∆E0 ] ... ]∆En ∆Ei ` Ei : T si
argi
7→ ∆′Ei

Targi <: Ti

∆′E0
] ... ]∆′En

= ∆′ ∆′ = ∆′′ ] (x : Tstatic × Tdynamic)

Tdynamic = N#M M
m−→ O

∆ ` x.m(E0, ..., En) : T ◦r 7→ ∆′′ ] (x : Tstatic ×N#O)

behavioral call The only remaining conditions to be described are related to the simulation
(or forwarding) of the protocol. After a method has been called the variable’s dynamic state
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must transition to the next allowed behavior. This is done with the same simulation operation
(see section 2.2.1) as before but with only one simple label (the name of the called method).

(non-behavioral method call)

T ∈ ∆ T = N [Protocol; ...;Methods] m /∈ Protocol m(T s0
0 , ..., T sn

n )[...]Tr ∈Methods

∆ = ∆E0 ] ... ]∆En ∆Ei ` Ei : T si
argi
7→ ∆′Ei

Targi <: Ti

∆′E0
] ... ]∆′En

= ∆′ (x : Tstatic × Tdynamic) ∈ ∆′

Tdynamic = N#M

∆ ` x.m(E0, ..., En) : T ◦r 7→ ∆′

non-behavioral call Non behavioral calls have no side-effects and therefore this rule is mostly
just checking for argument correction and that the method with the specific number of argu-
ments exists inside the type.

(new instance)

T ∈ ∆ T = N [Protocol; ;Methods] Class(T s0
0 , ..., T sn

n )[]void ∈Methods

∆ = ∆E0 ] ... ]∆En ∆Ei ` Ei : T si
argi
7→ ∆Ei+1 Targi <: Ti

∆′E0
] ... ]∆′En

= ∆′

∆ ` new N(E0, ..., En) : N#Protocol◦ 7→ ∆′

new instance A new instance simply creates a new type with the behavior protocol of the
class’ usage declaration. This type must be owned since the newly created type cannot possi-
bly be held by someone else.

The only remaining type of call is the internal one. We decided to allow for any method to
be able to call all other remaining internal methods. Thus in our type system, the behavior is
only intended to restrict the use of a type outside the call context. As such, some code using
the type must follow the specific sequence of calls that the behavior describes. However, for
the internal code of the class this is not required. Nonetheless, special considerations must be
taken for this kind of behavioral recursion as the state of the fields must be carefully managed
when a method calls itself or for when some other kind of internal loop may happen.

(internal call)

T ∈ ∆ T = N [Protocol; ;Methods] m ∈ Protocol m(T s0
0 , ..., T sn

n )[...]Tr ∈Methods

∆ = ∆E0 ] ... ]∆En ∆Ei ` Ei : T si
argi
7→ ∆′Ei

Targi <: Ti

∆′E0
] ... ]∆′En

= ∆′

〈Ω; Θ〉 ∈ ∆′ (∆fields−before � m� ∆fields−after) ∈ Ω

∆′ = ∆′′ ]∆fields−before (this : Tstatic × Tdynamic) ∈ ∆′ Tdynamic = N#M

∆ ` this.m(E0, ..., En) : T ◦r 7→ ∆′′ ]∆fields−after
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internal call As said in the previous section, we use a special structure (Ω) to store the state of
the class’ fields before and after all internal calls and so this rule is much simplified as it is only
needed to first check compatibility with the before environment and then change to the after
state. Note, however, that this also has some implicit effects namely on the non behavioral
methods. Since they can not change the state of the fields, any call to a behavioral method
from within them is only permitted if that same methods will not modified the internal fields.
Therefore, this kind of internal recursion can be seen as pushing the code from some other
method to the body of the current one.

2.3.5 Exceptions

Our run-time approach to exceptions is in every sense similar to the usual (Java) way. There-
fore, a normal program flow may be abruptly stopped and flag an error carried on by the
raised value. Any method that does not catch this value will be cut through until an appropri-
ate catch expression is reached. In our case the catching is done only by the name of the error
type. This type can not have any behavior left (it must be stopped). By keeping this mech-
anism behavior agnostic the run-time will not need to track each protocol which also makes
the catching more simple (since it will not need to compare behaviors). Undeclared exceptions
could lead to unpredictable termination points inside the code and thus are incompatible with
our type system. The kind of expected exceptions are stored in the remaining (and not yet
introduced) structure (Θ) inside the contextual information of the environment.

Besides requiring for each exception to be (eventually) caught, so to avoid abnormal ter-
minations of a program that might leave some dangling behavior, our exception system also
requires for each exception to be behavioral. A behavioral exception causes the internal pro-
tocol of an object to change after it throws some other value. This is intended to model some
special behavior that only is used for the handling of a special situation.

Our protocol syntax has probably the best example to better express this idea. Consider
the protocol method[ThrowType : special; done]; done, this means a method named method

is allowed to throw an exception of type ThrowType that will change the objects’ allowed
protocol to special; done instead of just done of a normal flow (when no exception is raised).

Also note that although all our exceptions are behavioral, normal exceptions can be easily
translated to this by simply assigning the old behavior as the target of the change (and thus
causing no real behavioral modification).

Context format (exception handlers) The exception handlers are kept inside the right context
container labeled Θ (for an environment context with the format 〈Ω; Θ〉). This map stores,
for each expected exception, two environments: the top catch environment (∆try−catch, the
environment on which the exception is caught - in other word, the environment where the try
catch expression is located) and the actual state of the environment after the throw (∆catch,
that will be used on the catch). The use of each one of these elements will be introduced on the
context of an appropriate rule. Finally, the format of this structure is: ∆try−catch  N : ∆catch
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(throw)

∆ ` E : T 7→ ∆′ stopped(T ) T = N#P

〈Ω; Θ〉 ∈ ∆′ (∆try−catch  N : ∆catch−N ) ∈ Θ

∆′ = ∆′try−catch ]∆′unreachable stopped(∆′unreachable) ∆catch−N /∆′try−catch

∆ ` throw E : void 7→ ∅

throw A throw expression is somewhat similar to a return expression, since both cause
a break in the normal flow of the code even though their consequences are quite different.
Remember that we require all exceptions to be declared or caught and therefore this means
on this rule we must have the environment’s contextual information already with the needed
exception handlers registered in it.

First we simply check the correctness of the given expression which result will be the raised
value at run-time. As explained above, we force this type to be in a stopped state and, since
the catch is done by name, the notation must be expanded to extract the name of the throw
type. Just like in the return expression, our rules follow a flow point of view and for that the
carried result is void not the type T . For the same reason this construction leaves an empty
environment since the normal flow is broken.

It is important to note that all the next conditions use the environment with the side-effects
produced by the expression inside the throw.

The second line simply states the appropriate exception handler structures are contained
inside the environment context.

For an exception to be successfully thrown we must first consider all the variables which
reference will be lost as a result of the throw-catch jump. This happens since part of the envi-
ronment available at the throw point (∆′) will drop all the sections that are not in the context of
the respective try catch. Thus, we split this environment in the two disjoint environments:
the one that will be lost (∆′unreachable) - and all those variables contained in it must be peace-
fully killable so that no required behavior is left; and the environment with the same depth
and environment variables as the one in the current try catch to which the flow will jump
to (∆′try−catch). This last environment will be usable in the catch branch and therefore all of its
content may continue normally. However, a try catch is allowed to have multiple throws
that will share the same common catch branch. In this case we use the same operation (re-
versed intersection) as in the return expression and therefore all these throw environments
must be compatible with the catch environment of the type (∆catch−N ).

In spite of always mentioning a try catch expression as the target catch branch, this
might not always be the case. This catch branch may also be completely outside the scope of
the method when the type is declared in the throws list of the method. In this case the situation
is much simpler since all the local environment variables will fall out of scope. However, the
previous rule is still valid since the (soon to be described) class consistency check uses a similar
mechanism to obtain the class fields state on each possible behavioral path. Lastly, given this
throw is linked to the current class under verification, it will not be causing any behavioral
changes to the self type as this will happen in the usual flow of the consistency path check (it
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just needs to save the environment state to be able to start from that point when it reaches the
possible exception flow fork).

(call-throw)

T ∈ ∆ T = N [; ;Methods] m(...)[N0, ..., Nn]Tr ∈Methods

(x : T ×N#P ) ∈ ∆ ∆ ` x.m(Earg, ...) : Tr 7→ ∆′ ∆′ = ∆′′ ] (x : T ×N#O)

〈Ω; Θ〉 ∈ ∆′ (∆try−catchi
 Ni : ∆catch−Ni

) ∈ Θ

exception(m,Ni, P ) = Ci ∆throwi
= ∆′′ ] (x : T ×N#Ci)

∆throwi
= ∆′try−catchi

]∆′unreachablei
stopped(∆′unreachablei

) ∆catch−Ni
/∆′try−catchi

∆ ` x.m(Earg, ...) : Tr 7→ ∆′

call-throw Although an exception can only be raised with the throw expression at run-time,
there are other possible raise points in the type system. Given that only the method’s signature
is looked at in a call, all the exceptions it may raise must also be accounted for at that time.

To avoid too much duplication we take a more modular approach by making this rule use as
much as possible from the previously defined call rules. For this reason, we will only describe
the exception related part as the method call conditions were already presented in detail on
a previous section. It is only important to know that all exceptions can only happen after the
method has been called (thus all exceptions must use the resulting environment ∆′ as the throw
environment) and that the exception list is in the methods’ signature.

Although it looks complex, this rule borrows much from the previous throw rule. This
is because the handling of all those exceptions in the throws-list is basically the same as for
the single throw type, it only has to be done for each single exception type separately. This is
expressed with the use of index notations (i to iterate over {N0, ..., Nn}).

The most important aspect of this rule is the behavioral side-effect suffered by the variable
on the throw flow. As said above, behavioral exceptions will cause a change in the protocol of
the type that causes the exception raise. In this case, it means the variable x must change its
behavior on the catch environment right before the check for compatibility with environment
∆catch−Ni

. The exception protocol (Ci) is more easily obtained by using the exception operation
(definition 8) as it returns the correct protocol to be used. Note that the protocol must be the
one before the call (P ) as the one after it (O) only refers to the normal flow (if no exception was
raised). So the main contribution of this rule is to jump the protocol of the type to that special
protocol to be used only in the respective catch branch.

Definition 8 (Behavior on exception) This operation extracts the exception behavior of the protocol.
Since each id always has the same list of throwable types this operation returns the first behavioral
pattern linked to the type N in the given protocol P . This operation only fails if there is no defined
exception in that expression.

exception(id,N, P ) =Pexception ⇐ id[...|N : Pexception|...] ∈ P
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Example 10 (Behavior on exception)

exception(method,Exception,method[Exception : a; b; c]) = a; b; c

exception(method,Exception,method[Exception : a];method[Exception : b]) = a

internal call-throw The previous rule set does not handle one kind of situation (that might
not be too obvious) that is depicted in figure 2.7. In this case the recursive internal call also uses
exceptions: the catch handle uses a class field behavior for managing the raised integer.

The more generic case is an internal call-throw that must account for behavioral changes in
the class’ fields on each of its possible throw values. For this, the contextual exception handling
structure (Θ) is insufficient and therefore we extended it to include this information: (∆before �
method( N0 : ∆fields−N0 , ..., Nn : ∆fields−Nn)� ∆after), where each ∆fields−Ni

is the state of
the class fields after an exception of type Ni is thrown.

It is then needed to slightly modify the previous rule, to create this internal version, with
the main difference residing in the fact that instead of changing the calling objects behavior
(which will not happen as this is an internal call) we must change the local fields state to the
one contained in the method contextual information.

(internal call-throw)

T ∈ ∆ T = N [; ;Methods] m(...)[N0, ..., Nn]Tr ∈Methods

(this : Tstatic × Tdynamic) ∈ ∆′ ∆ ` this.m(Earg, ...) : Tr 7→ ∆′

〈Ω; Θ〉 ∈ ∆′ (∆try−catchi
 Ni : ∆catch−Ni

) ∈ Θ

(∆before � method( N0 : ∆fields−N0 , ..., Nn : ∆fields−Nn)� ∆after) ∈ Ω

∆′ = ∆′fields ]∆′stack ∆′i = ∆fields−Ni
]∆′stack

∆′i = ∆′try−catchi
]∆′unreachablei

stopped(∆′unreachablei
) ∆catch−Ni

/∆′try−catchi

∆ ` this.m(Earg, ...) : Tr 7→ ∆′

With the intention to simplify the rules and the grammar, each try catch can only catch
a single exception. However, since it is still possible to nest several of these expressions there
is no lost expressiveness.

(try-catch)

∆try = ∆ ] 〈Ω; Θ + (∆ N : ∆N )〉

∆try ` Etry : Ttry 7→ ∆′try stopped(Ttry)

∆′try = ∆′ ] 〈Ω; Θ + (∆ N : ∆N )〉

∆catch = ∆N ] 〈Ω; Θ〉 ] (n : N#stop×N#stop)

∆catch ` Ecatch : Tcatch 7→ ∆′N ] 〈Ω; Θ〉 stopped(Tcatch)

∆ ] 〈Ω; Θ〉 ` try Etry catch(N n) Ecatch : void 7→ ∆′ u∆′N ] 〈Ω; Θ〉
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T#a+(b;c) v; //local field v
a() throws integer{

if( ? ){
try{

a(); //recursive call
}catch(integer error){

v.c();
return;

}
}else{

//base case
if( ? ){

v.a();
return;

}else{
v.b();
throw 1337;

}
}

}

Figure 2.7: An example of an internal call-throw.

try-catch The try catch together with the throw expression is a statement like control flow
expression, as it causes a jump in the code from where the exception is raised to the catch

branch.

Checking the body of the try catch (Etry) requires first to register the new exception
handler (the catch branch) for the type N in the environment context. This is simply done by
appending the handler to the exception handlers of the contextual information. Note that this
action implicitly hides any previously defined handler for that type. The registration is only
valid inside the try branch (as usual) and therefore it is not present on either the catch or
the resulting environment (at the end of the rule). As explained above, the registration needs
to store the environment of the try catch expression so that it is possible to calculate which
variables are unreachable and those who are visible on each throw point. These unreachable
variables are those declared inside Etry and therefore can not be used on the catch branch.

For checking the catch branch, besides using the throw environment state(∆catch - that has
the common behaviors of all possible throws of this type that might occur in the try), it is also
needed to add the catch-variable (n) that is in a stopped state, just like the allowed throwable
objects.

All resulting types (Ttry and Tcatch) must be stopped as their behavior will not be used.

The state of the environment after a try catch is somewhat similar to an if else as
there is two possible program flows that must be merged. Just like in that construction, we use
the environment intersection to join the shared behavior of both the normal flow (∆′, when no
exception is raised) and the catch branch (∆′N ).
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2.3.6 Basic types

Our language includes the normal basic types: integers, doubles, strings, booleans and also
XML. We will not detail their operations as they are rather standard. These types have appro-
priate syntax for their construction which is only presented in the appendix.

There is no need to include syntax for normal basic operations like subtractions or multi-
plications since its meaning is identical of having an equivalent method call for that specific
operation. In other words, in this type system syntax sugar like 1 + 2 is removed and instead
it is only used the explicit method call like 1.plus(2). As a side effect, this should also ease
the understanding of the evaluation order of the arguments (that might have some kind of
behavior).

∆ ` INTEGER : integer#stop 7→ ∆ (integer type)

∆ ` DOUBLE : double#stop 7→ ∆ (double type)

∆ ` STRING : string#stop 7→ ∆ (string type)

∆ ` XML : xml#stop 7→ ∆ (xml type)

∆ ` false : boolean#stop 7→ ∆ (boolean type)

∆ ` true : boolean#stop 7→ ∆

N ∈ ∆
∆ ` null : N#stop 7→ ∆

(null type)

All basic types have a stop use pattern so their use never changes the checking environ-
ment. This empty behavior also allows any method to be freely used (as expected there is no
restriction for calling methods of any basic type).

The void type expresses an empty type. Therefore, even though it is not syntactically
blocked, there is really no use in the language for a variable/argument with it since it can
not legally receive any content (and thus will always stay void).

2.3.7 Class type

These class types are responsible for storing all relevant class related information. Therefore,
this rule is only intended to build these structures. Furthermore, there are some additional
conditions which are not directly shown, namely: all method’s return type are forcefully owned
(T ◦) and any method’s parameter has its ownership value set when the owned keyword is
present in that argument (otherwise its type is non-owned T •).
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(class declaration)

Name /∈ dom(∆)

Fields = {(x0 : T0), ...}

Methods = {(M0(Targ0 n0, ...)[N0, ...]Tret0{Ebody0}), ...}

∀Mi ∈Method : Mi = Name⇒Mi(...)[∅]void

∀m : m[N0, ..., Nn] ∈Methods ∧m[N0, ..., Nm] ∈ Pattern⇒ m ≥ n

∆ ` class Name{
usage Pattern

T0 x0;
...

Tret0 M0(Targ0 n0, ...) throws N0, ... {Ebody0}
...

} : void 7→ ∆ ]Name[Pattern, F ields,Methods]

This construction is intended to build a class type while obeying some additional rules in
order to make sure the given usage protocol is consistent with the class’ methods, namely:

- constructors are normal methods with a void return type, the same name as the class and
no throwable exceptions.

- each field name must be unique inside the Fields set.

- each pair (method name, number of arguments) must be unique inside the Method set.

- each transition of the usage protocol (id’s) must refer to at least one existing method with
the same name (which excludes constructors).

- every time an id appears inside the protocol it has to declare the same number of possible
throwable exceptions and each method with the same name as id must only throw a
subset of that set of exceptions (never more).

- as implied by the grammar, each class can only have one usage protocol that is assigned
to the type after a new instance is create.

2.3.8 Class Consistency Check

As said above, the essential verification happens on a class level. This means that any expres-
sion type checking only occurs inside the context of a class verification. However, it is not pos-
sible to test each method independently as they may include behavioral uses of the class’ fields
that must be considered. These uses are impossible to verify without a concrete usage scenario
that is given by the class’ protocol. As such, this class consistency check is the one responsible
to assure the correction of a class as seen from a higher level and also to do the transition to
lower ones. Consequently, in this section we will present the rules that travel through the class’
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behavior and test if each allowed method’s body in that transition is consistent with the larger
class level (i.e. with the complete protocol).

As a result, these rules cover each possible protocol construction until they reach a single la-
beled transition. At that point, they must go inside the method to assure all its fields behavioral
uses are correct in that given protocol context.

The validation of any class field with a non stop behavior poses an interesting problem since
its use may be split among any of the class’ methods. As a non behavioral method is free to be
called in any context, we decided to prohibit it from changing fields (either by calling some of
the object’s behavioral methods or just by making a normal assign, etc). Thus, only behavioral
methods are allowed to modify these variables since their context is given by the class’ usage
protocol. Therefore, it is needed to do this class consistency check to verify if the fields’ use is
correctly split among the behavioral methods in a coherent way. Thus, to guarantee the correct
use of these local class variables, it is needed to consider not only the code of the method but
also it is execution context and so verify the consistency of the method’s body according to all
valid paths that the usage protocol might allow for it to be called from.

(class consistency check)

∆fields = {(f : T ◦ × stop(T )) : f ∈ Fields}

∆ ]∆fields ` Protocol : OK 7→ ∆ ]∆′fields stopped(∆′fields)

∆ ` Class[Protocol;Fields; ] : OK 7→ ∆

This kind of check differs from previous ones as we try to reach an “OK” state which con-
firms the correction of the fields use. We first start by placing all fields in a stopped initial state
and append it to the checking environment (that contains other previously defined types). This
is similar to a variable declaration but for each single one of those field variables. The rule then
proceeds to travel through all possible protocol paths. Note however, that since any constructor
will modify the initial state of these fields its check must be done before starting this procedure.
At each end we must then check for a correct field behavioral termination as all those objects
may be destroyed at that point.

(protocol sequential path)

∆ ` P : OK 7→ ∆′ ∆′ ` Q : OK 7→ ∆′′

∆ ` P ;Q : OK 7→ ∆′′

(protocol choice path)

∆ ` P : OK 7→ ∆′ ∆ ` Q : OK 7→ ∆′

∆ ` P +Q : OK 7→ ∆′

(protocol repetition)

∆ ` P : OK 7→ ∆
∆ ` P ∗ : OK 7→ ∆

(protocol recursion)

∆ ` T{b/&b(T )} : OK 7→ ∆′

∆ ` &b(T ) : OK 7→ ∆′
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Path traveling follows a simple logic: the sequence construction must be correct on the left
side and will be followed on the right with the left state as initial; both paths in a choice must
be correct; a repetition is only correct if it remains in the same state; a recursion (in the protocol)
is obeyed if the unfolded protocol is correct.

(behavioral method check)

method = method(T0 n0, ..., Tn nn)Tr{E}

∆args = {(n0 : T0 × T0), ..., (nn : Tn × Tn)}

∆before = ∆ ]∆fields ]∆args ] (this : Class#stop• × Class#stop)

(∆before � method( Nn : ∆fields−Nn , ..., Nn : ∆fields−Nn)� ∆after) ∈ Ω

∆before ] 〈Ω; Θ〉 ` E : T 7→ ∆after ] 〈Ω; Θ〉 stopped(T )

∆after = ∆ ]∆′fields ]∆′args ] (this : Class#stop• × Class#stop) stopped(∆′args)

(∅ Ni : ∆fields−Ni
) ∈ Θ

∆ ]∆fields−Ni
` Ci : OK 7→ ∆ ]∆′fields−Ni

stopped(∆′fields−Ni
)

∆ ]∆fields ` method[N0 : C0|...|Nn : Cn] : OK 7→ ∆ ]∆′fields

This (rather complex) rule is the one from which the previous expression, call, etc. typing
rules are called and therefore it must set all the needed context structure and arguments before
it can check the body. First, all arguments must be packed with a ready to use state. This is
done by just making the dynamic state the same as the static one (just like if it had received a
valid content after an assign). It must also add to the environment the this pointer which is in
a stopped state so that it cannot be returned or changed.

All contextual information (methods context, and declared exceptions) are then added to
the environment before the body of the method is checked. Afterwards all arguments must
be in a stopped state to assure their use was completed. Lastly it only remains the need to
check eventual exception paths for each type in the exception list, before continuing with the
protocol’s normal path.

(non-behavioral method check)

∆fields = {(f : T • × stop(T )) : f ∈ Fields}

∀m ∈ {m : m ∈Methods ∧m /∈ Protocol} ⇒ ∆ ]∆fields ` m : OK 7→ ∆ ]∆fields

∆ ` Class[Protocol;Fields;Methods] : OK 7→ ∆

The methods which do not belong to the protocol must also be checked. These methods
can be freely called from any context, and therefore, to avoid possible interferences with the
behavioral methods, all variables have a stopped protocol and read only permissions. The main
differences with the previous rules is that this one requires the fields to be initiated directly into
a stopped state and each method has to be checked independently (not inside a context path).
Exceptions are handled as if the fields state remained stopped (these exceptions cannot cause
behavioral changes).
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2.3.9 Containers

Containers are a special kind of class that can hold an arbitrarily large group of objects. Thus,
these objects are kept by the container until they are either removed or the container is de-
stroyed. Since there is no handler for the destruction of any remaining object inside the con-
tainer it is necessary for the holding type to take into account this possibility. Therefore, all
inserted objects must be in a stoppable state so that their behavior is completed even if they are
never removed.

As with all object-holding constructions, the holding type must be a partial type of some
known type to guarantee there is at least some protocol that can obey the declared behavior.

(container declaration)

N#P ∈ ∆ x /∈ dom(∆) N#Q <: N#stop N#Q ≺: N#P

∆ ` Container 〈N#Q〉 x : void 7→ ∆ ] (x : Container 〈N#Q〉)

This declaration has many similarities to the variable declaration with the main difference
residing in the content’s allowed behavior. The second condition (with the partial type) is for
the same kind of restriction as in variables, however the requirement to be a sub-type of stop
is to model the necessity for each holding element to be in a stoppable state.

(container read element)
(x : Container 〈T 〉) ∈ ∆

∆ ` x.readElement() : stop(T ) 7→ ∆

(container remove element)

(x : Container 〈T 〉) ∈ ∆ 〈Ω; Θ〉 ∈ ∆

∆ = ∆′try−catch ]∆′unreacheable stopped(∆′unreacheable)

(∆try−catch  Empty : ∆Empty) ∈ Θ ∆Empty /∆′try−catch

∆ ` x.removeElement() : T ◦ 7→ ∆

(container add element)
∆ ` E : T ◦new 7→ ∆′ (x : Container 〈T 〉) ∈ ∆′ Tnew <: T

∆ ` x.addElement(E) : void 7→ ∆′

Since with the read operation the element still remains inside the container, and so to avoid
any possible future interferences, this method returns a stopped view of the stored object. On
the other hand, the remove operation also guarantees no one else has the ownership of the type
and thus it is legal to return an owned type with the container’s holding protocol. Trying to
remove an element from an empty container will cause an exception to be thrown. Returning
null on empty is not a valid alternative since this type is implied to have a stopped protocol
which might not be the same as the holding type behavior.

Also note that there is no explicit constructor for this class and that its use pattern is always
implied stop after the declaration. Because the use of containers is limited to class fields in the
prototype, they will not be developed much further in this formalization.
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2.4 Remarks

Classes are the essential structure of our type system. As such, our behavioral reasoning is only
applied to them as they form the central block that assures the correctness of the whole system.
These classes are allowed to contain (always private) field variables as well as (always public)
methods. Besides this information, a behavioral type also needs to have a usage protocol.
Therefore, each class’ correct behavior is described in a special regular expression like protocol
that limits the availability of its methods. Consequently, it is insufficient to check each of its
methods independently as the behavior of a fields is split among them in a special context. This
context is directly related to the expected behavior, which leads to our consistency checking
rules that generate the correct behavioral context in which to verify the expression contained
inside a method.

In this chapter we have presented a behavioral type system whose central concept is to
combine a normal type (Java-like object type) with a finite deterministic automaton described
by an regular-expression-like protocol.

This protocol limits the use of some methods (behavioral methods) to a valid context given
by the class’ usage protocol (that describes the allowed sequence of calls the class must obey).
All methods that are not in that condition are thus considerate normal or non-behavioral and
thus can be freely called without any restriction.

In order to ensure the behavior is obeyed and completed, each class instance (object) must
be stored in variables that control its use by monitoring the flow of calls. This dynamic protocol
of the next valid behavior changes on every legal transition (method call, etc). Note the defi-
nition of behavioral methods is linked with the usage protocol and not the dynamic protocol,
therefore the set of behavioral methods never changes after the class’ definition.

To avoid possible interference in the use of aliased objects, only a single variable can keep
the behavior of a given object. This means there is a kind of behavioral linearity in the sense
only a single variable can know the current allowed behavior of any object, however it is possi-
ble to have more than one variable holding a reference to that same object as long as its allowed
behavior is seen as empty (stop) and thus can never cause interferences with the real owner.
Incidentally, this kind of ownership is required in specific contexts (returning a value, etc) and
is represented by the owned keyword.

Class fields pose a specific problem in order to avoid possible illegal access combinations,
namely the use of these variables is usually split among different methods. However, the class’
protocol gives the expected context for each behavioral method allowing for a consistency
check to ensure their use is correct with their state in all possible sequences of calls allowed
by that protocol.

Finally, this formalization of the type system is intentionally simplified to ease comprehen-
sion and the writing of the rules. However, the implementation in the prototype has expanded
some of these rules into a more user friendly version by grouping common constructions or
including more practical deviations of the rule’s intention, some syntax sugar and even some
additional features like static variables (which are always in a stopped state - and thus without
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any behavior left - since their use can appear freely anywhere).
Also note that this type system is only intended to account for untrapped errors even

though trapped ones (zero divisions, null pointer de-referencing, out of memory errors, etc.)
can lead to an abnormal program termination with incomplete behaviors. There are, however,
other type systems that can be used to avoid some of these situations.

In the following chapters we will introduce the prototype with examples and lengthy de-
scriptions of the algorithms that will implement the rules previously presented.
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Examples

This chapter contains three examples that show more practical uses of the developed language
and type system. Although some of the extensions to the typing rules will only be introduced in
a following chapter, these examples should give a more clear notion of the general functionality
that we intend to reach. This also means the grammar used in here is much more flexible than
the one presented before even though the general felling of it should remain similar (the full
grammar will only be listed in appendix A).

In the first example (section 3.1), we model the use of a (fake) file. This is a very simple
example as it follows the normally expected method structure similar to any other file classes
while also providing the additional notations needed for the type system to check the correct
flow of calls. Therefore, with this type system it is then possible to assure all opened files are
closed before the respective file object is destroyed.

The machines example (section 3.2) is intended to simulate the environment in a simple fac-
tory. In it there are several machines with different capabilities which will modify a give work
block in particular ways. Although there are still some important expressiveness limitations
that are left as possible future work, we believe our type system allows for some behavioral
modularity that in turn makes the use of these (virtual) machines safer (not only in the nor-
mal typing way but also by making sure each machines is not driven into a possible erroneous
state).

The final example (section 3.3) is probably the most interesting one from a behavioral point
of view. It makes use of partial types in order to save incomplete purchases of several different
types of orders. Therefore, these all share a common suffix by allowing a review and a buy
operation. Each one of those orders also has specific requirements in terms of normal flow
(for instance, renting a vehicle might require the purchase of some kind of insure). Although
all these services are local, our prototype would also allow for their distribution into different
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servers while only needing their addresses (URL) to work in the same way as presented in here.

Note that some of these examples use a simple additional construction of the language that
allows for the creation of labels for a specific section of a class’ usage. These appear after the
keyword “use” and are accessible by using the “$” sign followed by the previously declared
label. They are meant to avoid the repetition of commonly used sub-behavior by assigning
it a small user-defined name. As in previous examples, “?” is used to express an irrelevant
non-behavioral expression that will not disturb the normal flow of the example and therefore
is hidden to simplify the code.

3.1 Files

This is the short presentation of the file example, the full listing is on appendix D.1.

We decided to simplify the protocol while also respecting the most common uses of files.
This means that some additional possibilities (like for example to allow a file - opened with read
and write permissions - to still be writable after a read call has failed) are not present as they
would make the usage protocol too complex and hard to understand (since it needs to attach
different exceptions on each read call). Future work could be done to improve the readability
of these protocols with constructions that can be split in different and smaller protocols which
would then help in this situation.

Our file protocol restricts the allowed method calls to be consistent with the permissions
given by the chosen open method. This means a read only file will not be allowed to call any
of the write methods. Also, even if an error occurs in the use of a file, it still must be cor-
rectly closed as expressed by the IOException exceptional behavior. We also allow for a non-
existing-file error to be recoverable by changing the target path and retry from the beginning
of the protocol.

On the Main classes we show several possible correct uses of the File usage protocol.

interface File{

usage &start((

( openRead ; read* ) +

( openWrite; write* ) +

( openReadWrite; (read+write)* )

; close

)[ openRead, openWrite, openReadWrite

-> FileNotFound: stop+(changeFile;start) |

read, write

-> IOException: close ] )

/* ... */

}

class Main{

readSomeMore(File#(read*)[IOException:stop] file) throws IOException {

file.read();

}
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loopOpenRead(

File#&start( openRead [ openRead

-> FileNotFound: changeFile;start ] ) file){

repeat{

try{

file.openRead();

return null;

}catch(FileNotFound exception){

file.changeFile(file.name()+"0");

};

}

}

main(){

File file = new FakeFile();

if( Lib.random() >= 0.5 ){

loopOpenRead(file);

}

else{

try{

file.openRead();

}catch(FileNotFound exception){

return null;

};

};

try{

while( false ){

file.read();

};

readSomeMore(file);

}catch(IOException exception){ };

file.close();

}

}

The following class shows situations in which the typechecker detects behavioral inconsis-
tencies.

class Fails{

error1(){

File file = new FakeFile();

file.openRead(); //ERROR: unhandled exception ’FileNotFound’

try{

file.read();
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file.read();

}catch(IOException e){}

} //ERROR: incomplete behavior in ’file’

error2(File#&start( openRead [ openRead

-> FileNotFound: changeFile;start ] ) file){

repeat{

try{

file.openRead();

}catch(FileNotFound exception){

file.close(); //ERROR: illegal call to ’close’

};

} //ERROR: invalid ’file’ behavior for loop

}

}

3.2 Machines

In this example (full listing on appendix D.2) a generic block is modified by a set of machines
in a particular sequence given by a specific blueprint class. Thus, in order to correctly build
some object it defines a sequence of operations that must be applied to one or more blocks.
Unfortunately, since no dynamic query-by-protocol is available in the language (see future
work, section 5.1) every machine use is frozen in the code as each one of them has particular
and well defined features. The flow of the object through the factory production line also
becomes somewhat “ugly” as we also do not have parametric types that could improve the
code’s modularity (see section 5.1) and instead must rely on using these machines in argument
form to simplify the code.

Nonetheless, this example shows some interesting features of the language as it controls not
only the use of these machines but also some of the block’s abilities in order to avoid possibly
erroneous operations (like welding a block after it has been painted, etc).

class Block{

usage (cut+bend+weld+paint)*

/* ... */

}

class Bender{

usage ((lock;(bend*+twist);release)*;standby)*

/* ... */

}

class Painter{

usage (( enter; ((rotateLeftGun+rotateRightGun)*;paint)*; exit)*; standby)*

/* ... */
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}

class CarBlueprint{

bend(Bender#lock;(bend*+twist);release bender, Block#bend* b,

integer angle, integer amount){

bender.lock(b);

if( angle > 180 ){

bender.twist(b,angle,amount);

}else{

while(angle > bender.maxBend() ){

bender.bend(b,bender.maxBend(),amount);

angle -= bender.maxBend();

};

bender.bend(b,angle,amount);

};

bender.release();

}

object build(BlockWharehouse w, Factory m){

Bender bender;

Painter painter;

try{

bender = m.getBender();

painter = m.getPainter();

}catch(EmptyMap error){

//intentionally stops every machine found

return null;

};

Block wheels = w.getBlock();

Block car = w.getBlock();

/* ... */

bend(bender,wheel_fr,90,100);

bend(bender,wheel_fl,90,100);

bend(bender,wheel_br,90,100);

bend(bender,wheel_bl,90,100);

/* ... */

//paint here...

painter.enter(car);

painter.rotateLeftGun(90);

painter.rotateRightGun(90);

painter.paint("black",3);

57



3. EXAMPLES 3.3. Purchase

/* ... */

Block#stop done = painter.exit();

m.returnBender(bender);

m.returnPainter(painter);

return done;

}

}

3.3 Purchase

This example has many different types of orders, in here we will only show two (the full listing
is on appendix D.3). All orders’ behavior end in the same way as they all allow for the review
and purchase of the product. This is deliberately made so that they all can be stored in the
same container based on this partial type. Any order can be kept in an waiting state inside
the container for an undefined amount of time. These orders will be implicitly canceled if the
program ends as they model a kind of wishlist.

Each different type of order requires a specific sequence of calls so that all their requirements
are filled. For instance, on travels it requires to chose from either a specific travel package or
select a flight and hotel. These types can also be combined or nested together as in the case of
the TravelOrder requiring a FlightOrder when booking a flight.

interface Order{

usage review*;buy?

string review();

buy();

}

class TravelOrder{

usage (packageAlaska+packageArtic)[SoldOut: stop]+

(flight;hotel); (review*; buy?)

use done = review*;buy?

flight(owned FlightOrder$done order) { }

/* ... */

}

class FlightOrder{

usage userData[NoFlyList: stop];

&start(

( flightNumber[InvalidFlight:start+stop] ;

&seat(flightSeat[InvalidSeat:seat+start+stop]) )

+
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&choose( (destination;origin)[InvalidPlace:choose+stop] );

returnFlight? ;

insurance? ;

(review*; buy?)

)

use done = review*;buy?

/* ... */

}

Some fail cases:

class Fails{

error1() throws NoFlyList{

TravelOrder travel = new TravelOrder();

FlightOrder order = new FlightOrder();

order.userData(...);

//ERROR: on ’NoFlyList’ throw -> ’travel’ still has incomplete behavior

//...

}

error2() {

TravelOrder travel = new TravelOrder();

FlightOrder order = new FlightOrder();

try{

if( ? ){

travel.packageAlaska(...);

order.userData(...);

}

else{

order.userData(...);

travel.flight(...);

travel.hotel(...);

};

travel.buy(...);

}

catch(SoldOut error){

return null; //ERROR: ’order’ still has incomplete behavior

}

catch(NoFlyList error){

//ERROR: ’travel’ with incompatible catch behavior

}

//...

}

}
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The Prototype

The type system presented in the previous chapter was implemented in a prototype. As with
any proof-of-concept implementation, the main objective is to make the code clear and simple
even if this means choosing less efficient algorithms. Therefore, some optimizations are left
undone and minor tricks that could improve the overall complexity of some of these rules
are not used. Hopefully this should make the resulting implementation easier to read and
understand.

Also, as a result of this code being the continuation of a previous work [26] it carries some
decisions and requirements that might look out of place for the specific set of objectives we set
for this dissertation. Namely, there are some additional syntax (related to concurrency) which
will not be detailed and the whole apparatus of creating a parser, interpreter and type system
could have been cut to just the last if this were a completely fresh project.

As mentioned before, this is not the exact same version of the grammar and rules presented
in a previous chapter as those would be rather restrictive and limited to be used directly. In-
stead, we have extended that basic set (while retaining the general intention of that system) by
adding some syntax sugar and combining typing rules together. This full grammar will not be
presented in this text but it is listed at the end (see appendix A).

Conclusively, the following sections contain the description of the most important algo-
rithms of the prototype. Pseudo-code is used for better readability while also providing refer-
ences to the appropriate part of the source code (file and line) that has the real implementation.
We start by briefly introducing the central technologies used throughout this project (all freely
available) that might be useful to anyone interested in understanding or changing the code.
After that, we present a small list of the main extensions and differences to the formal type
system. We then proceed to introduce the type checker describing all of the created logic before
shortly explaining the interpreter and the distribution mechanism.
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Figure 4.1: General program flow.

As explained in figure 4.1, the general program follows a very simple and modular ap-
proach. The parser builds an AST tree with the program structure (see appendix C.2 for the
run options to draw it), this tree is then passed on to the typechecker that analyses the pro-
gram’s correctness or its evaluation is calculated if it is handed to the interpreter. The visitor
design pattern is used to visit each of those (relevant) nodes. Complexity wise, we will only
comment on the computation time of each visit method while leaving the overall complexity
analysis to the remarks section.

4.1 Technologies

This prototype was developed using a group of freely available technologies, namely:

Java [30] programming language, developed by Sun Microsystems. It is a widely used lan-
guage, with a large and well documented set of libraries and support for OS indepen-
dent code compilation that runs on any java virtual machine regardless of the underlying
hardware architecture. Another relevant aspect is the possibility to easily extend and add
features to web servers using Java Servlets.

Jetty [31] It is a free and fast implementation of the Java Servlet API, with special attention to
resource efficiency and a general small run-time footprint.

JavaCC [32] This java compiler compiler allows to quickly create parsers and also has a small
set of tools for the Eclipse IDE [33] (like a plug-in [34]) to help the development of new
grammars.

JDom [35] Although the Java programming language already includes support for XML ma-
nipulation in its class libraries, this library simplifies much of work needed and also en-
joyed from good experiences from its use in previous projects.
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JUnit [36] testing framework was used for all unit testing needs in order to ensure any new
feature or bug fix did not cause any regression or the introduction of some new abnormal
behavior.

dk.brics.automaton [37] This efficient and fast automaton provides a large set of operations
making it the ideal base for adding the extra functions required to the type system.

4.2 Main changes to the formalization

As said before, this typechecker expands the previously presented type system rules into a
more user friendly version while still maintaining the core idea of each one of them. In this
section we will present the most important changes and how they were addressed in the pro-
totype.

concurrency The complete grammar has some additional concurrency construction (fork of
the program flow and parallel composition of statements) that do not have an appropriate
typing rule. Therefore, and to avoid any possible interferences all behavior and exception
throwing in these expressions is strictly forbidden.

discard Instead of forcing all values to be stored in variables, we control all newly created
references so that, at the end of a statement their behavior is either completed (stopped)
or was saved somewhere (in a variable, returned or passed as an owned argument).

non-owned These variables are no longer constants as we control their flow in the program
code. Thus, some rules where extended to account for changes in the owned flag on
different branches, etc.

nulls Instead of just relying on the subtype system, we allow for all stack variables to receive
the null value as a stopped type. This is also the variable’s initial content. Note that this
only applies to stack variables, not arguments or returned values.

fields Classes with stopped usage protocols can have their fields content changed in any method
as long as that variable’s static type has stop behavior. This is only valid because there
is never the chance to occur an inconsistency derived from a behavioral method (as, since
it is a stopped usage protocol, there are none). Thus, in this case, the use of a behavioral
field ends up being as if it were just a normal stack variable without behavior.

interfaces As a simple abstraction mechanisms, interfaces can be used as abstract classes.
Therefore, interfaces are simply classes without any constructor and whose method’s
have no actual body.

static variables We include simple static variables that always have a stopped behavior as their
use can appear in any context.
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4.3 Implementation of the Typechecker

The developed typechecker is intended to validate any program written in the yak language in
terms of its behavioral properties. Therefore, it does not try to solve inconsistencies that may
arise from other types of errors (which still may occur at run-time), namely: null pointer excep-
tions, broken remote connections (when using remote objects) or even invalid generated XML
code (when using invalid names in the XML constructor which will throw a JDom exception).
Also note that the rules defined do not cover the whole (implemented) grammar as they do not
handle the concurrency constructions. Therefore the two existing expressions, ”fork E” and
”E|E”, have all behavioral calls and exceptions blocked from use in order to avoid possible
interferences with the rest of the typing rules.

The typechecker was implemented using the visitor pattern to transverse the useful AST
nodes of the parsed tree. For that reason, the significant constructions are usually linked to a
specific visit method (in the typechecker) for the corresponding node type.

Before describing each of the typing algorithms we will first introduce some of the used
structures and operations. Thus, we start by a detailing the automaton and its simulation
operation (including some examples), followed by a briefly description of the environment
snapshot method. We then proceed to show each one of the type checking code. The pseudo-
code used is intended to serve as an introduction to the real implementation and therefore it
closely resembles the final Java code while hiding some of the more complex details.

Only the most important aspects of the prototype are presented. We refrain from explain-
ing some (mostly) simple code that does not add much new information to what was already
described in the formalization chapter or code that does not include any new relevant idea. For
example, the subtyping algorithm is very similar to the one presented in the article ”Subtyp-
ing Recursive Types” [38] and as such the only really new restrictions were described in the
formalization chapter. Consequently, this algorithm is not described in here.

4.3.1 Basic mechanisms

The automaton

All declared protocols are internally translated into finite deterministic automata. The used
automata are basically a slightly modified version of the dk.brics.automaton [37]. Some mi-
nor tricks were needed in order to use labeled transitions and exceptions and also some other
changes were necessary as a consequence of the specific context of this prototype (like using
sections of the same automaton within an intersection operation, etc). We will only present
the newly implemented functions. However, this library provides a large set of well known
operations that were used but will not be shown in here since their detailed description can be
found elsewhere [4].

An issue on how Java handles servlet libraries lead to the need of all the implemented ex-
tensions to be placed inside the same package as the rest of the automaton library. Therefore,
operations that were modified from the original automaton source code (in this case mostly just
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the automaton intersection) were placed in dk.brics.automaton.ModifiedOperations

while newly added operations are in dk.brics.automaton.YakOperations. Finally, it
was also necessary to make a special construction method to delay the insertion of recursion
and exceptions links and produce the intended automaton. There is also a “quick and dirty”
automaton viewer that, although far from pretty, is sufficiently functional to serve as a debug-
ger tool for the creation and simulation algorithms (details on how to use it are in appendix
C.2).

The YakAutomaton class is mostly an extended version of the normal automaton that stores
its history (called transitions), the initial creation expression and calls the correct version of the
operations. The saving of the transition history is only needed because we do not have an
appropriate algorithm to translate the currently allowed automaton into a readable protocol.
We also chose to make a small cache of all newly created automata and called intersection
operations as our implementation rules may cause some possible repetitions (see recursion)
that will benefit from reusing these structures.

Note that although the degree of freedom allowed by the protocol syntax may cause the
creation of empty automata (without a reachable accept state, example &x(r;x) ) this situation
is flagged as an error since it will always be impossible for any program to satisfy this behavior.

The complete listing of all automaton protocols is in appendix B and as such, in the remain-
ing of this section we will only briefly detail the intricacies of the most important automaton
constructions: exceptions and recursion.

Our automaton construction algorithm can not use directly the same construction code as
in the automaton library since we don not follow a feasible creation flow compatible with their
construction methods. For that reason, we first create a non deterministic finite automaton
that is then translated to their structures and determinzed/minimized. All of our side of the
construction is not particularly optimized as we focused more in the typechecker rules and as
such there is room for improvements in this section of the code.

The following constructions can be seen as separate sub-automata that are then attached to
the larger one when all the branches have completed their construction process.

Exceptions Exceptions are just normal transitions but whose label is only satisfied in the con-
text of a throw statement. The special behavior is always linked as a separate independent
automaton, this means that at the end of its behavior there is no link back to the normal au-
tomaton (the normal and exceptional behaviors are completely disjoint). There is also a normal
exception declaration (i.e., non-behavioral) for these protocols which simply loops to the same
state after a throw as the behavior remains the same.

The example in figure 4.2 depicts the automaton produced by the protocol

normal[Error0|Error1 : exceptional]; end

that has a method called normal that may either throw a normal (non-behavioral) exception
(Error0) or a behavioral one (Error1). After the first method is called it must proceed to call
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Figure 4.2: Automaton for protocol normal[Error0|Error1 : exceptional]; end

Figure 4.3: Automaton for protocol &label(normal; label + stop)

the end method except when its behavior changes after the exception Error1 is raised. In that
case, only the exceptional method should be called. Since this is just a very simple protocol, it
is possible to list all valid sequences of behaviors:

• normal; end - when no exceptions are thrown;

• normal;Error0; end - when the non-behavioral exception Error0 is raised;

• normal;Error1; exceptional when Error1 is flagged in the initial method.

Recursion The theoretical idea of protocol recursion is to allow the repetition of a specific
section by unfolding it into the labeled position. However, to fully respect this it would be re-
quired a context independent grammar which has known and complex implementation prob-
lems. Therefore, the presented solution is a much more limited and simple subset of this idea
by instead just linking the labeled position back to the labeled automaton node. This pointer
scheme, although less flexible, should be sufficient for most cases specially since this construc-
tion’s main purpose is to allow recursion in the behavior of exceptions (in other words, allow
the repetition when/if an exception is raised).

This means that some recursive protocols (even if syntactically correct) may produce erro-
neous or unsatisfiable automata. For example protocols &x((a; a; a)?;x) and &x(a + stop;x)
are not correctly constructed by our protocol recursion algorithm as the loop linking operation
breaks the acceptance state.

Figure 4.3 shows a recursive protocol that is correctly translated into a finite deterministic
automaton by our construction algorithm. This example is actually equivalent to the non-
recursive protocol normal∗ but there are cases in which there is no possible conversion among
the notations. Incidentally, these two notations can be mixed together which is not recom-
mend as the produced automaton is kind of hard to foresee without detailed knowledge of the
implementation.
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Figure 4.4: Automaton for protocol &start(rollDice[Lost : start]; celebrate)

The main argument for the inclusion of a recursive construction for these protocols is to
model the situation represented in figure 4.4. It described the behavior of a compulsive gambler
(with infinite money) that plays dice forever until he wins. Therefore, in a win situation it then
calls the celebrate method but if the Lost exception is thrown it goes on to re-try the game
again.

The remaining construction operations are detailed in appendix B.
Even though the construction of this automaton could have some improvements, the ex-

pected code complexity would still remain exponential in the number of states as a conse-
quence of the determinization operation. Therefore, we try to minimize the number of new con-
structions by caching these automata as much as possible and only creating new ones mostly
in the beginning of the typecheck.

Simulation algorithm

This operation will expand the normal automaton transition in order to allow another automa-
ton to serve as the forwarding term. As a result, this operation can also be used to test if the
smaller automaton (which might be more than just a single transition) can be temporarily used
as a subset of the larger one (upon which the simulation operation was called on). At the core
of the simulation algorithm is the matching function that starts with an initial state from each
automaton and goes on to try and match the whole reachable states. After this function has
forwarded the original automaton with the smaller one, it then must intersect all of the end
nodes to create an automaton that shares all those valid behaviors.

Note that our implementation requires not only the automaton to be deterministic but also
minimized.

The more generic pseudo-code of the implementation is:

s1.simulate(s2){

match (super = s1.startNode) with (sub = s2.startNode)

super.nomalTransitions contains all sub.normalTransitions;

sub.exceptionsTransitions contains all sub.exceptionsTransitions;

for each common transition

continue matching transition.destination nodes;

return intersection of all resulting (end) nodes;

}

Name wise, we call the automaton that suffers the simulation operation (s1) the larger au-
tomaton or from a sub-typing point of view the super-automaton (as it is related to the su-
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pertype). The automaton that is used as the argument of it (s2) is in turn called the smaller
automaton (as it must be contained inside the previous one) or the sub-automaton.

On each pair of possible matched states it then tests their set of transitions to determine if
they are compatible. This compatibility is based on the subtyping principle where the matching
automaton must be able to be safely used as a replacement of the base one.

Therefore, these two following rules expand on that idea:

normal transitions The super-automaton must at least have all the transitions of the sub-
automaton. Thus, any choice in the sub-automaton has to be matched to one in the larger
automaton. This is not a reflective properties as the inverse situation is not required as
any transition in the larger automaton might not appear in the smaller one (this will just
cause any of those extra choices to become hidden). (remember a+ b+ c

a+b−→ stop)

exception transitions Exception wise the transition situation is the opposite of the previous
rule: the smaller automaton must have all the exception transitions of the super-automaton
but it is also allowed to declare more than that (intuitively this means the super-automaton
can not surprise the sub-automaton with unexpected exceptions but the last one can
account for additional errors that the super-automaton will never throw). (remember

a[N : b]
a[N :b|M :c]−→ stop)

The remaining of the matching function just needs to group every matched state and un-
fold any possible repetition. As a consequence of the specific way we build these automata,
any exception transition in the beginning of the match must be ignored as it is referring to an
impossible situation of a threw exception without a method call. This only happens when we
reuse a subsection of an automaton without actually detaching a copy of it. Since it is just an
implementation note, it will not appear in any of the examples.

All the end states of the smaller automaton are potentially end states after the simulation
has ended. As such, by getting the appropriate matched state in the larger automaton and then
intersecting all these resulting automata we get the final commonly shared behavior. Therefore,
the final remaining automaton is based on all possible stop position of the smaller automaton
and the behavior they may leave in the larger one.

A simple example of the matching of states is portrait in figure 4.5. This examples shows
the matching of both normal and exception transitions and the produced result. Nodes 1 and 6
match since the larger automaton (to which the simulation operation was applied to) contains
all the smaller transitions. Node 2 unfolds to match both 7 and 8. The matching on exception
transitions is the reversed condition of the matching of normal transition, therefore nodes 3 and
9 are matched together since 9 contains all of 3’s exceptions. 4 and 10 share similar transitions
to a terminal state. Finally, the intersection of all terminal states leads to the resulting stopped
automaton (node 13).

We also include the same simulation examples as presented in the formalization section
in figures 4.6, 4.7, 4.8, 4.9, 4.10. However, the resulting protocols, although always compati-
ble with the results in that section, might contain some additional behavior as the produced
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Figure 4.5: a+ b+ c; r∗;x[A : a]
a+b;r;x[A:a|B:b]−→ stop

Figure 4.6: a∗
a;a∗−→ a∗

automaton must accommodate all simulation possibilities for those arguments (instead of just
checking if a result is valid).

Of these examples, we are only going to briefly describe figures 4.6 and 4.10 as they are the
only ones with a resulting automaton. On the first one the matching of nodes is quite simple
and the interesting part is the final intersection. For that, node 3 is linked back to node 1 in the
original automaton, since it is the only terminal node the final automaton is itself by default.
On figure 4.10, after the matching is completed, the automaton a[I : a] contains two end nodes
(2 and 4) which are then linked back to nodes 6 and 9 in the larger automaton. By intersecting
the two we then obtain an automaton with the protocol b as it is the only shared behavior of
the previous ones. This means after using the smaller automaton it is still required for one
additional call to b to be made even if the automaton from node 9 does not actually require it
as it is needed to satisfy the automaton from node 6.

We will now present a more clean version of the create code. Although refraining from show-
ing all of the simulation algorithm, we instead include the central piece of it: the matching and
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Figure 4.7: a∗ + b∗; c
a;a∗;c−→ stop

Figure 4.8: (a; c; c∗) + (b∗; c)
(a+b);c−→ stop

Figure 4.9: a[I : b]
a[I:b|O:p]−→ stop
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Figure 4.10: a[I : a; b∗]; b
a[I:a]−→ b

transition-checking algorithms.

Starting by the code that is intended to test if two transition sets are compatible and if so
return the pairs of states (nodes of the automaton) which should be matched later.

/** pseudo code for "dk/brics/automaton/YakOperations.java:289" */

checkSubsetTransitions( Set<Transition> sub, Set<Transition> sup,

boolean exceptions_enabled ) {

Set< Pair<State,State> > result = new Set<Pair<State,State>>();

//sub must have all non exception transitions of sup

for( Transition tsub : sub ){

if( tsub.isExceptionTransition() )

continue;

boolean found = false;

for(Transition tsup: sup){

if ( tsup.label == tsub.label ) {

result.add( new Pair<State,State>(tsub.to,tsup.to) );

found = true;

break;

}

}

if( !found )

throw ERROR;

}

if( !exceptions_enabled )

return result;

//sup must have all exception transitions of sub

for(Transition tsup : sup){

if( !tsup.isExceptionTransition() )

continue;
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boolean found = false;

for(Transition tsub: sub){

if ( tsub.label == tsup.label ) {

result.add(new Pair<State,State>(tsub.to,tsup.to));

found = true;

break;

}

}

if( !found )

throw ERROR;

}

return result;

}

Complexity wise, this simple method will iterate over both sets of transitions and check
if they are included in the previously described way. (Actually, this kind of compatibility
check must be done twice: one for the normal transitions and another one for the exception
transitions, however they are both in the same (generic) transition set.) Therefore, the overall
complexity of this algorithm is O(n2), where n is the largest number of transitions in either set.

/** pseudo code for "dk/brics/automaton/YakOperations.java:226" */

match( State s1, State s2 ) {

Set< Pair<State,State> > match = new Set<Pair<State, State>>();

List< Pair<State,State> > work = new List<Pair<State,State>>();

Pair<State, State> start = new Pair<State, State>(s1,s2);

work.add( start );

while( !work.isEmpty() ){

Pair<State,State> p = work.removeFirst();

Set<Transition> transitions1 = p.a.getTransitions();

Set<Transition> transitions2 = p.b.getTransitions();

//exceptions are disabled on first match

Set< Pair<State,State> > transitions_match =

checkSubsetTransitions( transitions1, transitions2, p != start);

if( transitions_match != null ){

//deterministic thus only one possible match (or none)

if( match.add( p ) ){

for(Pair<State,State> pair : transitions_match){

State next1 = pair.a;

State next2 = pair.b;

boolean loop1 = next1.equals(p.a);

boolean loop2 = next2.equals(p.b);
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if( loop1 && loop2 ){

//transition matching should continue from some

//other transitions (if any remaining)

continue;

}

work.add( new Pair<State, State>(next1,next2) );

}

}

}else

//not matched, flag error.

throw ERROR;

}

return match;

}

The matching algorithm is simply an iteration over all (possibly) matchable states between
the two automata. It avoids repeating already matched pairs of nodes and for each possible
pair it might have to do the previously described transition checking. Therefore, this will cost
O(n2)×O(n2) = O(n4), with n being the largest number of either states and transitions.

Finally, it only remains to present the intersection operation that is used directly from the
dk.brics.automaton library and is used over all resulting automata. Since this operation
has quadratic complexity and it has to be applied for each one of those automata, the overall
cost will be O(n3). As such, the complexity of the simulation remains as a O(n4) operation.

Snapshot of an environment’s behavior

When there are different program flows to consider it is needed to store the environment state
before testing each branch as the same environment structure is shared between those tests.
Therefore, this class is used every time it is needed to save the state of the dynamic type in all
currently reachable variables. This is done by copying the content of each one of them in order
to keep this information in an unchangeable place. It also allows to copy this content back to
an environment, if needed.

Although this class does just a simple copy (O(n), linear in the number of reachable vari-
able), a more efficient alternative could instead use a kind of “copy on write” method to spare
some unneeded duplication when there is unchanged variables. The operation to apply the
snapshot to an environment has the same complexity. Note that we only copy the pointers to
an automaton since these structures are always shared (an never changed after creation).
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Figure 4.11: if-else statement syntax and code flow.

Figure 4.12: if-else example.

74



4. THE PROTOTYPE 4.3. Implementation of the Typechecker

Figure 4.13: a;((b;c)+(d;c*)) automaton.

4.3.2 Program Constructions

If-Else

This construction introduces a simple branch in the code flow that must be correctly accounted
for afterwards. The essential idea is that the normal code flow splits in two and in the end of
each branch it must merge back the behaviors into a single commonly shared one (as shown
in figure 4.11). Since the behavior is represented by an automaton, this merge is just a simple
intersection of each of those two possible different code paths. Additionally, since there is
also the ownership flag to take into consideration, the final value of this flag must always
avoid possible use errors. Thus, the owned value will only remain true if both sides have it set
and, since the disabled flag only restricts the variable’s use, there is no additional side effects
expected. Intuitively this means that no value can be returned or stored internally if at least
one of the branches will not allow it.

Example:

method(A#a;((b;c)+(d;c*)) a){

if( a.a() ){ // A#((b;c)+(d;c*))

a.b(); // A#c

}

else{

a.d(); // A#c*
};

// A#c

a.c(); // A#stop

}

In this example, the type for the variable a starts with the automaton depicted in figure
4.13. Each branch does a different choice that restricts the future allowed behavior by following
different paths (node 3 versus node 4). These two protocols have different allowed behaviors
and thus they are intersected together which produces a commonly shared behavior that will
validate the last call to c.
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Finally, the pseudo-code for the implemented solution:

/** pseudo code for "src/yak/type/TypeChecker.java:1045" */

visit( ASTIfElse ast , TypeEnvironment env ) {

//checks if condition is a valid boolean value

expression( ast.condition(), env, BOOLEAN );

Snapshot after_condition = new Snapshot(env);

Snapshot after_if, after_else;

//if-branch

boolean if_returns = statement( ast.if_body(), env );

after_if = new Snapshot(ev);

//reverts environment to after condition state

after_condition.copyTo(env);

//else-branch

boolean else_returns = statement( ast.else_body(), env );

after_else = new Snapshot(env);

//both return -> #stop

if( if_returns && else_returns ){

stop( env );

return;

}

//only one returns, the other remains...

if( if_returns ){

after_else.copyTo(env);

return;

}

if( else_returns ){

after_if.copyTo(env);

return;

}

//neither returns, for each variable do

for( Variable var : env, after_if, after_else ){

env.var.owned = after_if.var.owned && after_else.var.owned;

env.var.automaton =

intersection(

after_if.var.automaton,

after_else.var.automaton

);

}

}

As mentioned before, all typechecking is done based on traveling through each node of the

76



4. THE PROTOTYPE 4.3. Implementation of the Typechecker

parsed tree and as such, we will comment on this check complexity by ignoring the remaining
paths checking complexity. All environment snapshot and copy to operations have a linear
computation time and as such the most expensive operation is the intersection of each variable
of the two branches at the end of the if else. Thus, at this particular node (i.e. ignoring
the rest of the code flow in the program) we have a O(n3) computation time as is given by the
automaton intersection operation applied to all reachable variables in the environment.

Note that the if else as an expression is very similar to the if else as a statement with
two main differences: both bodies are evaluated as expressions (instead of as statements) and
the final resulting type must be the same in both sides (just like in any normal object oriented
type system). Therefore, it will not be presented in this text.

While and repeat

These two loop statements share some similarities as the repeat statement is basically a while
loop with an always true condition. However, this construction is needed since otherwise the
typechecker would have to account for possible return values of the condition (not just the
type). This would break the typing rules and the general typechecker abstraction layer. It could
also lead to some less intuitive implications when the code is changed (and the return value of
the condition can no longer be statically known). Thus, the two main differences between these
constructions are: repeat statements do not have conditions and only the while statement
needs to continue after the loop (that is, any code after a repeat statement is unreachable since
there is no break statement in our grammar).

i(A# &start( m[Error: start] ) a){

repeat{

try{

a.m();

return; //only return position

}

catch(Error error){

//loop for another try...

}

}

//this point is never reached

}

The previous example shows the specific situation on which the repeat statement is nec-
essary. In this case, the protocol specifies that the method m must be run exactly once success-
fully but if an exception is thrown it must be retried again until it eventually succeeds. For this
kind of “retry on error”, the while statement is insufficient as it assumes there is always the
possibility of the condition to fail and on that situation it would not cause the protocol to be
completely satisfied.

However, this expressiveness is not needed if recursion is used. This will be detailed in a
more appropriate section (see section 4.3.3) but, as is general knowledge, recursive methods
have some limitations in regards to stack overflows and overhead.
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Figure 4.14: while statement syntax and code flow.

r(A# &start( m[Error: start] ) a){

try{

a.m();

return; //recursion base

}

catch(Error error){

r(a); //recursion loop

}

}

As such, both loops will be presented in this same section with the repeat being a special
case of the more generic while loop.

The while flow is a type of code block that can be repeated zero or an unpredictable num-
ber of times and that will always end after an evaluation of its condition. In order to allow
another evaluation of that condition it is required for the state of the environment after the
evaluation of the loop’s body to be compatible with the state before the loop is called as shown
on figure 4.14.

However, there are three different possible situations for the state of the automaton after an
evaluation of the body: it could be in a more generic state that allows “more” behavior, it could
be in a more restrictive state or it could even be in an incompatible state. The last situation is
clearly incompatible with this statement flow and therefore is flagged as an error (see figure
4.15) but the other previous two must be individually analyzed.

In the first case, when the behavior is more generic (figure 4.16), this will never cause prob-
lems since to reach this state all the code in the while was already checked to be compatible
with a more particular situation (smaller automaton) and therefore there is no special addi-
tional check needed and the flow may continue normally with the behavior after the condition.

In the second case (figure 4.17), however, the situation is a little more complicated. It is
unclear if the more restrictive behavior can be used or not in a possible next loop. This situa-
tion can happen when the while body does a choice in the automaton that will influence the
allowed future behavior (after the loop). In order to propagate the choices and know if this
restriction is compatible with the loop, the check is repeated with this new behavior as if it
were the initial one. This should eventually stop since the group of possible sub automata in a
deterministic finite automaton is limited and there can not be any oscillation since it is always
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Figure 4.15: While statement with incompatible flow.

Figure 4.16: While statement where the body leaves a more “generic” behavior.
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Figure 4.17: While statement where the body leaves a more “restrictive” behavior.

required the old one to be fully contained in the start automaton of the next retry. However this
could potentially require to travel though all possible automaton’s state before a conclusion is
reached (as each state may form the start node of a sub-automaton - note that this is mostly
related to option nodes (the choice and exceptions) not sequential constructions).

Thus, the implemented solution must account for all these three possibilities and check the
program code accordingly. For the repeat statement there is neither a condition nor an after
loop environment, and therefore it is just required for it to be able to loop back to the starting
point of the repetition with the same kind of possible restrictions as explained before.

Pseudo-code of the implementation:

/** pseudo code for "src/yak/type/TypeChecker.java:906" */

visit(ASTWhile w, TypeEnvironment env) {

//needs another go to check the loop...

boolean again = true;

while(again){

Snapshot before = new Snapshot(env);

//repeat does not have a condition

if( !w.isRepeat() )

condition( expressionDiscardCheck(env,w.condition()) );

Snapshot condition = new Snapshot(env);

boolean body_returns = body(env,w.while_body());

Snapshot body = new Snapshot(env);
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//body throws exception or returns (no loop)

if( body_returns ){

if( w.isRepeat() )

stop( env );

else

condition.copyTo(env);

return;

}

again = false;

for( Variable var : env, condition, body ){

env.var.owned = condition.var.owned && body.var.owned;

if( body.var.hasSimulation(before.var.automaton) ){

//body is "larger"

env.var.automaton = condition.var.automaton;

}

else {

//body is "smaller"

if( before.var.automaton.hasSimulation( body.var.automaton ) ){

env.var.automaton = body.var.automaton;

again = true;

}

else throw ERROR;

}

}

}

}

The implementation actually groups both while and repeat AST nodes together in the
same visit method. The distinction is only made by a simple isRepeat method. The algorithm
starts by checking both the condition and the body of the loops and with those states saved
it then decides if it needs to recheck this statement with a smaller automaton by checking the
behaviors of each of the reachable variables.

• body is more generic: this means the automaton from the body environment has a larger
behavior, and therefore also contains the behavior of the environment before the loop is
called. In this case the variable will not require another test.

• body is contained in the before automaton: in this case, the more restrictive behavior has
to be validated with the loop’s body. This means it is needed to repeat the check with the
initial environment in as if this smaller automaton were the starting state for the loop.

• body neither smaller nor larger: this situation is flagged as an error, since it is impossible
for the behavior to legally allow another loop iteration.
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If we ignore the complexity of checking the body and condition, then this verification will
have O(n6) time (although two simulations may occur per reachable variable) since the basic
loop check operation (O(n5)) can be repeated at most the length of the largest automaton in a
variable.

Assignment

In the prototype, an assignment operation is handled in a much simpler way as we make ex-
tensive use of pointers. This means that instead of having to control each variable’s dynamic
type explicitly it can be done just over the dynamic type structure as its real location is not im-
portant. This leads to some code simplification and more freedom on using a behavioral type
in some situations without requiring it to be stored in a variable. Another difference to the type
system rules is that we allow for the prototype to accept the null value on any stack variable,
independent of the static type.

The main checks of this construction will now be introduced in the same sequence as they
appear in the pseudo-code.

• the dynamic type of the variable must be in an accept state, as it is behavioral view will
be lost after the assignment of the new value;

• null values are only allowed when on stack variables (and will be seen as stopped types);

• the new type must be a valid subtype of the declared static type of the variable;

• if the static type is just a stop protocol, there is no need to change the possession of
the new type as this behavioral view does not interfere with it. Therefore, all ownership
values remain unchanged;

• the ownership flag must be set in the new type (that the variable receives) if the static
type requires it;

• the new type must reach a valid end state after being used with the static type’s behavior.
This is modeled as the simulated behavior of the static protocol must fulfill the new type’s
behavior;

• Finally, the ownership needs to change from the new type to the new content (which will
be stored in the variable). This means the new type will become stopped and the variable
receives the clone (since we are handling pointers we can not simply return the new type).

/** pseudo code for "src/yak/type/TypeChecker.java:1239" */

assign(Value static_t, Value dynamic_t, Value new_t, boolean stack){

if( dynamic_t != null && !dynamic_t.getProtocol().isAccept() )

throw ERROR;

//null handling

if( new_t == null ){

if( !stack && !static_t.getProtocol().isStop() )
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throw ERROR;

return static_t.stoppedClone();

}

subtyper.check(static_t,new_t);

if( static_t.getProtocol().isStop() )

return static_t.stoppedClone();

if( static_t.getOwned() && !new_t.getOwned() )

throw ERROR;

if( !new_t.getProtocol().hasSimulation( static_t.getProtocol() ) )

throw ERROR;

new_dynamic_t = static_t.clone();

new_dynamic_t.setOwned( new_t.getOwned() );

new_t.setStopProtocol();

return new_dynamic_t;

}

The only real complex code is the simulation operation and as such it pushes the whole
assignment check to the expected O(n4) computation time.

Method call and argument packing

Before a method call can take place, we must first check if the arguments are compatible with
the method’s signature. This starts by checking the resulting type of the type evaluation of each
argument expression. These types are then checked for uniqueness by testing the produced set
on all non stop parameters (not shown in the pseudo-code).

After that, each method must then be checked if the dynamic type is compatible with the
static type of the argument variable. Since this is modeling a method call it must also change the
type’s behavior to the after-call state, as if the call had been made and was already completed.

Pseudo-code, line by line:

• if the protocol is non stop, it can not receive a null value as that specific argument;

• the expected received type must be compatible with the one currently under check;

• non stop parameters will not need to be forwarded as their behavior remains the same;

• the protocol of the dynamic type must correctly simulate the protocol of the static type so
that all the static behavior is contained in it;

• the ownership must be set if it is required. Since this means the type is transferred to the
method’s body, the argument’s protocol must complete the dynamic type in order for it
to reach an acceptable state. After this, the dynamic type can not be further used and so it
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is forced into a stopped protocol (the accept state only requires for it to be safely stopped
at that point, but some additional behavior might also remain available and therefore it
must be explicitly blocked).

/** pseudo code for "src/yak/type/TypeChecker.java:1162" */

argument(Value static_t, Value dynamic_t) {

if( dynamic_t == null && !static_t.getProtocol().isStop() )

throw ERROR;

subtyper.check(static_t,dynamic_t);

if( !static_t.getProtocol().isStop() ){

if( !dynamic_t.getProtocol().doSimulation( static_t.getProtocol() ) )

throw ERROR;

if( static_t.getOwned() ) {

if( !dynamic_t.getOwned() )

throw ERROR;

if( !dynamic_t.getProtocol().isAccept() )

throw ERROR;

dynamic_t.setStopProtocol();

}

}

}

Again, this particular code block suffers from the complexity of the simulation operation
and since the overall check will apply this operation to each one of the arguments, the total
time will be O(n5).

We will not show in here the code that checks an expression give as argument and also if
that set has no (behavioral) repetitions, since we use pointers the checking is trivial. Thus, the
following code just handles a simple method call with possible call throws (each of them with
a logic that will only be introduced in section 4.3.2 - throw statement - as they share the same
code).

/** pseudo code for "src/yak/type/TypeChecker.java:1334" */

call(TypeEnvironment env, Value caller,String method,Value...args){

if( !caller.hasMethod(method, args) )

throw ERROR;

MethodValue m = caller.method(method, args);

Value result = m.check(caller, args);

if( env.context().isInternalCall(caller, m)){

Snapshot before_call = new Snapshot().snapshot(env);

env.context().checkInternalCall(this,context,m);

84



4. THE PROTOTYPE 4.3. Implementation of the Typechecker

Snapshot after_call = new Snapshot().snapshot(env);

for(Value throwed : m.getThrowns()){

before_call.copyTo(env);

thrownException(m,env,caller,throwed);

}

after_call.copyTo(env);

}else{

for(Value throwed : m.getThrowns())

thrownException(m,env,caller,throwed);

}

discardWatcherAdd(result);

return result;

}

This also shows a change in the prototype in relation to the check of a possibly discarded
value. Instead of always forcing a value to be stored inside a variable we allow for it to be more
freely used. Therefore, we must save the pointer to each of those types and assure it was either
completely consumed in that statement (so it may be safely discarded) or that it is now saved
somewhere so it may still be used later.

Return

Returning a value has some interesting additional constraints that must be respected in order
to control the overall behavior of the application.

First, it is needed to check the behavioral permission of returning the type. This is simply
the same condition as used before on the assignment with the exception that there is no pre-
vious content in the variable (thus it is null) and it is not allowed for returning a null value
as representative of some other non stopped behavioral type. By using the assignment rule we
also check automatically the subtyping validity of the result and some additional side-effects
are immediately applied (like removing the ownership of the returned object).

Each existing return statement in the same method must be coherent among each other.
Therefore, we must also check the intersection of the field’s behavior with possible previous
return statements. This operation stores the shared behavior among these cases so that it
may be used later in the consistency check.

Lastly, all local environment variables must be in an acceptable terminal state as they will
fall out of scope and so no behavior can be left incomplete.

This operation carries the complexity of the assignment as everything else done in here has
less weight.

/** pseudo code for "src/yak/type/util/Context.java:98" */

checkReturn(Value returned,TypeEnvironment return_environment){

assign(method.getReturnType(),null,returned_type,false);
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//checkEnvironmentEnd(return_environment);

for( Variable var : return_environment ){

if( !var.dynamic_type.isStop() )

throw ERROR;

}

//intersectFields();

for( Variable var : fields, return_snapshot){

return_snapshot.var.automaton.intersect(fields.var.automaton);

}

}

Throw

The throw statement is handled in a very similar way as a return with the main difference
being that it has to end all environments up until it reaches the try catch construction (or
the throws declaration). It also has to save the common behavior of the throw environment
with the one that was thrown by some other previous throw statement of the same type. As
usual, this is simply done by intersecting the environment with the catch environment for that
type.

/** pseudo code for "src/yak/type/util/Context.java:186" */

catchesException(Method method, Value thrower, Value throwed,TypeEnvironment env){

SnapshotAndTryEnv previous = exceptions.find(throwed);

if( !thrower.getProtocol().isStop() ){

if( thrower != self ){

Value clone = thrower.automaton.clone();

if( clone.doThrowTransition(throwed) ){

env.replace(thrower, clone);

//checkEnvironmentEnd( env, previous.try_env );

for( Variable var : rnv < previous.try_env ){

if( !var.dynamic_type.isStop() )

throw ERROR;

}

if( previous.nonBehavioral() )

checkReturn( getReturnType(), env ):

else

found.caught.intersect(env, found.limit);

env.replace(clone, thrower);

return;

}

}else{

CacheNode cache = new CacheNode(method,throwed,this);

MapStruct s = env.context.throw_cache.get( cache );

s.caught.copyTo(env);
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}

}

}

//checkEnvironmentEnd( env, previous.try_env );

for( Variable var : env < previous.try_env ){

if( !var.dynamic_type.isStop() )

throw ERROR;

}

if( previous.nonBehavioral() )

checkReturn( getReturnType(), env ):

else

found.caught.intersect(env, found.limit);

}

After the throw type is obtained, we must register and check the compatibility of the en-
vironment’s state with any other of the same type that may have been thrown before (simple
intersection, again). For that we first get the structure that stores the snapshot of the environ-
ment and the top environment on which the exception is caught.

The handling of a behavioral exception (that causes a protocol change after the throw) is
done in a similar way to a normal exception. The main difference is in the changing of the
environment’s state for that particular variable’s dynamic type and then reverting it to the
normal path before returning.

On an internal call (since it will only appear in the last recursion pass - see section 4.3.3)
the state of the fields is always known, thus it is only needed to copy that snapshot back to the
environment before continuing to the normal throw check.

For the throw to be correct we must then check if the variables which will fall out of scope
(an thus that are not on the environment at the try catch level), are safely stoppable. Af-
ter that, the only remaining action needed is to save the environment behavior for a possible
catch branch. However, if the exception is in the method’s signature of a non behavioral ex-
ception then there is no need to account for the catch environment has they can not change
the fields behavior anyway.

From a spatial complexity point of view, each catch has to store a single copy of all reach-
able environment variables’ behavior even if an arbitrarily large number of intersections are
applied to it.

Try-catch

In order to check a catch it is required to capture all possible behaviors at any throw point of
the respective type that may occur inside the try body. Thus, all the environments in which a
throw of that type may happen must be compatible among themselves. This is necessary since
all those positions in the code may jump to a shared catch which must account for all those
possible situations.
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Figure 4.18: try-catch statement syntax and code flow.

Note that these throws might occur not only explicitly (with the throw statement) or im-
plicitly (when a method declares a throws list - each one of those is treated as a single throw
statement). Finally, the threw environment is captured after any possible behavioral exception
transitions. This means that after a throw the behavior is automatically changed to the re-
spective “exceptional/special behavioral”. It is also relevant to remember that all behaviors in
the environments that will lose scope must be in an acceptable state so that they can be safely
discarded.

This statement has a less obvious flow since any throw/call-throw statement inside the try
branch will cause a jump to the appropriate catch. Therefore, there can be one or more posi-
tions in the try code for this situation to happen but they are all merged together as described
previously. As such, this only leaves two checks remaining: the validation of the catch body
with the threw environment and obtaining the environment at the end of this statement. The
resulting environment is simply the combination of all possible end behaviors (catch branches
and normal flow) and as usual this is done with the simple intersection of those environments
to determine a compatible and common behavior (if it exists).

method(){

A#a+(b;c);c v = new A();

try{ //A#a+(b;c);c

if( ? ){

v.a(); //A#c

throw 0;

};

v.b(); //A#c;c

throw "flag";

}

catch(integer i){

//A#c
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}

catch(string s){

//A#c;c

v.c();

//A#c

};

//after try A#c

v.c();

}

The pseudo-code:

/** pseudo code for "src/yak/type/TypeChecker.java:360" */

visit(ASTTryCatch tc, TypeEnvironment env) {

Context context = env.context();

context.newExceptionHandlerLevel();

//register each catch branch

for( ASTCatch c : tc.catches() ){

context.addExceptionHandler( c.type_name() );

}

//try-body

boolean returns = body( env, tc.try_branch() );

Map<String,TypedEnvironment> exceptions = context.endExceptionHandlerLevel();

Snapshot after = null;

if( returns )

after = new Snapshot(env);

//check each catch body

for( ASTCatch c : tc.catches() ){

TypeEnvironment alter_throw = exceptions.get( c.type_name() );

after_throw.copyTo( env + c.parameter() );

boolean returns = body( env, c.body() );

if( returns )

continue;

if( after == null ) {

after = new Snapshot(env);

continue;

}

//normal intersection of environments

after.intersect(env);

}
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Figure 4.19: Simple try-catch example.

//all returned (no after)

if( after == null ){

stop( env );

return;

}

after.copyTo(env);

}

In figure 4.19 we show how the try catch flow is handled for a single stack variable.

4.3.3 Checking class consistency

In order to check the body of a behavioral method it is needed to take into account its behav-
ioral context on which the call will be made. Since the class’ fields change their behavior in
accordance to the sequence of calls made, it is not possible to determine if a method body is
correctly constructed without also considering the fields expected behavior on the moment of
a particular call. Therefore, we need to do this kind of class consistency check to verify if, given
the class usage protocol, all uses of the class’ fields in any behavioral method body respect the
field’s declared behavior.

Any class field has its use split among possible several method bodies. This may raise prob-
lems when those variables have non stop behaviors that must be accounted for. Since methods
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whose name is not contained in the protocol can be freely called and thus cause unpredictable
interferences, those variables are limited to a “constant view” in the sense they can not assign
new values or change the field’s behavior (by calling behavioral methods, etc). Therefore, only
behavior methods whose context is always known (it is declared in the protocol) can modify
behavioral fields.

However, this kind of verification is made independent of the context for any non behav-
ioral method check or if the usage protocol is stop (thus it does not have any behavioral meth-
ods). In this last case since there will never be any behavioral interferences from different uses
of the class’ fields. As such, for that case, we allow any method to use the fields by forcing
them to have stopped behaviors in a similar fashion to normal static variables (but only visible
at the class level).

/** pseudo code for "src/yak/type/util/ConsistencyChecker.java:74" */

checkConsistency(ClassValue self){

Collection<String> fields = self.getBehavioralVariablesNames();

Context context = new Context(self);

//1st - check non behavioral methods

boolean stop = self.getProtocol().isStop();

//block all behavioral variables

for(String s : fields){

VariableValue variable = self.field(s);

variable.dynamic_type.setStopProtocol();

variable.setLock( !stop );

}

for(MethodValue method : self.getBehavioralessMethods()){

context.clearFields();

context.resetStack();

//check method body

checker.checkMethod(method,context);

//end node, class variables must be in accept state

if( stop )

checkFieldsEndOfPath(context.getFields());

}

//2nd - don not check path stopped or no fields

if( stop || fields.size() == 0 ){

//normal method check

for(MethodValue method : self.getBehavioralMethods() ){

context.clearFields();

context.resetStack();

checker.checkMethod(method,context);

}
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return;

}

//behavioral methods check

//unlock all state variables (but keep null-state)

for(String s : fields){

Variable variable = self.field(s);

variable.setLock(false);

}

checkMethodsConsistency();

}

Before starting any check, all fields dynamic type are set to stop (null). As said before,
variable locking is only made if the usage protocol is non stop. We then proceed to check each
behavioraless method. There is also no need for contextual method check when there are no
field variables since interferences will never happen. Finally, this code ends with the unlock
of the fields and the call to a (soon to be described) method that checks the consistency of the
method’s body with the context given by the declared protocol.

When a class declares a non stop usage protocol the methods in that expression must be
used according to a specific context in the sense that they must obey a concrete sequence of calls
(traces). This gives all the information needed to verify the correctness of the fields behavior.
Basically this is simply done by traveling through the protocol’s automaton while controlling
all fields behaviors at the beginning and ending of each labeled transition.

This kind of check also assures the correct code modularity (each class must contain a cor-
rect block that can then be combined with others - also correct - ones) and that each class re-
spected the declared typing annotations.

The core of the algorithm is simply a depth first search for all possible conflicting behaviors.
We also warn about unused paths since they can not be tested.

/** pseudo code for "src/yak/type/util/ConsistencyChecker.java:156" */

checkMethods(){

List<Node> work = new List<Node>();

work.addFirst( new Node(

constructor(), //method to check

initialState(), //state

new FieldsSnapshot(self,"#stop") ) //fields’ state

);

visited = new Set<StateArray>();

while( !work.isEmpty() )

checkMethod( work.removeFirst(), work );

}

/** pseudo code for "src/yak/type/util/ConsistencyChecker.java:177" */
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checkMethod( Node node, List<Node> work ){

FieldsSnapshot out = checkSameNameMethods(node,rc);

//if this node is terminal (end of a path)

//all class fields must be in accept state

//useless -> if never returns

if( !useless(out) && node.state.isAccept() )

checkFieldsEndOfPath(out);

for( Transition t : node.state.getTransitions() ){

//true if not already visited

if( visited.add( new StateArray(node.state,t.getDestination(),out) ) ){

FieldsSnapshot in = out;

//switches to the appropriate exception FieldsSnapshot

if( t.isException() )

in = exception(out);

if( useless(in) )

throw ERROR;

work.addFirst( new Node(t.getName(),t.getDestionation(),in) );

}

}

}

/** pseudo code for "src/yak/type/util/ConsistencyChecker.java:232" */

checkSameNamedMethods(Node node){

//consistency for same named methods (like: A/0, A/1, etc.)

for(MethodValue m : self.nameMethods(node.method) ){

//revert class variables to before-call state

context.setFields(node.snapshot);

checker.checkMethod(m,context);

}

return context.getFields();

}

We start check by pushing the constructor methods and the initial automaton state into the
work stack, starting from an all stop state on each field. For each element in that stack we then
check the body of the method and add to the stack all possible (not visited) transitions that may
follow. Note that the visited condition also considers the state on each field. The fields state
is the returning one on normal transitions and the respective exception throw state on each of
those throws types. The search must also check the correct termination of the field’s use on
each possible automaton stop position. Finally, it is also important to note that methods with
the same name are checked together. This means that they must have consistent return and
throw field states.

Figure 4.20 shows a simple example of this verification for a simple class.
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Figure 4.20: Example of a class consistency check.
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The complexity of this operation goes beyond the depth-first search algorithm as it may
continue the search even after visiting all nodes in the automaton as well as the price payed for
checking the method’s body one each node position.

Internal call

We consider the protocol to be only related to the object’s external behavior. This means that
someone using that object must obey the specific sequence of calls required by its description.
However, internally, the object is free to call its own methods in any order it may require. This
should not cause any conflicts as long as two special rules are applied: the object’s protocol
only transitions with external calls (not internal) and non behavioral methods (those who can
be freely used in any situation) can not change (non stop) field variable. This last rule is neces-
sary to remove any possible interferences that they may cause since their call context is always
unpredictable. As a side-effect, this causes all non behavioral methods to be able to call behav-
ioral one as long as their bodies do not cause any changes in the fields of the class.

In view of that, any internal call although allowed, must be coherent with the current call
context (i.e. the fields state). This is done by importing the code to the current method body
(figure 4.21). Actually, to avoid too many checks it is used a cache of the internal calls based
on the field’s state at a particular call point. In other words, if the class’ fields are in the same
state as in a previously calculated internal call then (since they will cause the same transition
as before) the state afterwards is the same as the one in the cache. The base case re-checks
the methods body to find the reached state after that particular call has ended. We must also
consider not only the normal method termination (on a return) but also the case when one of
the declared exception (in the method’s signature) is thrown.

Presenting the pseudo-code for this section is rather complicated as this feature is combined
with the recursion algorithm since they have some dependencies between them. Therefore, the
following section will also contain some of the logic of what was described in here. The main
idea is that, to simulate this code import, we use a kind of fake call stack that tracks the state
of the check. Together with the recursion handling algorithm, this will avoid possible loop
sequences as the number of possible combination is limited by the automaton.

Call recursion

Recursive calls happen when a method calls itself in its body. As a consequence of the previous
section (internal calls), this might happen directly or indirectly when the body imports some
other method that in turn will call back one of those which was called before.

The main problem of recursive calls is then to determine the resulting behavior of each class
field after the call expression ends. In order to simplify the overall logic, we do this in three
different passes through the code:

• in the first (pre-pass), the recursion is removed from the AST tree so that any recursive
call is hidden;
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Figure 4.21: The code of n will be imported to method m for the type checking.

• on the second (base-pass), we use the previously obtained AST tree to calculate the re-
sulting base behavior for the recursion;

• on the third (full-pass), we just check that the complete (with recursion) AST tree is com-
patible with the previous behavior obtained in the base-pass. For non recursive method,
this is the base-pass.

This algorithm basically prunes all of the recursive branches in the code’s path which will
allow for a kind of pre-evaluation of the method’s code. The code to remove the recursion
will not be presented as it is too specific to our AST constructions, but it can be seen as simply
cutting out all code cases that are not the base one. This should make it easy to calculate the
state of the fields when the recursion stops (i.e., at the base case). There is never ambiguity
to know if a call is or not internal since due to the behavioral linearity principle applied to the
this pointer, any internal call has either no prefix or the this one. The only possible unknown
recursion points derive from non-behavioral calls and all these are irrelevant (to this analysis)
since they can not change a field’s behavior.

/** pseudo code for "src/yak/type/TypeChecker.java:1385" */

checkMethod( ASTMethodValue method, Context c ){

TypeEnvironment env;

env = makeEnv(c,method);

c.setMethod(method,env,base-pass);

if( isRecursive(method) ){

//pre-pass

AST non_recursive = removeRecursion( method, c.methodInStack() );

c.saveFields();

statement(env,non_recursive);

env = makeEnv(c,method);
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c.setFields( c.getSavedFields() );

c.setMethod(method,env,full-pass);

}

//normal path

statement(env,method);

}

This code is intended to do a normal (single pass) check on any non recursive method.
However, when a recursive one is given it must first remove the recursion branches and do a
preliminary check before the final and complete verification (with all the recursive field states
information available).

As a consequence of the internal calls presented in the previous section, this kind of recur-
sion might occur on multiple depth levels in the internal import stack. Thus, each must take
into consideration the current state of the stack to remove the recursion in relation to all the
methods that are already inside it.

/** pseudo code for "src/yak/type/util/Context.java:356" */

checkInternalCall(MethodChecker checker,Value caller, MethodValue m){

if( stack.contains( method ) ) {

//stack hit -> only happens on full-pass

Context c = stack.get( method );

//check before call

for( Value v : self.getFields(),c.self.getFields() ){

if( !self.v.hasSimulation(c.self.v) )

throw ERROR;

}

//before is ok, then jump to after call.

c.getAfterCallFieldsSnapshot().copyTo(this);

}

else {

//stack miss, check cache

CacheNode n = new CacheNode(method,this);

if( return_cache.contains(n) ){

//if some similar call sometime before

Context cached_c = return_cache.get(n);

//before call compatibility was used on get, so no need to check again

cached_c.getAfterCallFieldsSnapshot().copyTo(this);

return;

}

//needs to be push new checking method

Context new_c = this.clone();

stack.put(method, new_c);

checker.checkMethod( method , new_c);
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Figure 4.22: Recursive method handling.

return_cache.put(n, new_c);

stack.remove(method);

}

}

For checking an internal call it first tests if it is in the internal call stack. If so this means it is
after the removed recursion state and therefore it must already know the final states of the field
variables after the call has ended. As such it just checks if the current state is compatible with
the calling one and jumps all local variables to the after call state. When there is a stack miss it
needs to check the local call cache. This cache is indexed based not only on the method that is
being called but also the state of each field variable and hence there is no need for checking the
compatibility of the before call behaviors (as they are forcefully the same). A cache miss will
mean that there is another method to test with a (still) unknown field state result.

Figure 4.22 shows a simple case of recursion and how it is handled by the type system,
when checking the consistency of class C at the method m.

4.4 Implementation of the Interpreter

The interpreter follows a program structure similar to the type checker as both implement the
visitor pattern for the more relevant AST nodes. Therefore, it basically travels through the
parsed tree and evaluates each statement accordingly. Most of this evaluation process is pretty
standard and as such we will refrain from presenting a detail description.

All operators are internally translated into method calls that will then do the expected cal-
culations on the target object. Note that we don not allow for this operators to be redefined and
as such this translation is mostly transparent to the programmer. This is also true for all logic
operators (AND, OR). For that reason a logic operator will not stop when the remaining calls
became redundant. In other words, even if an AND term is evaluated to false the interpreter
will still evaluated the right term as it was internally translated to an appropriate method call
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(A&&B = A.$AND(B)) without any conditional evaluation.
Every object is only accessible through its reference. This reference can either be local

(pointer) or remote (location path - URL). Arguments are passed as copies of these references to
any method call and because of this most operations will return a modified copy of the object
instead of changing directly the target element. This is mostly visible in the XML operations
as the copy must be carried on on each modification. Although it might seem unneeded, this
will help the distribution abstraction. If we did not use this, the code could produce different
results based on its actual location (since we do not expose basic types to the outside world and
thus can not receive invocations).

As said before, there are a set of errors that can occur at run-time and will not be handled
by the type checker (namely errors in the constructions of the XML objects, broken communi-
cations, null pointer exceptions) which may cause abnormal program termination.

On the protocol side, we also provide an additional testing feature to re-assure the behav-
ioral correctness of an object’s use. This means that when an object is created (at run-time) it
will also carry the same automaton as the declared in the usage of the class. Therefore, each
method call will be first checked against the allowed transitions. However, it does not verify if
the objects behavior is completed at the time of destruction. This is intended as more of type
checker debug feature than an actual language functionality.

4.5 Principles of the distribution mechanism

All non basic types are automatically registered and exposed through a web interface by the
servlet. This means that upon creation any new object can be accessed from the outside. It is
also possible to invoke the constructor of a class remotely. Although this can cause behavioral
interferences (since we do not have any kind of permission system to differentiate among the
true owner and everyone else) it also allows for some other types of clients (like web browsers)
to use the system. Consequently, it should make the use of these web services more easily
accessible on other scripting languages like JavaScript.

The mapping of an element to its URL format is handled transparently and it is visible at
run-time when the toUri method is called. It follows a simple structure, inspired by the REST
(Representational State Transfer) methodology, which splits each resource into a well defined
URL. The basic logic of these paths is as follows:

type signature - http://URL:PORT/yak/TYPE

method call - http://URL:PORT/yak/TYPE/INSTANCE-NUMBER/METHOD

class constructor - http://URL:PORT/yak/TYPE//CONSTRUCTOR

static signature - http://URL:PORT/yak/STATIC-VAR-NAME

static call - http://URL:PORT/yak/STATIC-VAR-NAME/METHOD

Note, however, that all code is still executed only on the server side by receiving appro-
priate method calls to previously created objects. We also do not have any security feature for
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authentication or any kind of access control to the server interface. Any call to the server is
redirected to a specific internal object based on the URL that was given on the request. This
follows a predictable structure that obeys a similar idea to the REST methodology (although
far from being REST-full).

All communication between clients and servers are handled by XML encoded messages
except on HTTP-GET as the parameters must be placed on the request URL. Thus, any argu-
ment passed by a HTTP-GET must encode its values after the normal URL by appending them
after an initial ’?’ separator and each obeying the format argX = value where X is the argu-
ment number that should start at 0. If there’s more than one argument it must be split with
the character ’&’. Example: ?arg0=12&arg1="asdasd"&arg3=true. On a HTTP-POST the
content is carried on the body of the request over a simple XML message that uses the “yak”
namespace. Note that we do not check incorrect uses of the XML type that may collide with
this namespace and therefore it is possible to intentionally mask these calls and mess up the
whole communication by creating an XML object in that said namespace.

An example of the XML format in a HTTP-POST message:

//target URL: http://URL:PORT/yak/Screamer/12/repeatScream

<args xmlns="yak">

<integer>12</integer> //1st argument

<string>I scream icecream!</string> //2nd argument

</args>

Besides the run-time communication layer, the typechecker also needs to obtain all remote
type’s signatures in order to check their use in the program. Static variables also have to pro-
vide their internal type. To do this information exchange we use a simple XML format that
contains the appropriate contents (mostly method signatures and usage protocol). Instead of
using a more standardized format like WSDL we opted for this smaller and simpler approach
although future work could be done to link these two types of services.

A simple example of a class’ XML description:

//target URL: http://URL:PORT/yak/Screamer

<class xmlns="yak" xmlns:yak="yak" yak:name="Screamer">

<usage yak:regex="stop" />

<constructor />

<method yak:name="repeatScream">

<parameter yak:type="ineteger"/>

<parameter yak:type="string"/>

<return yak:type="string"/>

</method>
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<method yak:name="toString">

<return yak:type="string" />

</method>

<method yak:name="toUri">

<return yak:type="string" />

</method>

</class>

The HTTP server was created by extending a Java servlet and as such this simplifies most of
the server communication. Therefore, the code in src/yak/servlet/YakServlet.java is
mostly related to forwarding the requests to the appropriate objects and answering back (there
is not much of HTTP specific functions).

4.6 Remarks

In this chapter we introduced the implementation by describing the most important algorithms
and techniques used in the prototype. We focused our approach to the most relevant aspects of
the code in hopes that this will serve as a sufficiently detailed description for anyone interested
in looking into the complete source code (available with a BSD style license in [29]).

This code shows how we handle the behavior in accordance to the different flows that may
appear in a program of the developed language. Even though they are not particular lousy
algorithms, these are an initial approach to the problem and therefore they all share some rough
edges. This is also the consequence of taking a more general view of the problem instead of
relying on specific implementation details to provide some optimizations.

Although the overall type checking complexity can take an exponential time to complete for
certain AST depths, we tried to reduce each specific flow analysis to more sane levels as much
as possible. This also explains why we did not chose some other (possibly easier to code) alter-
native solutions. For example, it would be possible to implement the if else type checking
rule by just extracting all possible combinations of code flow and check each one individually.
Since we also lack some more practical comparison data, it is unclear if this solution (although
much worst in terms of complexity of the algorithm) has any weight in the average code check-
ing time. This situation may occur in small programs with simple branching on some protocol
sizes on which the intersection operations could actually be more time consuming than just
expanding all branching cases. As a consequence of this lack of use data, the main idea of this
prototype is to have a better overall solution for a more abstract case and ignore any particular
optimizations of some specific situations. Therefore, more professional implementations of this
type system may require some field testing in order to establish possible optimization points
to improve the overall run-time.

Although we were mostly centered on the typecheck, we also briefly present the general
idea of the interpreter and the distribution system. These are mainly slightly modified versions
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of the work develop for the diploma thesis [26] and as such this functionality is mostly inherited
from it and not a specific feature specially created for this dissertation.

More detailed information can be found in the appendixes: a quick user guide with infor-
mation on how to compile (C.1), run (C.2); the complete examples (appendix D); and the list of
files (appendix E, which includes source files).
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5
Conclusions

In this dissertation we have presented a typing system that guarantees the correct use of objects
in accordance to their behavior - described by a regular-expression-like protocol.

We have shown a strict formalization of the typing rules and described how and what re-
strictions they force the code to obey. Our rules cover all normal sequential constructions usu-
ally found in any regular object oriented programming language. Therefore, we have proposed
conditions that assure the behavioral correctness in the event of a code branch (if else),
loop (while/repeat), exceptions (try catch, throw), object exchange (assign, argument,
return) besides the normal object code (class consistency, etc).

As a proof-of-concept, we created a prototype that uses a simplistic language on which the
behavioral typechecker can reason about the program flow correctness. We described the most
important algorithms of this prototype and also expand the type system to account for some
additional syntax sugar in order to make the language more user friendly.

We wrote a few small examples and also ported two from the WS-CDL specification to show
how the language and type system can model and handle different behavioral situations.

Unfortunately, due too lack of time, we were not able to dive deep into the problems of type
checking concurrent behavioral programs. Even though we have some syntax in the language
(and interpreter) to allow for parallel composition of statements and the forking of an expres-
sion evaluation into a separate thread, we do not have appropriate typing rules for them, yet.
Nonetheless, the original article [10] and others have some interesting guide lines that can be
used for future work. We also have some drafts of a more particular solution to this problem
that can be applied to this language, namely concurrency abstract which is briefly described in
the following section.

Since we hardly mention Web Services throughout this text, it might look like the refer-
ence to this topic was somewhat unnecessary. This is not completely true as they served as an
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important design goal, namely in eroding the distinction between a class/service (with impli-
cations in how a class can be used/checked internally) and the communication abstraction that
is present in the prototype. Although we did not get to expand on some more service related
ideas, some of the most important ones are mentioned in the future work section.

From our point of view, we have fulfilled all objectives as we created a behavioral type
system and a working prototype for the created language and typing rules. Even though we
are far from completely solving the more broader problem of combining services, we think this
work serves as a good step in that direction by proposing several solutions to more practical
situations which can be used as building ground for more complex systems.

5.1 Future work

As with any work, there is always some room for improvements and some other interesting
research problems that should be covered in future work, with various priorities.

Soundness proof: Although we have presented a strict formalization of the type system, there
is still no guarantee these rules are sound until a complete proof is made. Therefore,
one of (probably the most important) future work is to prove the soundness of this type
system. We intend to use a logic framework like CELF [39]/TWELF [40] to assist this
process.

Query by protocol (contract): This feature would allow for dynamically fetching an object whose
protocol is consistent with the query. It would allow for a kind of “downward cast” since
it returns an object with a compatible behavior contained in a generic object pool.

Although most of the infra-structure needed for this should be mostly in place (since it is
just comparing types), there is no syntax or even a concrete method to use it directly.

A possible practical use could be (using a modified version of the machines example):

class Main{

map<?> machines;

main(){

//adds lots of machines with different protocols

machines.put(...); //(simplified)

//dynamic query for an object with a compatible protocol

try{

//fetches a machine with a Bender-like protocol

Bender worker = pool @ ((lock;(bend*+twist);release)*;standby)*;

/*
this would simplify the machines example, since it would not be needed

to have different maps for each type of machine and would also allow

for more generic machines (that can have more than one function, like

a bender-welder machine, all-in-on machine, etc.).

*/
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//... (hidden use and return to pool)

}catch(NotFound error){ }

}

}

Parametric protocols: There is also an important missing feature in the current prototype that
limits the code modularity when it is needed to store a behavioral object for a “limited”
amount of time. Something along the lines of receiving a behavior, using it with a spe-
cific subset protocol, and then returning it to someone else outside the class. A possible
solution to this model would be to allow a kind of parametric protocols.

Example:

class Machine{

usage enter;bend;exit

//parametric protocol, only the beginning is "known"

Block#bend;<T> block;

//stores block inside machine (no need to pass it as

//an argument on the following methods like in the machines example).

enter(owned Block#bend;<T> block){

this.block = block;

}

bend(){

block.bend(...); //(simplified)

}

/*
after using the block as specified by this class’ internal

behavior, it can be returned with a remaining behavior that,

although unknown in here, has a context given by the previous

"enter" call. This would allow for a more generic use of

blocks without the need to know the complete behavior when

saving it on a class field.

*/

Block#<T> exit(){

return block;

}

}

Behavioral dependencies: As also described in [8], there is no relation hold among inter-
dependent behavioral objects. That is, objects whose behavior is influenced by the be-
havior of other(s). This is an usual design pattern for the stream readers that wrap one or
more streams. Although it is possible to break these dependencies and force behavioral
linearity (like in this prototype), it might be too restrictive to some uses. Thus, another
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possibility would be to explore the use of behavioral dependencies among different be-
havioral objects.

Example:

class Main{

main(){

File file = new File(...); //(simplified)

file.openR();

//instead of requiring ownership it just "shadows" it.

FileReader reader = new FileReader(file);

/*
imagine "reader" also holds some kind of pointer to the

behavior of "file". Therefore, when the file is closed inside

"reader", the change is also visible on the outside since

internally it closes "file". The reverse situation could also

happen, when "file".close also closes "reader".

*/

reader.close();

file.close(); //ERROR: illegal call.

}

}

Some kind of behavioral inference: This could be more of a development tool or just an exer-
cise to add behavioral notation to legacy code. In some situations it is possible to obtain
the protocol directly from a source code event without the additional notations. Although
this can be complicated when there is recursion and even impossible when there is inter-
face abstraction to account, it could have some practical uses. The search for the protocol
would have to settle on finding the most restrictive version possible as otherwise there
would be too many possibilities to consider.

m(A#? v){ //unknown protocol

v.a();

if( ? ){

v.b();

}else{

v.c();

}

//v inferred initial protocol: A#a;(b+c)

}

Concurrency: There is no support for concurrent behavior in this type system (although there
is syntax for threads/forks and concurrent composition in the interpreter - which will
probably be proved insufficient to cover all concurrency possibilities and thus requiring
some additional operations). This point is much larger (and harder) than any of the previ-
ous ones and it could also require a more close implementation of the article [10] namely
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on the concept of owned protocol paths, etc.

Concurrency abstraction: Another interesting possibility albeit with much more work and
possibly with less certain results would be to use the behavioral information as a de-
pendencies inference tool to improve the concurrency of a program. In this situation the
syntax would remove all (explicit) concurrency constructions (i.e. no forks or even par-
allel composition) except for some new syntax in the protocol. Thus, the protocol would
substitute some of the concurrency control that now is given on the statement level. The
type checker would not only verify the correctness of the code according to the given pro-
tocols but also identify the concurrent possibilities that could be later used (at compile or
at run-time - or both). Then something like a concurrency overlord/scheduler would de-
cide how to best distribute the work in accordance to the currently available resources
(hardware, network connections, etc). The programmer would only lose explicit concur-
rent control, however, it would still be possible to impose dependencies that would then
have some influence to the decisions made by the overlord.

Example 1 (sequential code):

m(A#a;b;c v){

v.a();

v.b();

v.c();

}

In this situation, the behavioral dependencies on all called methods are simply linear ones
and thus the overlord would see that each call requires the previous one. As such, this
would most likely be launched on one (single) thread.

Example 2 (concurrent calls):

m(A#a|b|c v){

v.a();

v.b();

v.c();

}

Note the difference in the protocol. Now the three method calls are concurrently inde-
pendent, they do not really require each other’s in any way. Thus the overlord is free to
launch up to three different threads (for calling each one of those methods). This would
most likely also require some kind of heuristic based on the complexity of each method
to better balance when it is not possible to launch the optimal number of threads.

Example 3 (controlling concurrent/sequential code):

m(A#a|b|c v){

if( ? ){

A#(a;b)|c tmp = v;

tmp.a();

tmp.b();
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tmp.c();

}

...

}

Concurrency control would still be available although based on the protocol and the sub-
typing relation. Therefore, this would serve as a kind of dependency redefinition operator
as in this example it explicitly forces the v type to change the behavioral dependencies to
now require the call of the a method before b although c remains free to be interleaved.

Example 4 (expression dependencies):

m(A#a|b|c v){

v.a();

v.b( v.c() );

}

This example shows one of the dependencies that might appear on a program and that
will influence the allowed concurrent flow. Since the call to c is an argument to the b
method call (and since we do not use lazy evaluation - which would be really messy to
handle) the typechecker would then infer a dependency of a|(c; b) on the program.

Example 5 (concurrency split):

m(A#a|b v){

m(v,v);

}

m(A#a a, A#b b){

a.a();

b.b();

}

The actually used overlord could be made hardware specific as it should adapt to the
available resources. It could also transparently use the network to distribute the code
or even decide which hardware best fits the calling code (like using the GPU on some
streaming functions, etc). Since it would still always be possible to revert to the single
threaded model (with special controls like semaphores, etc) the code could then adapt to
many run environments without requiring code rewrites or recompiles.

For this concurrency model to work, each class has to be a strictly defined closed envi-
ronment so that all local side effects can be controlled. It could then completely control
the use of common (and remember always private) field variables, (since the concurrent
context is known) with a locking mechanism based on two-phase locking (for example).

Example 6 (auto locking):

class C{

usage a|b

integer a,b,c,d;
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a(){

a = 1;

Lib.println( b );

b += c;

}

b(){

a = 2;

Lib.println( b+d );

}

}

In this case variable a needs write lock, b write lock on method a and read lock on b.
Variables c and d have no concurrency issues. Note that for this we would always as-
sume any interference as being unwanted (unintentional), some notations to override
this would probably also have to be created.

For this to work flawlessly we would have to remove some remaining interference points
of our language that may arise from the (always public) static variables. A simple work
around would be to push them inside a class which will then also require for static meth-
ods.

class X{

static integer s;

static integer getS(){

return s;

}

}

Additionally, this would have some interesting possibilities for (internal) class concur-
rency control. We already have in place queues that can be seen as channels of com-
munication between (possibly different) methods (inspired by the π-calculus’ channels).
With appropriate usage inference algorithms for these queues it is possible to detect the
existence of dead-locks [41].

class C{

usage a|b

queue<integer> q;

a(){

q << 1;

q >>;

} // q#<<;>>

b(){

q >>;

} // q#>>

109



5. CONCLUSIONS 5.1. Future work

// dead lock on a|b, 1 push 2 pops.

}

For this, the queue protocol would have to be inferred from its use inside the method.
This limits the case for returning or using queues as an argument without adding specific
protocol notations for these elements. In other words, to allow for queue (channel) mo-
bility we would have to add a kind of protocol notations seen in session types or similar.

All these new rules might also simplify the verification needed for concurrency since it
would mostly rely on the subtyping relation. Nonetheless it still would require some
extensions to the automaton which might not be that easy to accomplish or it might even
need to combine with something like Petri nets. There are also other inspirational sources
for this kind of handling of parallel constructions (although not quite the same) in some
hardware description languages (like VHDL, etc).

Although we have presented this idea as if it were the only concurrent control available,
it is probably a too extreme approach to completely remove this decision from the pro-
grammer. Therefore, for it to coexist peacefully with our normal composition syntax (’;’
sequential and ’—’ parallel) it would require an explicit notation to express that the state-
ment composition can be handled by this automatic controller. The general idea follows
the method-as-a-process concept proposed by Nierstrasz but takes it a step further by
creating a similar abstraction level for concurrency control in a similar fashion to what
is now common for memory management (with automatic garbage collectors, etc). Even
if it would still be rather limited and simplistic, it could provide some interesting code
abstraction possibilities.

Improved error messages: Although we tried to express the reason of failure in a clear and
direct way it could be further improved specially with better reporting of the allowed
protocol. This needs an additional algorithm to build back the behavior expression based
on the current valid automaton. Even though a quadratic algorithm is already known
to do this for normal automata, it is still needed to expand it in order to include our
exception and recursion mechanisms. When this problem is solved, we can then remove
the current temporary solution of showing the behavioral history of a type.

Other improvements: The servlet does not prohibit colliding behaviors from concurrent access
to the same object from different remote sites. This is somewhat related to the previous
point but could be solve by requiring an ownership identification which would allow ac-
cess to the restricted methods (that is, the behavioral methods). The protocol could also
be extended to include additional constructions in order to improve its expressiveness,
maybe even some support for templates that expand specially limited containers to spe-
cific sizes (like creating a bag/stack of fixed dimension, etc). Finally, it would also be
interesting to convert the whole type system directly to Java, maybe using Polyglot 1.

1http://www.cs.cornell.edu/projects/polyglot/
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keywords: class interface try catch if else while repeat return static

owned object integer double xml string boolean queue map thread fork

throws throw usage use this null true false stop new

parseExpression ::= Expression <EOF>

parseProgram ::= ProgramUnit <EOF>

parseLiteral ::= Literal <EOF>

parseRegex ::= getRegex <EOF>

ProgramUnit ::= ( ( Declarations ) | ( StaticVariableDeclaration ) )*

IfStatement ::= if "(" Expression ")" BodyStatement ( else BodyStatement )?

WhileStatement ::= while "(" Expression ")" BodyStatement

RepeatStatement ::= repeat BodyStatement

ReturnStatement ::= return ( Expression )?

ThrowStatement ::= throw Expression

BodyStatement ::= "{" ( StatementSequence )? "}"

TryCatchStatement ::= try BodyStatement ( Catch )+

Catch ::= catch "(" ( ( SimpleType ) | ( ObjectType ) ) <IDENTIFIER> ")"

BodyStatement

Fork ::= fork Expression

Declarations ::= ( ClassDeclaration | InterfaceDeclaration )

ClassDeclaration ::= class <IDENTIFIER>

( ( "@" StringLiteral ) | ( "{" ClassBody "}" ) )

InterfaceDeclaration ::= interface <IDENTIFIER>

( ( "@" StringLiteral ) | ( "{" InterfaceBody "}" ) )

ClassBody ::=
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( UsageDeclaration ( UseDeclaration )* )?

( ( VariableDeclaration )

| ( MethodDeclaration )

| ( QueueDeclaration )

| ( MapDeclaration ) )*

InterfaceBody ::=

( UsageDeclaration ( UseDeclaration )* )?

( MethodDeclaration ";" )*

QueueDeclaration ::= queue ComplexTypeDeclaration

<IDENTIFIER> ( "," <IDENTIFIER> )* ";"

MapDeclaration ::= map ComplexTypeDeclaration

<IDENTIFIER> ( "," <IDENTIFIER> )* ";"

VariableDeclaration ::= TypeAnnotation

<IDENTIFIER> ( "," <IDENTIFIER> )* ";"

StaticVariableDeclaration ::= TypeAnnotation StaticVariable

( "," StaticVariable )* ";"

StaticVariable ::= <IDENTIFIER> ( "@" StringLiteral )?

SingleVariableDeclaration ::= <IDENTIFIER> ( "=" Expression )?

VariableWithInitializerDeclaration ::= TypeAnnotation SingleVariableDeclaration

( "," SingleVariableDeclaration )*

MethodDeclaration ::= TypeAnnotation? <IDENTIFIER> ParameterList ThrownList

"{" ( StatementSequence )? "}"

ThrownList ::= ( throws ThrownType ( "," ThrownType )* )?

ThrownType ::= ( <IDENTIFIER> | integer | double | string | boolean | xml )

ParameterList ::= "(" ( Parameter ( "," Parameter )* )? ")"

Parameter ::= TypeAnnotation <IDENTIFIER>

Literal ::= <INTEGER_LITERAL>

| <DOUBLE_LITERAL>

| <BOOLEAN_LITERAL>

| <NULL_LITERAL>

| StringLiteral

| XMLLiteral

StringLiteral ::= <STRING_LITERAL>

XMLLiteral ::= "<" XMLName ( XML_Attribute_Content )* ( ( "/>" ) |

( ">" ( XML_Content )* "</" XMLName ">" ) )

XMLName ::= XMLNameStr | <STRING_LITERAL>

XMLNameStr ::= <IDENTIFIER> ( ":" <IDENTIFIER> )?

XML_Content ::= Literal | "(" Expression ")"

XML_Attribute_Content ::= XMLName "=" XML_Content
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AllocationExpression ::= new <IDENTIFIER> ArgumentList

StatementSequence ::= StatementComposition ( ( ";" ( StatementComposition )? ) )*
StatementComposition ::= Statement ( "|" Statement )*
Statement ::= IfStatement | WhileStatement | RepeatStatement

| ReturnStatement | Fork | ThrowStatement | TryCatchStatement

| VariableWithInitializerDeclaration | StatementExpression

Call ::= <IDENTIFIER> ArgumentList

ArgumentList ::= "(" ( Expression ( "," Expression )* )? ")"

StatementExpression ::= LeftReferenceAssignmentAndQueueOps | StatementMethodCall

StatementMethodCall ::= StatementContextMethodCall | StatementSimpleMethodCall

StatementContextMethodCall ::= ( ( this | static ) "." )?

( IdentifierWithTailHead "." )? Call ( StatementMethodCallSequence )?

StatementSimpleMethodCall ::= ( AllocationExpression | "(" Expression ")" | Literal )

StatementMethodCallSequence

StatementMethodCallSequence ::= ( "." Call )+

Expression ::= ( Fork | LeftReferenceAssignmentAndQueueOps | ConditionalExpression )

ConditionalExpression ::= ConditionalOrExpression

( "?" Expression ":" ConditionalExpression )?

ConditionalOrExpression ::= ConditionalAndExpression

( "||" ConditionalAndExpression )*
ConditionalAndExpression ::= EqualityExpression ( "&&" EqualityExpression )*

EqualityExpression ::= RelationalExpression

( ( "==" RelationalExpression ) | ( "!=" RelationalExpression ) )*

RelationalExpression ::= AdditiveExpression

( ( "<" AdditiveExpression ) | ( ">" AdditiveExpression ) |

( ( "<=" | "=<" ) AdditiveExpression ) |

( ( ">=" | "=>" ) AdditiveExpression ) )*

AdditiveExpression ::= MultiplicativeExpression

( ( "+" MultiplicativeExpression ) | ( "-" MultiplicativeExpression ) )*

MultiplicativeExpression ::= UnaryExpression ( ( "*" UnaryExpression )

| ( "/" UnaryExpression ) | ( "%" UnaryExpression ) )*
UnaryExpression ::= ("-" UnaryExpression) | ("!" UnaryExpression) | RightReference

AssignmentAndQueueOps ::= Assignment | QueueOps

Assignment ::= ( ( "=" Expression ) | ( "*=" Expression ) | ( "/=" Expression )

| ( "%=" Expression ) | ( "+=" Expression ) | ( "-=" Expression ) )

QueueOps ::= ( ">>" ( LeftReference )? )

| ( "->" ( LeftReference )? )

| ( "<<" Expression )

IdentifierWithTailHead ::= ( <IDENTIFIER> ( ".." )? ) | ( ".." <IDENTIFIER> )
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LeftReference ::= ( ( this | static ) "." )? LeftIdentifierWithTailHead

LeftReferenceAssignmentAndQueueOps ::= ( ( this | static ) "." )?

LeftIdentifierWithTailHead AssignmentAndQueueOps

LeftIdentifierWithTailHead ::= ( <IDENTIFIER> ( ".." )? ) | ( ".." <IDENTIFIER> )

RightReference ::= ( Literal | AllocationExpression | ( "(" Expression ")" )

| ( static "." <IDENTIFIER> ) ) ( StatementMethodCallSequence )?

| ThisCase | SimpleCase

ThisCase ::= this ( StatementMethodCallSequence |

( "." IdentifierWithTailHead ( StatementMethodCallSequence )? ) )?

SimpleCase ::= ( Call | IdentifierWithTailHead ) ( StatementMethodCallSequence )?

UsageDeclaration ::= usage getRegex

UseDeclaration ::= use <IDENTIFIER> "=" getRegex

getRegex ::= RegexAnd

RegexAnd ::= RegexOr ( ";" RegexOr )*
RegexOr ::= StateLiteral ( "+" StateLiteral )*
State ::= <IDENTIFIER> | stop | ( "(" getRegex ")" ) | ( "&" <IDENTIFIER> State )

StateLiteral ::= StateSuffix ( StateException )?

StateSuffix ::= State ( ( "*" ) | ( "?" ) | ( "??" ) | ( RegexRange ) )?

StateException ::= "[" StateExceptionSingle ( "|" StateExceptionSingle )* "]"

StateExceptionSingle ::= ( <IDENTIFIER> ( "," <IDENTIFIER> )* "->" )?

( <IDENTIFIER> | integer | double | string | boolean | xml ) ( ":" getRegex )?

RegexRange ::= "{" <INTEGER_LITERAL> ( "," ( <INTEGER_LITERAL> )? )? "}"

ObjectType ::= <IDENTIFIER>

ObjectAnnotationType ::= ( owned )? <IDENTIFIER> ( ObjectRegexAnnotation )?

ObjectRegexAnnotation ::= ( ( "$" <IDENTIFIER> ) | ( "#" getRegex ) )

ComplexTypeDeclaration ::= ( "<" TypeAnnotation ">" )?

TypeAnnotation ::= ( ( SimpleType ) | ( ObjectAnnotationType ) )

ThreadType ::= thread ( "<" TypeAnnotation ">" )?

SimpleType ::=

( ( <INTEGER_TYPE> | <DOUBLE_TYPE> | <STRING_TYPE>

| <BOOLEAN_TYPE> | <XML_TYPE> | <OBJECT_TYPE> ) )

| ( ThreadType )
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stop

empty behavior.

a+b

choice (’a’ or ’b’).

a;b

sequential (’a’ then ’b’).

a?

optional (’a’ or not).

a*
repetition (’a’ zero or more times).

a{n,m}

’a’ at least n and no more than m, where n and m are positive integers.

(a;b)??

same as ’a;b’ but allowed to stop anywhere.

&l(r; stop+l )

recursion (’r’ may be followed by stop or unfold the label ’l’).

a[E: e]; b

exceptions (’a;b’ when no exception is thrown, ’a;e’ when

exception E is raised)
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The program requires the Java Runtime Environment at least version 1.6 to run and the same
version of the Java Development Kit to compile. We provide the set of additionally required li-
braries in the libs directory of the downloadable archive [29]. There’s also some configuration
files for the servlet and examples (some of them just special tests).

C.1 How to compile

To simplify the compilation process we provide an ant make file that should be enough to
compile and (re)generate the jar file. Most of the compilation is just normal stuff, however
there was an issue found when extending the automaton library that had to be worked around
by importing the extra classes into that jar. Note that the ant file does this automatically.

The parser generation must be done by hand with the JavaCC utility, and there’s also some
minor changes needed that are described in the beginning of yak/parser/YakGrammar.jj.
This should only be needed for anyone interested in changing the parser as we give the result-
ing java files together with the rest of the source code.

Finally, there are five ant target builds (compile, dev, build, jar and clean) defined in build.xml
which can be called with ant TARGET. The dev target is only meant to be a simpler way to
test run the code by setting some symbolic links instead of having to create the jar with the
previously mentioned trick.

C.2 How to run

To run the distributable jar (in the directory context created by the extraction of the archive),
just run: java -jar yak.jar OPTIONS FILES. Running without the two last arguments
should give a simple help message.
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FILES loads and runs all the given files or directories (except for hidden files or those with
a ’.’ prefix).

OPTIONS are a set of additional arguments that can be passed to set or change the run
options, namely:

-port NUMBER: launches a servlet that listens to the incoming TCP port NUMBER (exam-
ple: 8180).

-untyped: runs without typechecking (for debugging purposes only).
-debug: additional error information (only for debugging the interpreter/typechecker)
The following two options will not run the interpreter or typechecker, instead they just

show their option and quit.
-tree: shows the parsed tree for each file.
-automaton PROTOCOLS: shows a quick and dirty representation of all the given proto-

cols, matching the first two if possible.
Thus, a simple example for running the files/ws-cdl1.yak file just enter the command:

java -jar yak.jar files/ws-cdl1.yak while on the same directory of the extraction.

C.3 Values

In this section we will introduce the basic types of the yak language and their most important
operators/methods. The presentation is just meant to briefly present their interfaces and basic
constructors (when applied).

C.3.1 Object

This is the generic object from which all other values inherit. Therefore, all types share these
same three method signatures. Also note that this language is case sensitive.

/* src/yak/value/ObjectValue.java */

class object{

string toString();

string toUri();

boolean ==(object o); //equals

}

C.3.2 Integer

/* src/yak/value/IntegerValue.java */

class integer{

//comparing integers

boolean < (integer i); //less

boolean <=(integer i); //less or equals

boolean > (integer i); //larger

boolean >=(integer i); //larger or equals
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//operations

integer +(integer i); //sum

integer -(integer i); //subtraction

integer -(); //minus

integer /(integer i); //division

integer *(integer i); //multiplication

integer %(integer i); //remainder

double toDouble();

string toString();

string toUri();

boolean ==(object o); //equals

}

CODE RESULT

1 1

0 0

005 5

-2 -2

1+1 2

5%4 1

1.toDouble() 1.0

1.toString() "1"

1.toUri() null

C.3.3 Double

/* src/yak/value/DoubleValue.java */

class double{

//comparing doubles

boolean < (double d); //less

boolean <=(double d); //less or equals

boolean > (double d); //larger

boolean >=(double d); //larger or equals

//operations

double +(double d); //sum

double -(double d); //subtraction

double -(); //minus

double /(double d); //division

double *(double d); //multiplication

integer toInteger();

string toString();

string toUri();

boolean ==(object o); //equals

}
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CODE RESULT

1.0 1.0

2.34567 2.34567

-002.123123 -002.123123

0.0000 0.0

1.0e2 100.0

1.0e-1 0.1

2.0*3.0 6.0

2.3444.toInteger() 2

C.3.4 Boolean

Given the way we handle operators (as just syntax sugar for normal method calls) there’s a
small caveat on the use of the AND and OR operators on booleans. Because of this we don’t
have the kind of optimization that’s usual on other languages as we may end up calling redun-
dant AND’s or OR’s (when the caller object was already made to be false or true, respectively).
This is an important design decision as it can have some repercussion in behavioral terms if
the normal flow could break before evaluating all arguments. Note that the order of calls is,
however, the same as in Java since we must first obtain the caller object and only afterwards
the value of all arguments.

/* src/yak/value/BooleanValue.java */

class boolean{

//operators

boolean ! (); //not

boolean &&(boolean b); //and

boolean ||(boolean b); //or

string toString();

string toUri();

boolean ==(object o); //equals

}

CODE RESULT

true true

false false

!true false

false || true true

true && false false

true.toString() "true"

C.3.5 String

/* src/yak/value/StringValue.java */

class string{

//comparing strings

boolean < (string s); //less

boolean <=(string s); //less or equals
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boolean > (string s); //larger

boolean >=(string s); //larger or equals

//operators

string +(object s); //concatenation

//these will return null on error

integer toInteger();

double toDouble();

boolean toBoolean();

xml toXML();

string toString();

string toUri();

boolean ==(object o); //equals

}

Allowed escape sequences:

\n - new line

\t - horizontal tab

\b - backspace

\r - carriage return

\f - formfeed

\" - double quote

\\ - backslash

CODE RESULT

"a\\b" "a\b"

"a"+1 "a1"

"1".toInteger() 1

"1".toDouble() 1.0

"<asd/>".toXML() <asd/>

"a"<"b" true

"a"=="a" true

C.3.6 XML

/* src/yak/value/XMLValue.java */

class xml{

integer length();

integer isPosXML(integer pos);

string getText(integer pos);

xml getXML(integer pos);

xml add(object value);

xml remove(integer pos);

string getPrefix();

string getName();
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string setName(string name);

xml setAttribute(object name, object value);

string getAttribute(object name);

xml removeAttribute(string name);

xml clone();

string toString();

string toUri();

boolean ==(object o); //equals

}

CODE RESULT

<asd/> <asd/>

<asd qwe=(12+2)/> <asd qwe="14"/>

<"class">("12".toInteger())</"class> <class>"12"</class>

C.3.7 Default library

/* src/yak/value/libs/DefaultLibrary.java */

class DefaultLibrary{

double random();

printT(object o);

print(object o);

println(object o);

string read();

string readLine();

sleep(integer ms);

string pack(object... args);

string method(object from, string packed_arguments);

string constructor(object from, string packed_arguments);

xml fetchXML(string url);

xml getType(string name);

string toString();

string toUri();

boolean ==(object o); //equals

}

C.3.8 Maps

/* src/yak/value/MapValue.java */

class MapValue<T>{
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T get();

T get(string label);

T peek();

T peek(string label);

put(T t);

put(string label, T t);

integer size();

integer size(string label);

string toString();

string toUri();

boolean ==(object o); //equals

/* iterator (only at a time) */

iterator();

string key();

T value();

boolean hasNext();

T next();

}

C.3.9 Queues

/* src/yak/value/QueueValue.java */

class QueueLibrary<T>{

<<(T t); //push

//non-blocking pop

T ->(var<T> v);

T ->();

//blocking pop

T >>(var<T> v);

T >>();

..get();

get()..;

string toString();

string toUri();

boolean ==(object o); //equals

}

class Q{
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queue<integer> q;

m(){

q << 2; //q = [2]

..q << 3; //q = [2,3]

q.. << 1; //q = [1,2,3]

Lib.println(q); //1

Lib.println(..q); //3

Lib.println(q..); //1

integer var;

..q >> var; // var=3 ; q = [1,2]

q.. >> var; // var=1 ; q = [2]

q >> var; // var=2 ; q = []

q -> var; // var=null ; q = []

}

}

C.3.10 Threads

/* src/yak/value/ThreadValue.java */

class ThreadLibrary<T>{

T result() throws ForkAborted;

halt();

string toString();

string toUri();

boolean ==(object o); //equals

}

class T{

m(){

thread<integer> t = fork 1+1;

try{

Lib.println( t.result() ); //2

}catch(ForkAborted error){ };

t = fork eternalLoop();

t.halt();

try{

t.result();

}catch(ForkAborted error){

Lib.println("as expected");

};

}

}
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C.4 Remote Values

It’s also legal to use content accessible in a remote server, this content is also typechecked
statically even though changes to the types are at run-time will inevitably cause unpredictable
errors. Both constructions to access remote elements use the @ before a string with the URL
to the content server. As mention in section 4.5, the communication is done by means of XML
over HTTP.

The URL format can be as simple as localhost:8180 since it will automatically expand
to the full version with the protocol and servlet directory (http://localhost:8180/yak).
Note only the HTTP protocol is supported.

Remote classes and interfaces (after being imported) can be used normally as if they were
just another local type. However, there’s a main difference to the instantiation of a remote class
as the new object will be created at the remote site. This means that all method calls to that
object are in fact remote method calls tunneled through the net to the correct location.

Example:

class RemoteClasse@"URL"

interface RemoteInterface@"URL"

Remote static variables are follow a similar logic as operations over these elements is carried
on to the appropriate location.

Example:

integer var@"URL";

After that, any call to the static variable named var will be redirected to the variable at the
site given by the URL. This includes the assignment operation as this variable now becomes
shared among all those clients that may access it.

C.5 Comments

As probably already deduced from previous examples, comments follow the same syntax as in
the Java Language:

//single line comment

/*
multi line comment

*/
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(Complete) Examples

These examples are intended to show how the typechecker handles a specific program structure
and not the actual implementation of the service in the example. Therefore, most of the “real”
code needed is not included (there’s no real communication with a remote service to obtain a
quote, etc) as all our examples are mostly skeletons for more complete implementations.

Additionaly, the directory files/ contains some other less relevant examples.

D.1 Files

files/file exceptions.yak

interface IOException{}

interface FileNotFound{}

interface File{

usage &start((

( openRead ; read* ) +

( openWrite; write* ) +

( openReadWrite; (read+write)* )

; close

)[ openRead, openWrite, openReadWrite

-> FileNotFound: stop+(changeFile;start) |

read, write

-> IOException: close ] )

use open_r = &start( openRead[ openRead -> FileNotFound: changeFile;start] )

changeFile(string name);

openRead() throws FileNotFound;
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openWrite() throws FileNotFound;

openReadWrite() throws FileNotFound;

string read() throws IOException;

write(string content) throws IOException;

close();

integer size();

string name();

}

class FakeFile{

usage &start((

( openRead ; read* ) +

( openWrite; write* ) +

( openReadWrite; (read+write)* )

; close

)[ openRead, openWrite, openReadWrite

-> FileNotFound: stop+(changeFile;start) |

read, write

-> IOException: close ] )

changeFile(string name) { }

openRead() throws FileNotFound { }

openWrite() throws FileNotFound { }

openReadWrite() throws FileNotFound { }

string read() throws IOException { }

write(string content) throws IOException { }

close() { }

//non behavioral methods

integer size() { }

string name() { }

}

class Main{

loopOpenRead(File$open_r file){

repeat{

try{

file.openRead();

return null;

}catch(FileNotFound exception){

file.changeFile(file.name()+"0");

};

}
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}

main(){

File file = new FakeFile();

if( Lib.random() >= 0.5 ){

loopOpenRead(file);

}

else{

try{

file.openRead();

}catch(FileNotFound exception){

return null;

};

};

try{

while( false ){

file.read();

};

readSomeMore(file);

}catch(IOException exception){ };

file.close();

}

readSomeMore(File#(read*)[IOException:stop] file) throws IOException {

file.read();

}

//no valid use, no valid forwarding/simulation...

readSomeMoreUseless(File#(read*)[IOException:close] f) {

try{

f.read();

}catch(IOException exception){

f.close();

}

}

}

D.2 Machines

files/machines.yak
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class Block{

usage (cut+bend+weld+paint)*

use cuttable = cut?;bend*;weld*;paint?

use bendable = bend*;weld*;paint?

use weldable = weld*;paint?

use paintable = paint?

integer size;

Block(integer size){

this.size = size;

}

Block cut(integer amount){

size = size/amount;

return new Block(size);

}

bend(integer amount) { }

weld(owned Block#weld other){

other.weld();

}

weld(){ }

paint(string color){ }

integer size(){

return size;

}

}

class BlockWharehouse{

Block getBlock(){

return new Block(100);

}

}

/*

* Machines

*/

class Welder{

usage ((lock;adjust;weld;unlock)*;standby)*

use weldable = lock;adjust;weld;unlock

use storable = standby;((lock;adjust;weld;unlock)*;standby)*
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lock(Block#stop b) { }

adjust(Block#stop b) { }

weld(Block#weld b1, owned Block#weld b2){

b1.weld(b2);

}

unlock() { }

standby() { }

//stream

Block$paintable stream(owned Block$weldable block){

return block;

}

}

class Cutter{

usage ((adjust;cut;release)*;standby)*

use cutable = adjust;cut;release

use storable = standby;((adjust;cut;release)*;standby)*

adjust(Block#stop b) { }

Block cut(Block#cut b, integer amount){

return b.cut(amount);

}

release() { }

standby() { }

//stream

Block$bendable stream(owned Block$cuttable block){

return block;

}

}

class Bender{

usage ((lock;(bend*+twist);release)*;standby)*

use bendable = lock;(bend*+twist);release

use storable = standby;((lock;(bend*+twist);release)*;standby)*

lock(Block#stop b) { }

bend(Block#bend b, integer angle, integer amount){

b.bend(amount);
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}

twist(Block#bend b, integer angle, integer amount){

b.bend(angle);

}

release() { }

standby() { }

integer maxBend(){

return 30;

}

//stream

Block$weldable stream(owned Block$bendable block){

return block;

}

}

class Painter{

usage (( enter; ((rotateLeftGun+rotateRightGun)*;paint)*; exit)*; standby)*

use paintable = enter; ((rotateLeftGun+rotateRightGun)*;paint)*; exit

use storable = standby;(

(enter; ((rotateLeftGun+rotateRightGun)*;paint)*; exit )*;

standby)*

Block#paint* target;

enter(owned Block#paint* b){

target = b;

}

rotateLeftGun(integer r) { }

rotateRightGun(integer r) { }

paint(string color, integer amount){

target.paint(color);

}

Block#stop exit(){

return target;

}

standby() { }

//stream
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Block#stop stream(owned Block$paintable block){

return block;

}

}

/*

* Blueprints

*/

interface Blueprint{

object build(BlockWharehouse w, Factory m);

}

class CarBlueprint{

weld(Welder$weldable welder, Block#weld? b1, owned Block#weld? b2) {

if( b1.size() > b2.size() ){

welder.lock(b1);

welder.adjust(b2);

}

else{

welder.lock(b2);

welder.adjust(b1);

};

welder.weld(b1,b2);

welder.unlock();

}

Block cut(Cutter#adjust;cut;release cutter, Block#cut b, integer amount) {

cutter.adjust(b);

Block half = cutter.cut(b,amount);

cutter.release();

return half;

}

bend(Bender#lock;(bend*+twist);release bender, Block#bend* b,

integer angle, integer amount){

bender.lock(b);

if( angle > 180 ){

bender.twist(b,angle,amount);

}else{

while(angle > bender.maxBend() ){

bender.bend(b,bender.maxBend(),amount);

angle -= bender.maxBend();

};

bender.bend(b,angle,amount);

};

bender.release();

}
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object build(BlockWharehouse w, Factory m){

//machines

Cutter cutter;

Bender bender;

Welder welder;

Painter painter;

try{

cutter = m.getCutter();

bender = m.getBender();

welder = m.getWelder();

painter = m.getPainter();

}catch(EmptyMap error){

Lib.println("error: "+error);

//intentionally kills every machine found (lame?)

return null;

};

//blocks

Block wheels = w.getBlock();

Block car = w.getBlock();

//wheels

Block wheel_fr = wheels;

Block wheel_fl = cut(cutter,wheel_fr,50);

Block wheel_br = cut(cutter,wheel_fr,50);

Block wheel_bl = cut(cutter,wheel_fl,50);

bend(bender,wheel_fr,90,100);

bend(bender,wheel_fl,90,100);

bend(bender,wheel_br,90,100);

bend(bender,wheel_bl,90,100);

//weld to car

weld(welder,car,wheel_fr);

weld(welder,car,wheel_fl);

weld(welder,car,wheel_br);

weld(welder,car,wheel_bl);

//paint here...

painter.enter(car);

painter.rotateLeftGun(90);

painter.rotateRightGun(90);

painter.paint("black",3);

painter.rotateLeftGun(-30);
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painter.rotateRightGun(-30);

painter.paint("yellow",10);

Block#stop done = painter.exit();

m.returnCutter(cutter);

m.returnBender(bender);

m.returnWelder(welder);

m.returnPainter(painter);

return done;

}

}

class ToyBlueprint{

object build(BlockWharehouse w, Factory m){

Cutter#stop cutter = m.cutter();

Bender#stop bender = m.bender();

Welder#stop welder = m.welder();

Painter#stop painter = m.painter();

return painter.stream(

welder.stream(

bender.stream(

cutter.stream( w.getBlock() )

)

)

);

}

}

class Main{

main(){

Factory factory = new Factory();

BlockWharehouse wharehouse = new BlockWharehouse();

Blueprint toy = new ToyBlueprint();

toy.build(wharehouse,factory);

Blueprint car = new CarBlueprint();

car.build(wharehouse,factory);

}

}

/*

* Factory

*/

class Factory{
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map<Welder> welders;

map<Cutter> cutters;

map<Bender> benders;

map<Painter> painters;

Factory(){

welders.put(new Welder());

cutters.put(new Cutter());

benders.put(new Bender());

painters.put(new Painter());

}

returnPainter(owned Painter$storable painter){

painter.standby();

painters.put(painter);

}

returnBender(owned Bender$storable bender){

bender.standby();

benders.put(bender);

}

returnCutter(owned Cutter$storable cutter){

cutter.standby();

cutters.put(cutter);

}

returnWelder(owned Welder$storable welder){

welder.standby();

welders.put(welder);

}

Painter getPainter() throws EmptyMap{

return painters.get();

}

Bender getBender() throws EmptyMap{

return benders.get();

}

Cutter getCutter() throws EmptyMap{

return cutters.get();

}

Welder getWelder() throws EmptyMap{

return welders.get();

}
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Painter#stop painter() {

try{

return painters.peek();

}catch(EmptyMap error){

return null;

}

}

Bender#stop bender() {

try{

return benders.peek();

}catch(EmptyMap error){

return null;

}

}

Cutter#stop cutter() {

try{

return cutters.peek();

}catch(EmptyMap error){

return null;

}

}

Welder#stop welder() {

try{

return welders.peek();

}catch(EmptyMap error){

return null;

}

}

}

D.3 Purchase

files/purchase.yak

interface Order{

usage review*;buy?

string review();

buy();

}

/*

* Travel

*/

class SoldOut{}
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class TravelOrder{

usage (packageAlaska+packageArtic)[SoldOut: stop]+

(flight;hotel); (review*; buy?)

use done = review*;buy?

packageAlaska() throws SoldOut { }

packageArtic() throws SoldOut { }

flight(owned FlightOrder$done order) { }

hotel(owned HotelOrder$done order) { }

string review() { }

buy() { }

}

/*

* Hotel

*/

class HotelOrder{

usage bookGroup+bookPenthouse+bookRoom* ;

breakfast? ; dinner? ; (review*; buy?)

use done = review*;buy?

bookGroup(integer size) { }

bookPenthouse() { }

bookRoom(integer number) { }

breakfast() { }

dinner() { }

string review() { }

buy() { }

}

/*

* Flight

*/

class InvalidSeat{}

class InvalidFlight{}

class NoFlyList{}

class FlightOrder{

usage userData[NoFlyList: stop];

&start(

( flightNumber[InvalidFlight:start+stop] ;

&seat(flightSeat[InvalidSeat:seat+start+stop]) )

+

&choose( (destination;origin)[InvalidPlace:choose+stop] );

returnFlight? ;
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insurance? ;

(review*; buy?)

)

use done = review*;buy?

userData(User user) throws NoFlyList { }

flightNumber(integer number) throws InvalidFlight { }

flightSeat(integer row, integer seat) throws InvalidSeat { }

destination(string where) { }

origin(string from) { }

returnFlight() { }

insurance(owned InsuranceOrder$done order) { }

string review() { }

buy() { }

}

/*

* Rental

*/

class InvalidLicense { }

interface RentalOrder{

usage rent[InvalidLicense: stop]; (review*;buy?)

use done = review*;buy?

rent(User responsible) throws InvalidLicense;

string review();

buy();

}

class BikeRentalOrder{

usage rent[InvalidLicense: stop]; (review*;buy?)

rent(User responsible) { }

string review() { }

buy() { }

}

class CarRentalOrder{

usage rent[InvalidLicense: stop]; (review*;buy?)

rent(User responsible) throws InvalidLicense{

if( Lib.random() <= 0.5 ){

throw new InvalidLicense();

}

}

string review() { }

buy() { }
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}

class PlaneRentalOrder{

usage rent[InvalidLicense: stop]; (review*;buy?)

rent(User responsible) throws InvalidLicense{

if( Lib.random() <= 0.8 ){

throw new InvalidLicense();

}

}

string review() { }

buy() { }

}

/*

* Store

*/

class StoreOrder{

usage addProduct; setDispatcher+pickup ; (review*;buy?)

use done = review*;buy?

addProduct(Product p) { }

setDispatcher(owned DispatcherOrder$done order) { }

pickup() { }

string review() { }

buy() { }

}

/*

* Dispatcher

*/

class InvalidPath { }

class DispatcherOrder{

usage &start(path[InvalidPath:start+stop]);

(largeTruck+smallTruck+auto);emergency? ; (review*;buy?)

use done = review*;buy?

path(string from,string to) throws InvalidPath { }

largeTruck() { }

smallTruck() { }

auto(integer weight) { }

emergency() { }

string review() { }

buy() { }

}
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/*

* Insurance

*/

class UnInsurable { }

class InsuranceOrder{

usage userData[UnInsurable: stop];

normalCoverage+fullCoverage ; (review*;buy?)

use done = review*;buy?

userData(User user) throws UnInsurable { }

normalCoverage() { }

fullCoverage() { }

string review() { }

buy() { }

}

class User{

string name;

string password;

string address;

map<Order> orders; //Note: this is a partial type #review*;buy?

User(string name, string password, string address){

this.name = name;

this.password = password;

this.address = address;

}

string name() { return name; }

string password() { return password; }

string address() { return address; }

add(owned Order order){

orders.put(order);

}

add(string label, owned Order order){

orders.put(label,order);

}

Order order() throws EmptyMap{

return orders.get();

}

Order order(string label) throws EmptyMap{

return orders.get(label);
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}

buyAll(){

while( orders.size() > 0 ){

try{

Order o = orders.get();

Lib.println( o.review() );

o.buy();

}catch(EmptyMap notfound){

return;

}

};

}

cancelAll(){

while( orders.size() > 0 ){

try{

orders.get();

}catch(EmptyMap notfound){

return;

}

};

}

}

class Insurance{

InsuranceOrder order(){ return new InsuranceOrder(); }

}

class Rental{

RentalOrder order(){ return new BikeRentalOrder(); }

}

class Hotel{

HotelOrder order(){ return new HotelOrder(); }

}

class Airline{

FlightOrder order(){ return new FlightOrder(); }

}

class Dispatcher{

DispatcherOrder order(){ return new DispatcherOrder(); }

}

class TravelAgency{

TravelOrder order(){ return new TravelOrder(); }

}
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class Product{ }

class Store{

Product getProduct(){ return new Product(); }

StoreOrder order(){ return new StoreOrder(); }

}

class InvalidLogin { }

class DuplicatedUser { }

class ShoppingCenter{

usage (&start(

register[DuplicatedUser: start+stop]

+

login[InvalidLogin: start+stop];

logout

))*

map<Insurance> insurances;

map<Rental> rentals;

map<Hotel> hotels;

map<Airline> airlines;

map<Dispatcher> dispatcher;

map<TravelAgency> travelagencies;

map<Store> stores;

map<User> users;

ShoppingCenter(){

insurances.put( new Insurance() );

rentals.put( new Rental() );

hotels.put( new Hotel() );

airlines.put( new Airline() );

dispatcher.put( new Dispatcher() );

travelagencies.put( new TravelAgency() );

stores.put( new Store() );

}

User register(string usr, string pwd, string a) throws DuplicatedUser {

if( users.contains( usr+" "+pwd ) ){

throw new DuplicatedUser();

};

User user = new User(usr, pwd, a);

users.put(usr+" "+pwd, user );

return user;

}

143



D. (COMPLETE) EXAMPLES D.3. Purchase

User login(string username, string password) throws InvalidLogin {

try{

User user = users.get(username+" "+password);

users.put(username+" "+password,null);

return user;

}catch(EmptyMap notfound){

throw new InvalidLogin();

}

}

logout(User user){

try{

users.get(user.name()+" "+user.password()); //removes placeholder

}catch(EmptyMap notfound) { };

users.put(user.name()+" "+user.password(), user);

}

playground(ShoppingCenter s){

try{

User u = s.register("user","password","address");

try{

RentalOrder o = rentals.peek().order();

o.rent(u);

u.add(o);

}catch(InvalidLicense error){}

catch(EmptyMap error){};

try{

TravelOrder t = travelagencies.peek().order();

t.packageAlaska();

u.add(t);

}catch(SoldOut error){}

catch(EmptyMap error){};

try{

FlightOrder f = airlines.peek().order();

f.userData(u);

f.flightNumber(555);

f.flightSeat(23,1);

HotelOrder h = hotels.peek().order();

h.bookRoom(123);

h.breakfast();

TravelOrder t = travelagencies.peek().order();

t.flight(f);

t.hotel(h);

u.add(t);
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}

catch(EmptyMap error){}

catch(NoFlyList error){}

catch(InvalidFlight error){}

catch(InvalidSeat error){};

s.logout(u);

}catch(DuplicatedUser error){

Lib.println(error);

}

}

}

class Main{

main(){

ShoppingCenter s = new ShoppingCenter();

s.playground( s );

}

}

D.4 WS-CDL 1

files/ws-cdl1.yak

class InvalidLogin{}

class InvalidPayment{}

class OutOfStock{}

class Service{

usage &l( login [InvalidLogin: l] ;

&q( query;

(q+logout+

&p( purchase

[ InvalidPayment: p+logout | OutOfStock: q+logout ]

;logout )

)

)

)

login(string username, string password)

throws InvalidLogin { }

string query(string what) { }

string purchase(string query, double payment)

throws InvalidPayment, OutOfStock { }

logout() { }
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}

class UseService{

use_service(Service service){

login(service);

string result = service.query("what?");

while( Lib.random() >= 0.4 ){

result = service.query("what?");

};

boolean purchase = Lib.random() >= 0.5;

if( purchase ){

if( Lib.random() >= 0.5 ){

recPayment(service,result, 200.23);

}else{

//just one try

try{

service.purchase(result,200.23);

}

catch(InvalidPayment ex) { }

catch(OutOfStock ex) { }

}

};

service.logout();

}

login(Service#&p(login[InvalidLogin:p]) service){

repeat{

try{

service.login("username","password");

return null;

}catch(InvalidLogin ex){

//retry forever...

}

};

}

recPayment(

Service#&p(purchase[InvalidPayment: p|OutOfStock: stop]) service,

string what, double value){

try{

service.purchase(what, value);
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}catch(InvalidPayment ex){

//retry with more money...

recPayment(service, what, value*1.2);

}catch(OutOfStock ex){

//no good.

}

}

}

class Main{

main(){

new UseService().use_service(new Service());

}

}

D.5 WS-CDL 2

files/ws-cdl2.yak

class InvalidProduct{}

class QuoteTimeout{}

class CreditFailure{}

class Seller{

usage &s( getQuote[InvalidProduct:s] );

updateQuote*;

order[QuoteTimeout: stop]

getQuote() throws InvalidProduct { }

updateQuote(){ }

boolean order(Buyer buyer) throws QuoteTimeout{

CreditAgency ca = agency();

try{

ca.creditRequest();

}catch(CreditFailure fail){

return false;

};

Shipper sp = shipper();

return sp.shippingRequest(buyer);

}

CreditAgency agency(){

return new CreditAgency();

}
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Shipper shipper() {

return new Shipper();

}

}

class CreditAgency{

usage creditRequest[CreditFailure]

creditRequest() throws CreditFailure { }

}

class Shipper{

usage shippingRequest

boolean shippingRequest(Buyer buyer){

return false;

}

}

class Buyer{

quote(Seller#&s( getQuote[InvalidProduct:s] ) seller){

repeat{

try{

seller.getQuote();

return null;

}catch(InvalidProduct e){ }

}

}

work(Seller seller){

quote(seller);

while( Lib.random() >= 0.5 ){

seller.updateQuote();

};

try{

seller.order(this);

}catch(QuoteTimeout o){ }

}

}

class Main{

main(){

new Buyer().work(new Seller());
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}

}
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E
File list

.:

doc/ //documentation

files/ //example files

lib/ //libraries and servlet config files

src/ //source code

build.xml //ant make file

./files: //main examples

bottle.yak

factory.yak

file_exceptions.yak

file_simple.yak

machines.yak

purchase.yak

register.yak

shopping.yak

ws-cdl1.yak

ws-cdl2.yak

./files/test:

checked //should work

failed_interpreter //should fail on interpreter

failed_type //should fail on typechecker

server/ //testing server
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E.1 Source list

/* modified automaton operations */

src/dk/brics/automaton:

Builder.java //constructing the protocol with a given AST tree

Pair.java

YakOperations.java //newly defined automaton operations

ModifiedOperations.java //some minor modifications to library

/* unit testing classes (using tests in files/test directory) */

src/test:

TestUtils.java

YakParserTest.java

YakAutomatonTester.java

YakInterpreterTest.java

YakTypeCheckerTest.java

/* main class */

src/yak/Main.java //options and servlet launching

/* AST tree */

src/yak/ast:

ID.java //node identification

AST.java

ASTFactory.java //node creator

Visitor.java //visitor pattern for most relevant nodes

src/yak/ast/display:

ASTViewer.java //simple JTree-based AST visualizer

src/yak/ast/nodes:

ASTNode.java //generic node

ASTAssign.java

ASTCall.java

ASTCatch.java

ASTConditional.java

ASTBoolean.java

ASTDouble.java

ASTInteger.java

ASTString.java

ASTXml.java

ASTXmlAttribute.java

ASTFork.java

ASTMethod.java

ASTEqual.java

ASTField.java

ASTGet.java

ASTIfElse.java

ASTLeftReference.java

ASTNewInstance.java
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ASTParallel.java

ASTParameter.java

ASTPut.java

ASTReference.java

ASTReturn.java

ASTSequence.java

ASTThrow.java

ASTTryCatch.java

ASTType.java

ASTVariable.java

ASTWhile.java

/* automaton (protocol) */

src/yak/automaton:

YakAutomaton.java

YakAutomatonFactory.java

AutomatonFactory.java

src/yak/automaton/display:

AutomatonViewer.java

/* interpreter */

src/yak/interpreter:

YakInterpreter.java

Interpreter.java

InterpreterException.java

/* source loader */

src/yak/loader:

Initializer.java //internal types initializer

Loader.java

LoaderException.java

ValueFactory.java

/* parser */

src/yak/parser:

YakGrammar.jj

Parser.java

ParserFactory.java

src/yak/parser/autogen:

ParseException.java //changed: ’extends Exception’ to ’extends RuntimeException’

SimpleCharStream.java

Token.java

TokenMgrError.java

YakParserConstants.java

YakParser.java

YakParserTokenManager.java

/* servlet extension */
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src/yak/servlet:

AttachedInterpreter.java //additional interpreter operations

YakServlet.java //java servlet extension

src/yak/servlet/receiver: //communication abstraction (request receive)

Receiver.java

AbstractValueReceiver.java

HttpGetReceiver.java

HttpPostReceiver.java

/* type checker */

src/yak/type:

YakTypeChecker.java

TypeChecker.java

TypeCheckException.java

src/yak/type/factory:

ContainerFactory.java

ObjectFactory.java

src/yak/type/util:

CacheNode.java

ConsistencyChecker.java

Context.java

ExceptionMap.java

RecursionRemover.java

Snapshot.java

StateArray.java

SubTyper.java

TypeEnvironment.java

/* utility classes */

src/yak/util:

BlockingLinkedList.java

Converter.java

Environment.java

FatalException.java

ListTree.java

Log.java

Message.java //error messages

Slave.java

StackContext.java

UniqueID.java

src/yak/util/reference:

ReferenceBuilder.java

Register.java

/* values */

src/yak/value:
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Value.java

AbstractValue.java

BooleanValue.java

DoubleValue.java

StringValue.java

IntegerValue.java

XMLValue.java

InterfaceValue.java

ClassValue.java

IdValue.java //uniquely comparable value

ExceptionValue.java

ThreadValue.java

ObjectValue.java

QueueValue.java

MapValue.java

ReferenceValue.java

VariableValue.java

src/yak/value/invoker: //communication abstraction (invoke)

Channel.java

AbstractHttpChannel.java

HttpGetChannel.java

HttpPostChannel.java

RemoteInvoker.java

src/yak/value/libs:

DefaultLibrary.java

src/yak/value/method:

AbstractMethodValue.java

ASTMethodValue.java

JavaCheckedMethodValue.java //special purpose method checker

JavaMethodValue.java //default method checker

MethodMap.java

MethodValue.java

YakVisible.java //visible method annotation

src/yak/value/packer: //value packaging

ValuePacker.java

PackableValue.java

SourceValuePacker.java //as source code

XMLValuePacker.java //as xml
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and Petr Hájek, editors, MFCS, volume 969 of Lecture Notes in Computer Science, pages
509–518. Springer, 1995.
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