15-213
“The Class That Gives CMU Its Zip!”

Introduction to
Computer Systems

Frank Pfenning
January 17, 2006

Topics:
m Theme and objective
m Five great realities of computer systems
m How this fits within CS curriculum
m Course mechanics and overview

01- overvi ew. ppt

15-213 S'06

Course Theme

m Abstraction is good, but programs run on real hardw

Courses to date emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Need to understand underlying implementations
m Performance (time and space)

Useful outcomes

m Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance

m Prepare for later “systems” classes in CS & ECE

® Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

are!

15-213, S'06

Great Reality #1

Int's are not Integers, Float's are not

Examples
m s x?2207?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 -->??
mis(Xx+ty)+z = x+(y+2)?
® Unsigned & Signed Int’s: Yes!
® Float’s:
» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

Reals

15-213, S’06

Computer Arithmetic

Does not generate random values

m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations
m Integer operations satisfy “ring” properties
e Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” proper ties
® Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in whic h
contexts
m Important issues for compiler writers and serious a pplication
programmers 15213 06

Great Reality #2

You've got to know assembly

Chances are, you'll never write a program in assemb ly
m Compilers are much better and more patient than you are

Understanding assembly key to machine -level
execution model

m Behavior of programs in presence of bugs
® High-level language model is inadequate

m Tuning program performance
® Understanding sources of program inefficiency

m Implementing system software
® Compiler has machine code as target
® Operating systems must manage process state

5 15-213, S'06

Measuring Time

Trickier than it Might Look

m Many sources of variation

Example

m Sum integers from 1 to n
n
100
1,000
1,000
10,000
10,000
1,000,000
1,000,000
1,000,000,000

Cycles

961

8,407
8,426

82,861

82,876
8,419,907
8,425,181
8,371,2305,591

Cycles/n

9.61
8.41
8.43
8.29
8.29
8.42
8.43
8.37

15-213, S’06

Great Reality #3

Memory Matters: Random Access Memory Is an
un-physical abstraction

Memory is not unbounded
m It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory syste m can
lead to major speed improvements

7 15-213, S'06

Memory Referencing Bug Example

main ()

{

l ong int af2];

double d = 3. 14;

a[2] = 1073741824; /* Qut of bounds reference */
printf("d = % 15g\n", d);

exit(0);

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-O 3.14 3.14 3.14

(Linux version gives correct result, but
Implementing as separate function gives

segmentation fault.)
~-8- 15-213, S'06

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m \Whether or not bug has any effect depends on system and
compiler

m Action at a distance
® Corrupted object logically unrelated to one being a ccessed
e Effect of bug may be first observed long after it | S generated

How can | deal with this?
m Program in Java, Lisp, ML, or Cyclone
m Understand what possible interactions may occur
m Use or develop tools to detect referencing errors

9 - 15-213, S'06

Memory System Performance

Example

voi d copyij (int src[2048][2048],
I nt dst[2048][2048])

int i,j;
for (i = 0; i < 2048; i++) —01U
for (j = 0; jJ < 2048; j++)—|
dst[i][j] = src[i][j];

—for (] = 0; j] < 2048;
=1 for (i =0 i < 2048:

59,393,288 clock cycles

S

21.5 times slower!

m Hierarchical memory organization

voi d copyji (int src[2048][2048],
i nt dst[2048][2048])
{
int i,j;
j +1)
I ++)
\ dst[i][j] = src[i][j];

1,277,877,876 clock cycles

(Measured on 2GHz
Intel Pentium 4)

m Performance depends on access patterns
® Including how step through multi-dimensional array

—-10-

15-213, S'06

The Memory Mountain

Pentium [l Xeon

1200 . 550 MHz
copyl] 16 KB on-chip L1 d-cache
7 1000 16 KB on-chip L1 i-cache
g 512 KB off-chip unified
= L2 cache
2 800
< . .
= 600 copy]J |
©
"'h\\\"ll
“"

&

—

0 m

STy

L

n o

i (%]
Stride (words)

sl1

(92]
Ll
(2]

2m
512k

s15
8m

- 11 -

128k

32k

Working set size (bytes)

15-213, S’06

Memory Performance Example

Implementations of Matrix Multiplication
m Multiple ways to nest loops

[* 1)k */ [* jJik */
for (i=0; i<n; i++) { for (j=0; j<n; j++) {
for (j=0; j<n; j++) { for (i=0; i<n; i++) {
sum = 0. 0; sum = 0. 0;
for (k=0; k<n; k++) for (k=0; k<n; k++)
sum += a[i][k] * b[K][]]; sum += a[i][k] * b[Kk][]];
c[i][j] = sum c[i][i] = sum
} }
} }

12— 15-213, S'06

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
m How programs compiled and executed

m How to measure program performance and identify
bottlenecks

m How to improve performance without destroying code
modularity and generality

—-13-—

code

15-213, S’06

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m |/O system critical to program reliability and perf ormance

They communicate with each other over networks

m Many system-level issues arise in presence of netwo rk
® Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
® Complex performance issues

- 14 — 15-213, S’06

Role within Curriculum

CS 441 ch’r:tilnz CS 411 ECE 447
Networks P g Compilers Architecture
Systems
X\ t / ECE 349
Network Processes Machine Code Embedded
Protocols Mem. Mgmt Optimization Systems
\ ‘ / e Model /
CS 212 Memory System
Execution Scitsr}fs A
Models y

Data Structures

Applications
Programming

Fundamental

CS 211

Structures

C Programming

CS 113

—-15-—

Transition from Abstract to
Concrete!

m From: high-level language
model

m To: underlying

Implementation
15-213, S’06

Course Perspective

Most Systems Courses are Builder -Centric
m Computer Architecture
® Design pipelined processor in Verilog
m Operating Systems
® Implement large portions of operating system
m Compilers
® Write compiler for simple language

m Networking
® |Implement and simulate network protocols

—-16 —

15-213, S’06

Course Perspective (Cont.)

Our Course Is Programmer -Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

m Enable you to
® Write programs that are more reliable and efficient
® |ncorporate features that require hooks into OS
» E.g., concurrency, signal handlers

m Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

m Cover material in this course that you won't see el sewhere

17— 15-213, S'06

Teaching staff

m |nstructor
® Frank Pfenning (WeH 8117)

m TA’s (with Mon recitations in OSC 203)

® Yongjun Jeon (10:30)

® Naju Mancheril (11:30)
® Colin Rothwell (12:30)
® Kevin Bowers (1:30)

® Matus Telegarsky (2:30)
® Jernej Barbic (3:30)

m Course Admin
® Jenn Landefeld (WeH 8120)

—18 —

Come talk to us anytime!
(or phone or send email)

Must go to section that

you registered for

15-213, S’06

Textbooks

Randal E. Bryant and David R. QO’Hallaron ,

m “Computer Systems: A Programmer’s Perspective”, Pre
Hall 2003.

m csapp.cs.cmu.edu

Brian Kernighan and Dennis Ritchie,

m “The C Programming Language, Second Edition”, Prent
Hall, 1988

Need both, especially for exams and quizzes

-19—

ntice

ice

15-213, S’06

Course Components

Lectures
m Higher level concepts and context
m Sometimes differ from book (IA32-EM64T)
m No slides

Recitations

m Applied concepts, important tools and skills for la
clarification of lectures, review for exams

Labs
m The heart of the course (600 pts out of 1000 for co
m 1.50r 2 weeks
m Provide in-depth understanding of an aspect of syst
m Programming and measurement

—-20 -

bs,

urse)

ems

15-213, S'06

Quizzes and Exams

Quizzes
m 30 minutes on-line (Blackboard); not before or afte r exams
m Out Monday, due Tuesday night
m 8 quizzes in total, 15 points each (drop lowest) = 100(+5) pts
m Help you keep up, practice skills for exams

Exams
m 2 exams, 75 points each = 150 pts
m In lecture, open book, open notes, closed computer
m Prior exams available as study aid

Final
m Cumulative, emphasizes last part of course, 150 pts
m Three hour, open book, open notes, closed computer

- 21—

15-213, S'06

Getting Help

Web

m http://www.cs.cmu.edu/~fp/courses/15213-s06/
m Copies of lectures, exams, solutions, handouts
m Course schedule

m Blackboard for grades and quizzes

Newsgroup
B cmu.cs.class.cs213
m Clarifications to assignments, general discussion

Personal help

m Frank Pfenning: WeH 8117
® Use office hour (Wed 2:30-3:30) or stop by

m TAS
® Email, office hour, phone, stop by (see web page)
® One lead instructor for each lab

— 22 —

15-213, S'06

Policies: Assignments

Work groups
m You must work alone on all labs

Handins
m Assignments due at 11:59pm on specified due date
m Typically 11:59pm Tuesday or Thursday evening
m Electronic handins only (no exceptions!)
m 5 grace days to use throughout the term
m At most 2 late days for each lab!

Grading

m Autograding plus code review
® Code must compile and run
® Code must be readable and intelligible

m Grade only official handins
—23— 15-213, S’06

Cheating

What is cheating?

m Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file

m Coaching: helping your friend to write a lab, line by line
m Printing out or helping each other on quizzes

What is NOT cheating?
m Helping others use systems, compilers, or tools

Penalty for cheating:
m Removal from course with failing grade
m Official letter to dean’s office at first offense

Detection of cheating:
m Will use MOSS cheating checker which speaks C!

— 24 — 15-213, S'06

Policies: Grading

Quizzes (10%)
m 8 quizzes at 15 points each, drop lowest

Exams (30%)

m Two in class exams (75 points each)
m Final (150 points)
m All exams are open book / open notes

Labs (60%)
m 7 labs (60-100 points each)

Grading Characteristics

m Lab scores tend to be high
® Serious handicap if you don’t hand a lab in

m Exams typically have a wider range of scores

— 25—

15-213, S'06

Facilities

Assignments will use the Intel Computer

Systems Cluster (aka “the fish machines”)

m 12 (+3) Nocona Xeon servers donated by Intel for CS 213

Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors
2 GB, 400MHz DDR2 SDRAM memory
Running Fedora Core 3 (Linux kernel 2.6.11), 64 bit version
Rack mounted in the 3rd floor Wean Hall machineroo m
Your accounts will be ready by the end of the week
First lab out next Tuesday

Getting help with the cluster machines:
m See course Web page for info

- 26— 15-213, S'06

Account Initialization

For using the Fish machines:
m Read description on the course web-page carefully

For using autolab :
m Give yourself a nickname
m Provide your preferred e-mail address

27—

15-213, S’06

Course Sections and Labs

Programs and Data (approx 8 lectures)
Memory and Performance (4)

Linking and Exceptional Control Flow (3)
Virtual Memory and Garbage Collection (5)

/0O, Networking, and Concurrency (6)

28—

15-213, S’06

Programs and Data (8)

Topics

m Bits operations, arithmetic, assembly language prog
representation of C control and data structures

m Includes aspects of architecture and compilers

Assignments
m L1 (datalab): Manipulating bits
m L2 (bomblab): Defusing a binary bomb
m L3 (buflab): Hacking a buffer bomb

—29_

rams,

15-213, S'06

Memory and Performance (4)

Topics

m High level processor models, code optimization (con
data), measuring time on a computer

m Memory technology, memory hierarchy, caches, disks,
locality

m Includes aspects of architecture, compilers, and OS

Assignments
m L4 (perflab): Optimizing code performance

—-30-

trol and

15-213, S'06

Linking and Exceptional
Control Flow (3)

Topics
m Object files, static and dynamic linking, libraries , loading

m Hardware exceptions, processes, process control, Un IX
signals, nonlocal jumps

m Includes aspects of compilers, OS, and architecture

Assignments
m L5 (tshlab): Writing your own shell with job contro I

—-31-— 15-213, S'06

Virtual Memory and Garbage Collection(5)

Topics
m Virtual memory, address translation, dynamic storag e
allocation
m Garbage collection for high-level languages
m Debugging and program analysis
m Includes aspects of architecture and OS

Assignments
m L6 (malloclab): Writing your own malloc package

—-32— 15-213, S'06

1/O, Networking, and Concurrency (6)

Topics

m High level and low-level 1/0O, network programming, Internet
services, Web servers

m Concurrency, concurrent server design, threads
m Includes aspects of networking, OS, and architectur e.

Assignments
m L7 (proxylab): Writing your own Web proxy

—-33-— 15-213, S'06

Lab Rationale

Each lab should have a well -defined goal such as
solving a puzzle or winning a contest

Doing a lab should result in new skills and concept S
m Data Lab: number representations, logic, bit manipu lation

m Bomb Lab: assembly, using debugger, understanding s tack
m Buffer Lab: awareness of security issues

m Perf Lab: profiling, measurement, performance debugg Ing

m Shell Lab: understanding Unix process control and s ignals
m Malloc Lab: understanding pointers and nasty memory bugs
m Proxy Lab: network programming, server design

We try to use competition in a fun and healthy way.
m Set a reasonable threshhold for full credit.
m Post intermediate results (anonymized) for glory!

- 34— 15-213, S'06

Autolab Web Service

Labs are provided by the Autolab system
m Developed in summer 2003 and 2005 by Dave O’'Hallaro n
m Apache Web server + Perl CGI programs

With Autolab you can use your Web browser to:
m Review lab notes, clarifications
m Download the lab materials
m Stream autoresults to a class status Web page as you work
m Hand in your code for autograding by the Autolab serv er

m View the complete history of your code handins, aut oresult
submissions, autograding reports, and instructor
evaluations

m View the class status page

—-35— 15-213, S'06

— 36—

Good Luck and Have Fun!

15-213, S’06

