
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:� Theme and objective� Five great realities of computer systems� How this fits within CS curriculum� Course mechanics and overview

15-213 S’0601-overview.ppt

15-213
“The Class That Gives CMU Its Zip!”

Frank Pfenning
January 17, 2006

– 2 – 15-213, S’06

Course ThemeCourse Theme� Abstraction is good, but programs run on real hardw are!

Courses to date emphasize abstractionCourses to date emphasize abstraction� Abstract data types� Asymptotic analysis

These abstractions have limitsThese abstractions have limits� Need to understand underlying implementations� Performance (time and space)

Useful outcomesUseful outcomes� Become more effective programmers� Able to find and eliminate bugs efficiently� Able to tune program performance� Prepare for later “systems” classes in CS & ECE� Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

– 3 – 15-213, S’06

Great Reality #1Great Reality #1

Int’sInt’s are not Integers, Float’s are not are not Integers, Float’s are not RealsReals

ExamplesExamples� Is x 2

�

 0?� Float’s: Yes!� Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??� Is (x + y) + z = x + (y + z)?� Unsigned & Signed Int’s: Yes!� Float’s:
» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

– 4 – 15-213, S’06

Computer ArithmeticComputer Arithmetic

Does not generate random valuesDoes not generate random values� Arithmetic operations have important mathematical
properties

Cannot assume “usual” propertiesCannot assume “usual” properties� Due to finiteness of representations� Integer operations satisfy “ring” properties� Commutativity, associativity, distributivity� Floating point operations satisfy “ordering” proper ties� Monotonicity, values of signs

ObservationObservation� Need to understand which abstractions apply in whic h
contexts� Important issues for compiler writers and serious a pplication
programmers

– 5 – 15-213, S’06

Great Reality #2Great Reality #2

You’ve got to know assemblyYou’ve got to know assembly

Chances are, you’ll never write a program in assemb lyChances are, you’ll never write a program in assemb ly� Compilers are much better and more patient than you are

Understanding assembly key to machineUnderstanding assembly key to machine --level level
execution modelexecution model� Behavior of programs in presence of bugs� High-level language model is inadequate� Tuning program performance� Understanding sources of program inefficiency� Implementing system software� Compiler has machine code as target� Operating systems must manage process state

– 6 – 15-213, S’06

Measuring TimeMeasuring Time

Trickier than it Might LookTrickier than it Might Look� Many sources of variation

ExampleExample� Sum integers from 1 to n
n Cycles Cycles/n

100 961 9.61
1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

– 7 – 15-213, S’06

Great Reality #3Great Reality #3

Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an
unun --physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded� It must be allocated and managed� Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious� Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform� Cache and virtual memory effects can greatly affect program
performance� Adapting program to characteristics of memory syste m can
lead to major speed improvements

– 8 – 15-213, S’06

Memory Referencing Bug ExampleMemory Referencing Bug Example

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

Alpha MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

– 9 – 15-213, S’06

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection� Out of bounds array references� Invalid pointer values� Abuses of malloc/free

Can lead to nasty bugsCan lead to nasty bugs� Whether or not bug has any effect depends on system and
compiler� Action at a distance� Corrupted object logically unrelated to one being a ccessed� Effect of bug may be first observed long after it i s generated

How can I deal with this?How can I deal with this?� Program in Java, Lisp, ML, or Cyclone� Understand what possible interactions may occur� Use or develop tools to detect referencing errors

– 10 – 15-213, S’06

Memory System Performance
Example
Memory System Performance
Example

� Hierarchical memory organization� Performance depends on access patterns� Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

– 11 – 15-213, S’06

The Memory MountainThe Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8
m 2

m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

R
ea

d
th

ro
ug

hp
ut

 (
M

B
/s

)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

L1

L2

Mem

xe

copyij

copyji

– 12 – 15-213, S’06

Memory Performance ExampleMemory Performance Example

Implementations of Matrix MultiplicationImplementations of Matrix Multiplication� Multiple ways to nest loops

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

– 13 – 15-213, S’06

Great Reality #4Great Reality #4

There’s more to performance than asymptotic There’s more to performance than asymptotic
complexitycomplexity

Constant factors matter too!Constant factors matter too!� Easily see 10:1 performance range depending on how code
written� Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance� How programs compiled and executed� How to measure program performance and identify
bottlenecks� How to improve performance without destroying code
modularity and generality

– 14 – 15-213, S’06

Great Reality #5Great Reality #5

Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out� I/O system critical to program reliability and perf ormance

They communicate with each other over networksThey communicate with each other over networks� Many system-level issues arise in presence of netwo rk� Concurrent operations by autonomous processes� Coping with unreliable media� Cross platform compatibility� Complex performance issues

– 15 – 15-213, S’06

Role within CurriculumRole within Curriculum

Transition from Abstract to Transition from Abstract to
Concrete!Concrete!� From: high-level language

model� To: underlying
implementation

CS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 113
C Programming

– 16 – 15-213, S’06

Course PerspectiveCourse Perspective

Most Systems Courses are BuilderMost Systems Courses are Builder --CentricCentric� Computer Architecture� Design pipelined processor in Verilog� Operating Systems� Implement large portions of operating system� Compilers� Write compiler for simple language� Networking� Implement and simulate network protocols

– 17 – 15-213, S’06

Course Perspective (Cont.)Course Perspective (Cont.)

Our Course is ProgrammerOur Course is Programmer --CentricCentric� Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer� Enable you to� Write programs that are more reliable and efficient� Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers� Not just a course for dedicated hackers� We bring out the hidden hacker in everyone� Cover material in this course that you won’t see el sewhere

– 18 – 15-213, S’06

Teaching staffTeaching staff� Instructor� Frank Pfenning (WeH 8117)� TA’s (with Mon recitations in OSC 203)� Yongjun Jeon (10:30)� Naju Mancheril (11:30)� Colin Rothwell (12:30)� Kevin Bowers (1:30)� Matus Telegarsky (2:30)� Jernej Barbic (3:30)� Course Admin� Jenn Landefeld (WeH 8120)

Come talk to us anytime!
(or phone or send email)

Must go to section that
you registered for

– 19 – 15-213, S’06

TextbooksTextbooks

Randal E. Bryant and David R. Randal E. Bryant and David R. O’HallaronO’Hallaron , , � “Computer Systems: A Programmer’s Perspective”, Pre ntice
Hall 2003.� csapp.cs.cmu.edu

Brian Kernighan and Dennis Ritchie, Brian Kernighan and Dennis Ritchie, � “The C Programming Language, Second Edition”, Prent ice
Hall, 1988

Need both, especially for exams and quizzesNeed both, especially for exams and quizzes

– 20 – 15-213, S’06

Course ComponentsCourse Components

LecturesLectures� Higher level concepts and context� Sometimes differ from book (IA32-EM64T)� No slides

RecitationsRecitations� Applied concepts, important tools and skills for la bs,
clarification of lectures, review for exams

LabsLabs� The heart of the course (600 pts out of 1000 for co urse)� 1.5 or 2 weeks� Provide in-depth understanding of an aspect of syst ems� Programming and measurement

– 21 – 15-213, S’06

Quizzes and ExamsQuizzes and Exams

QuizzesQuizzes� 30 minutes on-line (Blackboard); not before or afte r exams� Out Monday, due Tuesday night� 8 quizzes in total, 15 points each (drop lowest) = 100(+5) pts� Help you keep up, practice skills for exams

ExamsExams� 2 exams, 75 points each = 150 pts� In lecture, open book, open notes, closed computer� Prior exams available as study aid

FinalFinal� Cumulative, emphasizes last part of course, 150 pts� Three hour, open book, open notes, closed computer

– 22 – 15-213, S’06

Getting HelpGetting Help

WebWeb� http://www.cs.cmu.edu/~fp/courses/15213-s06/� Copies of lectures, exams, solutions, handouts� Course schedule� Blackboard for grades and quizzes

NewsgroupNewsgroup� cmu.cs.class.cs213� Clarifications to assignments, general discussion

Personal helpPersonal help� Frank Pfenning: WeH 8117� Use office hour (Wed 2:30-3:30) or stop by� TAs� Email, office hour, phone, stop by (see web page)� One lead instructor for each lab

– 23 – 15-213, S’06

Policies: AssignmentsPolicies: Assignments

Work groupsWork groups� You must work alone on all labs

HandinsHandins� Assignments due at 11:59pm on specified due date� Typically 11:59pm Tuesday or Thursday evening� Electronic handins only (no exceptions!)� 5 grace days to use throughout the term� At most 2 late days for each lab!

GradingGrading� Autograding plus code review� Code must compile and run� Code must be readable and intelligible� Grade only official handins

– 24 – 15-213, S’06

CheatingCheating

What is cheating?What is cheating?� Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file� Coaching: helping your friend to write a lab, line by line� Printing out or helping each other on quizzes

What is NOT cheating?What is NOT cheating?� Helping others use systems, compilers, or tools

Penalty for cheating:Penalty for cheating:� Removal from course with failing grade� Official letter to dean’s office at first offense

Detection of cheating:Detection of cheating:� Will use MOSS cheating checker which speaks C!

– 25 – 15-213, S’06

Policies: GradingPolicies: Grading

Quizzes (10%)Quizzes (10%)� 8 quizzes at 15 points each, drop lowest

Exams (30%)Exams (30%)� Two in class exams (75 points each)� Final (150 points)� All exams are open book / open notes

Labs (60%)Labs (60%)� 7 labs (60-100 points each)

Grading CharacteristicsGrading Characteristics� Lab scores tend to be high� Serious handicap if you don’t hand a lab in� Exams typically have a wider range of scores

– 26 – 15-213, S’06

FacilitiesFacilities

Assignments will use the Intel Computer Assignments will use the Intel Computer
Systems Cluster (Systems Cluster (akaaka “the fish machines”)“the fish machines”)� 12 (+3) Nocona Xeon servers donated by Intel for CS 213� Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors� 2 GB, 400MHz DDR2 SDRAM memory� Running Fedora Core 3 (Linux kernel 2.6.11), 64 bit version� Rack mounted in the 3rd floor Wean Hall machine roo m� Your accounts will be ready by the end of the week� First lab out next Tuesday

Getting help with the cluster machines:Getting help with the cluster machines:� See course Web page for info

– 27 – 15-213, S’06

Account InitializationAccount Initialization

For using the Fish machines:For using the Fish machines:� Read description on the course web-page carefully

For using For using autolabautolab ::� Give yourself a nickname� Provide your preferred e-mail address

– 28 – 15-213, S’06

Course Sections and LabsCourse Sections and Labs

Programs and Data (approx 8 lectures)Programs and Data (approx 8 lectures)

Memory and Performance (4)Memory and Performance (4)

Linking and Exceptional Control Flow (3)Linking and Exceptional Control Flow (3)

Virtual Memory and Garbage Collection (5)Virtual Memory and Garbage Collection (5)

I/O, Networking, and Concurrency (6)I/O, Networking, and Concurrency (6)

– 29 – 15-213, S’06

Programs and Data (8)Programs and Data (8)

TopicsTopics� Bits operations, arithmetic, assembly language prog rams,
representation of C control and data structures� Includes aspects of architecture and compilers

AssignmentsAssignments� L1 (datalab): Manipulating bits� L2 (bomblab): Defusing a binary bomb� L3 (buflab): Hacking a buffer bomb

– 30 – 15-213, S’06

Memory and Performance (4)Memory and Performance (4)

TopicsTopics� High level processor models, code optimization (con trol and
data), measuring time on a computer� Memory technology, memory hierarchy, caches, disks,
locality� Includes aspects of architecture, compilers, and OS

AssignmentsAssignments� L4 (perflab): Optimizing code performance

– 31 – 15-213, S’06

Linking and Exceptional
Control Flow (3)
Linking and Exceptional
Control Flow (3)
TopicsTopics� Object files, static and dynamic linking, libraries , loading� Hardware exceptions, processes, process control, Un ix

signals, nonlocal jumps� Includes aspects of compilers, OS, and architecture

AssignmentsAssignments� L5 (tshlab): Writing your own shell with job contro l

– 32 – 15-213, S’06

Virtual Memory and Garbage Collection(5)Virtual Memory and Garbage Collection(5)

TopicsTopics� Virtual memory, address translation, dynamic storag e
allocation� Garbage collection for high-level languages� Debugging and program analysis� Includes aspects of architecture and OS

AssignmentsAssignments� L6 (malloclab): Writing your own malloc package

– 33 – 15-213, S’06

I/O, Networking, and Concurrency (6)I/O, Networking, and Concurrency (6)

TopicsTopics� High level and low-level I/O, network programming, Internet
services, Web servers� Concurrency, concurrent server design, threads� Includes aspects of networking, OS, and architectur e.

AssignmentsAssignments� L7 (proxylab): Writing your own Web proxy

– 34 – 15-213, S’06

Lab Rationale Lab Rationale

Each lab should have a wellEach lab should have a well --defined goal such as defined goal such as
solving a puzzle or winning a contestsolving a puzzle or winning a contest

Doing a lab should result in new skills and concept sDoing a lab should result in new skills and concept s� Data Lab: number representations, logic, bit manipu lation� Bomb Lab: assembly, using debugger, understanding s tack� Buffer Lab: awareness of security issues � Perf Lab: profiling, measurement, performance debugg ing� Shell Lab: understanding Unix process control and s ignals� Malloc Lab: understanding pointers and nasty memory bugs� Proxy Lab: network programming, server design

We try to use competition in a fun and healthy way.We try to use competition in a fun and healthy way.� Set a reasonable threshhold for full credit.� Post intermediate results (anonymized) for glory!

– 35 – 15-213, S’06

Autolab Web ServiceAutolab Web Service

Labs are provided by the Labs are provided by the AutolabAutolab systemsystem� Developed in summer 2003 and 2005 by Dave O’Hallaro n� Apache Web server + Perl CGI programs

With With AutolabAutolab you can use your Web browser to:you can use your Web browser to:� Review lab notes, clarifications� Download the lab materials� Stream autoresults to a class status Web page as you work� Hand in your code for autograding by the Autolab serv er� View the complete history of your code handins, aut oresult
submissions, autograding reports, and instructor
evaluations� View the class status page

– 36 – 15-213, S’06

Good Luck and Have Fun!Good Luck and Have Fun!

