
Assignment 5:
Polymorphic, Existential, Recursive Types

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu )

Out: Thursday, October 14, 2004
Due: Thursday, October 21, 2004 (1:30 pm)

50 points total

1. Simulating with Polymorphic Types (25 pts)

1.1. Simulating Pairs

One can get a lot of mileage out of just function and polymorphic types.
Consider the following type definition (for τ1 and τ2 are any two types not
containing α):

prodτ1,τ2 = ∀α.(τ1 → τ2 → α)→ α

Think about what kind of values of type prodτ1,τ2 there could be. Since
it is a ∀-type, a value of this type must start with Λα. and then produce
something of type (τ1 → τ2 → α) → α for an arbitrary α. But the only
way we have of producing α-typed data is the function τ1 → τ2 → α that
we’ve received as an argument. Thus we must call this function and pass it
something of type τ1 and something else of type τ2. So every value prodτ1,τ2
is like a pair of an expression of type τ1 and an expression of type τ2.

Question 1 (5 points). Write in MinML the following functions:

pair : ∀β1.∀β2.β1 → β2 → prodβ1,β2

fst : ∀β1.∀β2.prodβ1,β2
→ β1

snd : ∀β1.∀β2.prodβ1,β2
→ β2

1



The function pair should take a value of type β1 and one of β2 and pro-
duce something of type ∀α.(β1 → β2 → α) → α that represents a pair of
the two inputs as suggestively described above. Then fst and snd should
accordingly return the appropriate components of the pair.

1.3. Simulating Existential Types

Similarly we can simulate existential types using just polymorphic types
and functions. Here is the definition:

existβ.τ = ∀α.(∀β.(τ → α))→ α

In both the left and right hand of the equation, τ is a type that may refer
to the variable β (but not α). The reasoning here is that to make something
of type existβ.τ , we must make something that is of type (∀β.τ → α) → α
for any arbitrary α. The only way we can write a function is by taking in an
argument, say v, of type ∀β.τ → α and then apply it to something. Since v
accepts something of type τ for any type β (remember that β may occur in
τ !), what we are required to provide to v is something of type τ for some β.
This notion of ‘some’ is exactly what is meant by an existential quantifier ∃.

To summarize, to construct a value of type existβ.τ , we must construct
something of type ∃β.τ .

Question 2 (10 points). Describe how to translate MinML programs that
use existential types into programs that instead use the type existβ.τ . You
will need to at least sketch out a recursive translation that replaces every
instance of pack and open with expressions not involving these constructs.
Could we have instead simply written functions to replace pack and open
as we did with fst and snd and pair above? Why or why not? (Hint: what
type would our pack replacement have?)

1.3. Simulating a Mystery Type

Similar to the above encodings, the following type is ‘morally equivalent’
to one of the familiar type constructors we’ve considered in class already.

mysteryτ1,τ2 = ∀α.(τ1 → α)→ (τ2 → α)→ α

Question 3 (5 points). Which is it? What are the constructors and decon-
structors for this type constructor? Give their types, and implement them
in the same general way as part 1.1.

2



1.4. Evaluation

While these encodings may seem intuitively plausible, the proof of their
correctness must proceed carefully.

Question 4 (5 points). Find a counterexample to the following first attempt
at a correctness theorem:

Theorem 1. Let e1 be an expression in MinML with product types, and let e2 be
the translation of e1 obtained by replacing every instance of τ1× τ2 with prodτ1,τ2 ,
and all of the pair constructors and deconstructors with the functions you wrote
in part 1.1.

Assuming this, if e1 7→ e′1, then e2 7→ e′2 for expressions e′1 and e′2 such that
e′2 is similarly the translation of e′1

2. Existential and Recursive Types (25 pts)

Consider the following datatype of bitstrings:

datatype bits = Empty
| One of bits
| Zero of bits

Just to be unambiguous about left-to-right order, the bitstring 1011 is
represented as One(Zero(One(One(Empty)))) .

Question 5 (5 points). Express the bits datatype as a recursive (i.e. µ)
type.

Question 6 (5 points). Write a function or : bits ∗ bits → bits over
this recursive type to compute the binary OR of two arguments. If one
argument is not the same length as the other, behave as if you extended the
shorter one on the right with zeros. For example, the OR of 101 and 00101
is 10101.

Question 7 (5 points). Express the bits datatype as an abstract type, (i.e.
using ∃) exposing the three constructors and the deconstructor.

Question 8 (10 points). Rewrite or to work on this abstract type.

3


