
Chapter 1

Introduction

According to Wikipedia, logic is the study of the principles of valid inferences
and demonstration. From the breadth of this definition it is immediately clear
that logic constitutes an important area in the disciplines of philosophy and
mathematics. Logical tools and methods also play an essential role in the de-
sign, specification, and verification of computer hardware and software. It is
these applications of logic in computer science which will be the focus of this
course. In order to gain a proper understanding of logic and its relevance to
computer science, we will need to draw heavily on the much older logical tra-
ditions in philosophy and mathematics. We will discuss some of the relevant
history of logic and pointers to further reading throughout these notes. In this
introduction, we give only a brief overview of the contents and approach of this
class.

The course is divided into four parts:

I. Proofs as Evidence for Truth

II. Proofs as Programs

III. Proofs as Computations

IV. Proofs as Refutations

Proofs are central in all parts of the course, and give it its constructive nature.
In each part, we will exhibit connections between proofs and forms of compu-
tations studied in computer science. These connections will take quite different
forms, which shows the richness of logic as a foundational discipline at the nexus
between philosophy, mathematics, and computer science.

In Part I we establish the basic vocabulary and systematically study propo-
sitions and proofs, mostly from a philosophical perspective. The treatment will
be rather formal in order to permit an easy transition into computational appli-
cations. We will also discuss some properties of the logical systems we develop
and strategies for proof search. We aim at a systematic account for the usual

Draft of August 26, 2008



2 Introduction

forms of logical expression, providing us with a flexible and thorough founda-
tion for the remainder of the course. Exercises in this section will test basic
understanding of logical connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
surprising that many proofs in mathematics today are not constructive in this
sense. Concretely, we find that for a certain fragment of logic, constructive
proofs correspond to functional programs and vice versa. More generally, we
can extract functional programs from constructive proofs of their specifications.
We often refer to constructive reasoning as intuitionistic, while non-constructive
reasoning is classical. Exercises in this part explore the connections between
proofs and programs, and between theorem proving and programming.

In Part III we study a different connection between logic and programs where
proofs are the result of computation rather than the starting point as in Part
II. This gives rise to the paradigm of logic programming where the process of
computation is one of systematic proof search. Depending on how we search
for proofs, different kinds of algorithms can be described at a very high level
of abstraction. Exercises in this part focus on exploiting logic programming to
implement various algorithms in concrete languages such as Prolog.

In Part IV we study fragments of logic for which the question whether a
proposition is true of false can be effectively decided by an algorithm. Such
fragments can be used to specify some aspects of the behavior of software or
hardware and then automatically verify them. A key technique here is model-
checking that exhaustively explores the truth of a proposition over a finite state
space. Model-checking and related methods are routinely used in industry, for
example, to support hardware design by detecting design flaws at an early stage
in the development cycle. In this application area, the constructive nature of
proofs is usually exploited to generate counterexamples which are embedded in
refutations of conjectures. Exercises in this part may involve the use of tools
for model-checking, or the implementation of decision procedures for simple
theories.

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive logic
and its relation to computation. This includes the translation of informally
specified problems to logical language, the ability to recognize correct proofs
and construct them. The skills further include writing and inductively proving
the correctness of recursive programs.

The second set of goals concerns the transfer of this knowledge to other
kinds of reasoning. We will try to illuminate logic and the underlying philo-
sophical and mathematical principles from various points of view. This is im-
portant, since there are many different kinds of logics for reasoning in different
domains or about different phenomena1, but there are relatively few underlying

1for example: classical, intuitionistic, modal, second-order, temporal, belief, linear, rele-
vance, affirmation, . . .

Draft of August 26, 2008



3

philosophical and mathematical principles. Our second goal is to teach these
principles so that students can apply them in different domains where rigorous
reasoning is required.

A third set of goals relates to specific, important applications of logic in
the practice of computer science. Examples are the design of type systems for
programming languages, specification languages, or verification tools for finite-
state systems. While we do not aim at teaching the use of particular systems
or languages, students should have the basic knowledge to quickly learn them,
based on the materials presented in this class.

These learning goals present different challenges for students from different
disciplines. Lectures, recitations, exercises, and the study of these notes are all
necessary components for reaching them. These notes do not cover all aspects
of the material discussed in lecture, but provide a point of reference for defini-
tions, theorems, and motivating examples. Recitations are intended to answer
students’ questions and practice problem solving skills that are critical for the
homework assignments. Exercises are a combination of written homework to be
handed at lecture and theorem proving or programming problems to be submit-
ted electronically using the software written in support of the course. A brief
introduction to this software is included in these notes, a separate manual is
available with the on-line course material.

Draft of August 26, 2008



4 Introduction

Draft of August 26, 2008


