
Constructive Logic (15-317), Spring 2023
Assignment 5: Continuations and Arithmetic

(60 points)

Instructor: Frank Pfenning

Due: March 21, 2023, 11:59 pm

This assignment will have a written portion, a programming portion and
a Dcheck portion. You will submit all portions through Gradescope.

We recommend that you typeset your written solutions. Most students
use LATEX, but other software is acceptable. If you choose not to typeset your
solutions, be aware that your handwriting must be legible.

1 Classical Sequent Calculus (3 points)

In class, we introduced classical sequent calculus. Below is an example proof

of · CL
=⇒ (¬¬A) ⊃ A. In the classical sequent calculus, we may omit both

antecedents and succedents that are no longer needed (silently applying the
admissible rule of weakening either on the left or right).

A
CL
=⇒ ⊥, A

id

· CL
=⇒ ¬A,A

⊃R
⊥ CL

=⇒ A
⊥L

¬¬A CL
=⇒ A

⊃L

· CL
=⇒ (¬¬A)⊃ A

⊃R

Task 1. (3 points) Prove the following sequent using classical sequent
calculus. For reference, you may find the inference rules for classical sequent

1

in Appendix A.

· CL
=⇒ ((A⊃B)⊃ A)⊃ A

(no Task 2)

2 Classical Proof Terms (10 points)

Using the proof terms for classical logic in Lecture 12, write out proof terms
for the following two propositions. Note: ¬A is the type of continuations
expecting to be thrown a value of type A, rather than the intuitionistic
abbreviation A⊃⊥.

Task 3. (5 points)

¬(A ∧B)⊃ (¬A ∨ ¬B)

Task 4. (5 points)
(A⊃B)⊃ (¬A ∨B)

3 Computing with Continuations (8 points)

Examples, typing and computation rules for continuation are given in Lecture
12 and in B.

Task 5. (8 points) Consider the following proof terms.

M ≜ callcc(k. inl (callcc(k′. throw k (inr k′))))

N ≜ case(M,x. x, y. throw y 317)

Let C be some arbitrary context. Evaluate C[N] until you find some C[P]
with P value (where you should assume that 317 is a value). Do not skip
any of the reduction steps.

4 Tail recursion (17 points)

You can find relevant signature in the Lecture 12 notes and also in the Lecture
12 code cont.sml and tcheck-cont.sml.

In the lecture, we have seen examples that how we can use continua-
tions mostly in the style of exceptions. In this question, we will explore tail
recursion using continuation.

2

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont/cont.sml
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont.pdf

As we have learned in 15-150, if we have pending computations that
make use of the result of the recursive call, the stack usage is going to rise.
Functions that do not have pending computations are said to be tail recursive,
and the recursive call is called a tail call.

Consider the following recursive function.

1 datatype nat = Z | S of nat

2 fun dbl (n : nat) : nat =

3 case n of

4 Z => Z

5 | S n’ => S (S (dbl n’))

Clearly this function is not tail recursive, since the second case has further
computations that depend on the result of the recursive call.

Task 6. (6 points) Implement a function dblcc that has type nat *

nat cont -> void. In addition of the original argument n, the new function
takes in a continuation that has type nat cont. Rather than return a value,
the function throws that value to the given return point and has return type
void, which means it never returns.

1 datatype void = Void of void

2 fun abort (Void _) = raise Fail "impossible"

3

4 fun dblcc (n : nat , k : nat cont) : void =

5 (* Your implementation here *)

Constraints: You should use callcc at most once. Your function dblcc does
not need to be tail recursive.

Task 7. (3 points) Implement a function dbl’ that has type nat ->

nat using dblcc you wrote in Task 6 by providing appropriate numeric and
continuation arguments. The result of dbl’ should be exactly as same as
dbl.

1 fun dbl ’ (n : nat) : nat =

2 (* Your implementation here *)

Task 8. (8 points) Based on dblcc you wrote, implement a tail recursive
function dblcps that has type nat * nat cont -> void. The behavior of
dblcps should be as same as dblcc.

1 fun dblcps (n : nat , k : nat cont) : void =

2 (* Your implementation here *)

3

Constraints: Your dblcps should be tail recursive, meaning that no further
computations should be made after the recursive call dblcps.

Hint: Directly calling dblcc will not make your code tail recursive, since
the function dblcc does not achieve tail recursion.

Task 9. (0 points) Implement a function dbl’’ by replacing the usage
of dblcc by dblcps in dbl’. You should not write anything new in this task,
since we just want you to test your implementation of dblcps.

1 fun dbl ’’ (n : nat) : nat =

2 (* Copy your dbl ’ code and change dblcc to dblcps *)

5 Predicate Calculus (10 points)

Using Dcheck, give derivations of the following judgements, if they are deriv-
able. For the ones that are not derivable, simply put:

1 deriv <name > = omitted

Note: Although this problem does not involve natural numbers, we are
working in the Heyting Arithmetic (AR) system because that’s where quan-
tifiers are available in Dcheck. This means you need to write the quanti-
fiers ∀x.A(x) as All x:T. A(x) and ∃x.A(x) as Exists x:T. A(x) where
T represents an arbitrary (unspecified) domain of quantification in order to
distinguish it from nat.

Task 10. (5 points)

(∀x.A(x))⊃ (∃x .A(x)) true
Task 11. (5 points)

((∀x.A(x)) ∧ (∃x.⊤))⊃ (∃x.A(x)) true

6 Arithmetic (12 points)

Task 12. (12 points) Using Dcheck, give derivation for the following judg-
ment.

∀x : nat. ∀y : nat.∀z : nat. (x = y)⊃ (y = z)⊃ (x = z) true

Hint: This problem is challenging. One suggestion is not to introduce all
three quantifiers at once since the resulting induction hypothesis may be too
weak.

4

A Classical Sequent Calculus

Γ, P
CL
=⇒ P,∆

id∗

Γ,⊥ CL
=⇒ C,∆

⊥L
Γ

CL
=⇒ ⊤,∆

⊤R

Γ
CL
=⇒ A,∆ Γ

CL
=⇒ B,∆

Γ
CL
=⇒ A ∧B,∆

∧R
Γ, A,B

CL
=⇒ C,∆

Γ, A ∧B
CL
=⇒ C,∆

∧L

Γ
CL
=⇒ A,B,∆

Γ
CL
=⇒ A ∨B,∆

∨R
Γ, A

CL
=⇒ ∆ Γ, B

CL
=⇒ ∆

Γ, A ∨B
CL
=⇒ ∆

∨L

Γ, A
CL
=⇒ B,∆

Γ
CL
=⇒ A⊃B,∆

⊃R
Γ

CL
=⇒ A,∆ Γ, B

CL
=⇒ ∆

Γ, A⊃B
CL
=⇒ ∆

⊃L

Γ, A
CL
=⇒ A,∆

id
Γ

CL
=⇒ A,∆ Γ, A

CL
=⇒ ∆

Γ
CL
=⇒ ∆

cut

Γ
CL
=⇒ ∆

Γ
CL
=⇒ A,∆

weakenR
Γ

CL
=⇒ ∆

Γ, A
CL
=⇒ ∆

weakenL

Γ
CL
=⇒ A,A,∆

Γ
CL
=⇒ A,∆

contractR
Γ, A,A

CL
=⇒ ∆

Γ, A
CL
=⇒ ∆

contractL

5

B Continuations

We use V for terms M with M value.

Local reductions.

fst ⟨M,N⟩ =⇒R M (A ∧B)
snd ⟨M,N⟩ =⇒R N (A ∧B)
(λx.M)V =⇒R [V/x]M (A⊃B)
case(inlV, x.N, y. P) =⇒R [V/x]N (A ∨B)
case(inrV, x.N, y. P) =⇒R [V/y]P (A ∨B)
no local reduction for ⟨ ⟩ (⊤)
no local reduction for abortM (⊥)

Evaluation contexts.

C ::= [] (general)
| fstC | sndC (A ∧B)
| C N | V C (A⊃B)
| inlC | inrC | case(C, u.N,w.P) (A ∨B)
| (none) (⊤)
| abortC (⊥)
| throwC N | throwV C (¬A)

Computation steps.

M =⇒R M ′

C[M] −→ C[M ′]

C[] value

C[callcc (k.M)] −→ C[[C[]/k]M]

V value

C[throwC ′[]V] −→ C ′[V]

6

	Classical Sequent Calculus (3 points)
	Classical Proof Terms (10 points)
	Computing with Continuations (8 points)
	Tail recursion (17 points)
	Predicate Calculus (10 points)
	Arithmetic (12 points)
	Classical Sequent Calculus
	Continuations

