
Constructive Logic (15-317), Spring 2023
Assignment 7/8: Logic Programming (90 points)

Instructor: Frank Pfenning

Due: Tuesday, April 25, 2023, 11:59 pm

This assignment has a written portion and a Prolog programming portion. You can
find instructions for running the Ciao implementation of Prolog on Andrew on the course
software page. You may also install a standard Prolog implementation (for example, Ciao,
SWI Prolog, or GNU Prolog) on your own machine.

You will submit all portions through Gradescope.
We recommend that you typeset your written solutions. Most students use LATEX, but

other software is acceptable. If you choose not to typeset your solutions, be aware that
your handwriting must be legible.

1 Backward Chaining and Certification (50 points)

In this problem we explore logic programming in the pure Horn fragment of Prolog, as
introduced in Lectures 18–22.

Task 1. (20 points) Augment the rules for backward chaining from Lecture 19 (summarized
in Appendix A) to maintain proof terms as introduced for natural deduction in Lecture 4.
You should assume a distinct c : D for every clause in the program Γ. From the natural
deduction perspective these would be considered hypothesis; from the proof term per-
spective, these would be considered variables.

We call these rules for certifying backward chaining.

Task 2. (10 points) State the theorem expressing that if a sequent in the certifying back-
ward chaining calculus is derivable, then the extracted proof term is correct in natural
deduction. Since backward chaining uses several forms of sequents, this should be a mul-
tipart statement directly suitable for a proof by simultaneous rule induction. You do not
need to prove it.

Task 3. (20 points) Extend the metainterpreter meta.pl from Lecture 19 to include proof
terms as designed in Task 1. Since the metainterpreter does not explicitly deal with quanti-
fiers, your proof terms should not explicitly represent quantifier instantiation but leave this
to (sound!) unification. The result should be an interpreter for Horn clauses that searches
for derivations like Prolog, but also maintains proof terms.

At the top level there should be a predicate

1

http://www.cs.cmu.edu/~fp/courses/15317-s23//software.html
http://www.cs.cmu.edu/~fp/courses/15317-s23//software.html
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/19-meta.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/04-pap.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/19-meta/meta.pl

backchain(Gamma, M, atom(P))

where Gamma is the suitably augmented program, M is a proof term, and P is the represen-
tation of an atomic predicate.

• If M is a logic variable, its answer substitution should be the proof term for P found
by Prolog search.

• If M is a complete proof term (not containing an logic variables), then backchain
should act as a checker that M represents a proof of P.

• If M is a proof term and P is a logic variable, then the instantiation of P should be the
(most general) proposition proved by M. This corresponds to type inference similar to
what we live-coded in (lec18.pl) during Lecture 18.

2 Forward Inference (40 points)

Task 4. (20 points) Show the cases for ∨R1 and ∨L in the completeness proof of the forward
sequent calculus as in Theorem 2 in Lecture 22. This proof is in the language without
falsehood, so the ∨L rule has the form

Γ1, A −→ γ Γ2, B −→ γ

Γ1,Γ2, A ∨B −→ γ
∨L

For the next two tasks, you should use the forward sequent calculus in Figure 1 in
Lecture 22 to prove or refute the given proposition for an atomic proposition A. You should
start with inversion, and then specialize the rules to the left/right subformulas of your
goal sequent. We leave it to decide whether you introduce names for subformulas or not.

Task 5. (10 points) (¬¬A)⊃A

Task 6. (10 points) ¬¬(A ∨ ¬A)

2

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/18-lp/lec18.pl
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/22-invmethod.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/22-invmethod.pdf

A Backward Chaining

Horn clauses.

Programs Γ ::= D | · | Γ1,Γ2

Horn clauses D ::= ∀x.D | G⊃ P | P
Goals G ::= P | G1 ∧G2 | ∃x.G(x)

Judgments.

Γ
C−→ P

Γ, [D]
FL−→ P

Γ
FR−→ [G]

Choice.

D ∈ Γ Γ, [D]
FL−→ P

Γ
C−→ P

FLC

Left Focus.

Γ, [P]
FL−→ P

id
Γ

FR−→ [G]

Γ, [G⊃ P]
FL−→ P

⊃L
Γ, [D(t)]

FL−→ P

Γ, [∀x.D(x)]
FL−→ P

∀L

Right Focus.

Γ
FR−→ [G1] Γ

FR−→ [G2]

Γ
FR−→ [G1 ∧G2]

∧R
Γ

FR−→ [G(t)]

Γ
FR−→ [∃x.G(x)]

∃R
Γ

C−→ P

Γ
FR−→ [P]

CFR

3

	Backward Chaining and Certification (50 points)
	Forward Inference (40 points)
	Backward Chaining

