
Constructive Logic (15-317), Spring 2023
Miniprojects (150 points)

Instructor: Frank Pfenning

Checkpoint: Tuesday, April 4, 2023, 11:59 pm (no late submissions allowed)
Final: Tuesday, April 11, 2023, 11:59pm

There are 3 independent miniprojects and you should choose one of them. In Grade-
scope, they are listed as separate assignments.

For your miniproject, you may team up with a partner, but you are not required to do
so. If you do team up, make sure to name your partner upon submission and hand in only
one solution.

You may use external resources such as reference books and research articles as you see
fit, but you must cite them.

In grading, we emphasize correctness, clarity, and elegance. Also, we require that all
your proofs should be constructive (except where otherwise noted), and that you clearly
state the overall structure of the proof.

There are two deadlines: a checkpoint worth 50 points and a final submission worth
100 points. You may recover up to 20 points from the checkpoint by correcting your errors
for your final submission. Each miniproject also has 15 bonus points.

You cannot apply late days to the checkpoint because we will use it to give you quick
feedback so it is helpful for your final submission. You may use up to two late days for the
final submission.

As always, we recommend that you typeset your solutions. Most students use LATEX,
but other software is acceptable. If you choose not to typeset your solutions, be aware that
your handwriting must be legible.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP1.1

1 Axioms and Combinators (150+15 points)

Before Gentzen’s natural deduction and sequent calculus, Hilbert defined a system of de-
duction with logical axioms and, in the propositional case, just a single rule of inference.
The judgment ⊢ A expresses that A is true according to Hilbert’s rules. Considering only
implication, the intuitionistic subset his calculus just has axioms K and S and the inference
rule of Modus Ponens (MP).

⊢ A⊃ (B ⊃A)
K

⊢ (A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C))
S

⊢ A⊃A
I

⊢ A⊃B ⊢ A

⊢ B
MP

In this miniproject we explore the properties of this calculus, its relation to natural deduc-
tion, and its computational interpretation.

1.1 Relating Hilbert’s Calculus to Natural Deduction (50 pts)

We begin by proving that Hilbert’s calculus and natural deduction derive the same true
propositions.

Task 1 (15 pts). Prove that if ⊢ A then A true in natural deduction.

The other direction takes two steps. We first define a hypothetical Hilbert derivations that
allow assumptions. We write

Γ ⊢ A

where Γ = (x1 : A1, . . . , xn : An) is an unordered collection of hypotheses. We presuppose
that all the xi are distinct. We define it with the following rules:

Γ ⊢ A⊃ (B ⊃A)
K

Γ ⊢ (A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C))
S

⊢ A⊃A
I

Γ ⊢ A⊃B Γ ⊢ A

Γ ⊢ B
MP

Γ, x : A ⊢ A
x

Task 2 (15 pts). Prove that the following rule is admissible:

Γ, x : A ⊢ B

Γ ⊢ A⊃B
Ded

Task 3 (15 pts). Prove that

A1 true
x1

· · · An true
xn

D
A true implies

E
x1 : A1, . . . , xn : An ⊢ A

Task 4 (5 pts). As a corollary of the preceding theorems, prove that A true if and only if
⊢ A.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP1.2

Checkpoint

1.2 Combinator Terms (35 pts)

We assign proof terms to hypothetical Hilbert derivations as follows, using lowercase let-
ters m, n, p to distinguish them from the natural deduction terms. We call them combinator
terms.

Γ ⊢ K : A⊃ (B ⊃A)
K

Γ ⊢ S : (A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C))
S

Γ ⊢ I : A⊃A
I

Γ ⊢ m : A⊃B Γ ⊢ n : A

Γ ⊢ mn : B
MP

Γ, x : A ⊢ x : A
x

As usual, application mn associates to the left, so mnp stands for (mn) p. We observe that
for ⊢ m : A (without hypotheses) the term m does not contain any variables.

Task 5 (10 pts). Instrument the deduction theorem by devising an operation of abstraction
abs(x.m) such that

Γ, x : A ⊢ m : B

Γ ⊢ abs(x.m) : A⊃B
Ded

Note that the abs(x.m) should be a term n that no longer contains the variable x which
might occur in m. Your operation should be extracted from the proof in Task 2.

Task 6 (10 pts). Define an operation compile(M) from natural deduction proof terms to
combinator terms such that if M : A then ⊢ compile(M) : A. This operation is a translation
from closed proof terms in natural deduction into the language of combinators.

Now assume we are working with terms m such that ⊢ m : A. The following is a
natural rule of proof reduction for combinator terms:

I m −→ m

Task 7 (5 pts). Prove that the reduction rule for I is sound for typing, that is, if ⊢ I m : A
then ⊢ m : A.

Task 8 (10 pts). Devise reduction rules for the combinator K and S and prove that they are
sound for typing.

1.3 Local Reductions (30 pts)

Below we show a minor variant of Hilbert’s axioms for the remaining connectives of in-
tuitionistic logic. Interestingly, modus ponens remains the only inference rules. We name

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP1.3

the rules C for constructor and D for destructor.

AndC : A⊃B ⊃ (A ∧B)
AndD1 : (A ∧B)⊃A
AndD2 : (A ∧B)⊃B

TrueC : ⊤

OrC1 : A⊃ (A ∨B)
OrC2 : B ⊃ (A ∨B)
OrD : (A ∨B)⊃ ((A⊃ C)⊃ ((B ⊃ C)⊃ C))

FalseD : ⊥⊃ C

Task 9 (15 pts). Write out suitable proof reduction rules for the new set of combinators.
You need to make sure they are sound with respect to typing, but you do not need to prove
that.

Task 10 (15 pts). Extend your translation from Task 6 to cover conjunction, truth, disjunc-
tion, and falsehood.

1.4 Values and Computations (35+15 pts)

Next we design a functional semantics for combinator terms, which requires two judg-
ments, m value and m −→ m′. As for natural deduction, we posit that the structure of of
functions (type A ⊃ B) and pairs (type A ∧ B) cannot be observed, while the structure of
injections (type A ∨B) can.

Task 11 (20 pts). Write out rules for computing with combinator terms that is suitable for
evaluating the result of compiling natural deduction terms. Individual steps may differ,
but the observable outcomes should coincide. You do not have to prove this property.

Next we define bool ≜ ⊤ ∨⊤, True ≜ OrC1 TrueC and False ≜ OrC2 TrueC.

Task 12 (15 pts). Write a function Neg : bool ⊃ bool as a combinatory term such that
it represents the negation function on the underlying Booleans. We suggest you write
function in the form of natural deduction and compile it using the result from Tasks 6 and
10. You may need to optimize your translation for this to be feasible. For example, you
might consider optimizing the case abs(x.m) when x does not occur in m.

Task 13 (15 pts). (bonus) Reduce NegTrue to a normal form, that is, a term that cannot be
reduced any further. Show the intermediate steps of reduction. Is the result your repre-
sentation of False?

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP2.1

2 Truth and Necessity (150+15 points)

In this miniproject we explore the interpretation of the (intuitionistic, of course!) modal
logic S4 and its connection to quotation in programming languages.

A key concept in modal logic is that of validity. We say a proposition A is valid if A is
true without any hypotheses, sometimes stated as “A is always true”. For example, for any
proposition A, A⊃A is valid. On the other hand, if we assume A true and A⊃B true then
B true but certainly not B valid. This notion is expressed as a proposition by the modal
operator of necessity 2A (often pronounced “box A”). The defining property is that 2A is
true if A is valid. We follow the common syntactic convention that 2 binds more tightly
than the logical connectives so that, for example, 2A⊃B is parsed as (2A)⊃B.

Necessity may not sound very interesting, but it is a rich subject. We have theorems
such as 2A⊃ A true (“if A is valid it is certainly true”), 2(A ∧ B)⊃ (2A ∧ 2B) (“if A ∧ B is
valid, so are A and B”) and also properties that are not derivable such as P ⊃2P true (“just
because P happens to be true that doesn’t mean that P is always true”).

We can use necessity to model quotation in programming languages: M : 2A will eval-
uate to quote N where N is a closed, quoted expression of type A. Among other things,
this can be used for efficient code generation at runtime.

2.1 Natural Deduction (40 pts)

We start with the two judgments A true and A valid and the following rules:

A true
2A true 2I†

2A true

A valid
u

...
C true

C true
2Eu

A valid
A true

VT

A crucial aspect of the rules is hidden in the notation 2I†. The † annotation expresses
that the derivation of the premise may only depend on hypotheses B valid and not on any
hypotheses B true. Here is a correct derivation, followed by an incorrect one.

2A true
x

A valid
u

A true
VT

A true
2Eu

2A⊃A true
⊃Ix

2(2A⊃A) true
2I†

The rule application 2I† is legal because there are no (undischarged) hypotheses in the
derivation of the premises (and so also none about truth). On the other hand, the following

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP2.2

is is illegal:

2A true
x

22A true 2I†

2A⊃22A true
⊃Ix

The 2I† inference (in red) is illegal because the derivation of its premise depends up the
hypothesis x which is of the form C true rather than C valid.

Task 1 (20 pts). Give derivation of the following judgments

(a) 2A⊃A true

(b) 2A⊃22A true (correcting the one above)

(c) 2(A⊃B)⊃ (2A⊃2B) true.

We write D† for a derivation all of whose (undischarged) hypotheses are of the form
A valid. We can substitute such a derivation D† of A true for uses of the hypotheses A valid.
We write

Substitution for Validity.

Given
D†

A true and

A valid
u

E
C true construct

D†

A valid
u

E
C true

This may look like it should not work because the judgment A true does not match the
hypothesis A valid, but since the only way to use such a hypothesis is in an inference

A valid
u

A true
VT

we can just erase the use of the VT rule.

Task 2 (10 pts). For the correctness of modal substitution is it important that D† does
not depend on any hypotheses B true. Show an example illustrating that the resulting
derivation may otherwise not be valid.

Task 3 (5 pts). Show the local reduction(s) for 2A.

Task 4 (5 pts). Show the local expansion(s) for 2A.

2.2 Verifications (10 pts)

Because the validity judgment is only used as a hypothesis, it becomes A⇓.

Task 5 (10 pts). Show the rules for verifications and uses, relevant to the judgments A valid
and A true where A is restricted to implication A1 ⊃A2 and necessity 2A′.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP2.3

Checkpoint

2.3 Sequent Calculus (65 pts)

For the sequent calculus, we now use sequents Γ =⇒ A true that have mixed antecedents
and allow only a succedent A true.

Antecedents Γ ::= A true | A valid | · | Γ1,Γ2

Task 6 (15 pts). Design rules corresponding to verifications in the sequent calculus. You
only need to show the rules relevant to implication and necessity, as well as rules relevant
to the judgment A valid.

Task 7 (25 pts). Prove or refute each of the following:

(a) =⇒ P ⊃2P

(b) =⇒ 2(A ∧B)⊃2A ∧2B

(c) =⇒ 2(A ∨B)⊃2A ∨2B

(d) =⇒ (2A ∧2B)⊃2(A ∧B)

(e) =⇒ (2A ∨2B)⊃2(A ∨B)

In addition to the usual cut, we have the following modal cut

D
Γ† =⇒ A true

E
Γ, A valid =⇒ C true

Γ =⇒ C true
mcut

Here, Γ† is the restriction of Γ to antecedents of the form A valid. We have to prove,
simultaneously, that cut and mcut are admissible rules.

Task 8 (5 pts). State the form of induction necessary to prove the admissibility of cut and
mcut.

Task 9 (10 pts). Show the principal case for cut when A = 2A′ is just introduced in the last
inference in D and E .

Task 10 (10 pts). Show a case for mcut where the induction hypothesis appeals to a cut.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP2.4

2.4 Natural Deductions and Sequent Calculus (15 pts)

As in Lecture 9, we can prove a sequence of theorems to show that natural deductions,
sequent calculus, and verifications derive the truth of the same propositions. We examine
the generalization of one of the steps.

Theorem If

Γ
D

A true then
E

Γ =⇒ A true, where Γ is a mixed collection of hypothe-
ses B true and B valid. The proof is by induction on D.

Task 11 (15 pts). Show the cases for 2I†, 2E, and VT in the translation from natural
deduction to the sequent calculus. These are part of the completeness proof of the sequent
calculus and should be formulated as such. You may use the admissibility of cut, modal
cut, and identity.

2.5 Quotation (35+15 points)

We annotate the judgment A true as usual with M : A and A valid as u :: A. The latter is
always just a variable since the judgment A valid arises only as a hypothesis.

M : A

quote M : 2A
2I†

M : 2A

u :: A
u

...
N : C

unquote(M,u.N) : C true
2Eu

u :: A

u : A
VT

Task 12 (10 pts). Show the proof terms for the derivations in Task 1.

Computationally, we decide to that quoteM value regardless whether M is a value.

Task 13 (10 pts). Write a complete set of reduction rules concerning quote and unquote
such that preservation, progress, and determinism hold.

Task 14 (15 pts). (bonus) Consider the program

dec : bool⊃A⊃B ⊃A ∨B
dec = λb. λx. λy. case(b, u. inlx,w. inr y)

Write a corresponding program

dec code : 2bool⊃2A⊃2B ⊃2(A ∨B)

such that the resulting quoted term no longer contains a case construct.

MINIPROJECTS MARCH/APRIL 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/09-proofverifs.pdf


Miniprojects MP3.1

3 Multiple Worlds (150+15 points)

Our main judgment so far has been A true, and others like A ↑ have been considered in re-
lation to truth. This is the view prevalent in the study of mathematics. In philosophy and
computer science there are richer judgments of interest. For example, in computer science
we might be interested in A true at time t which could give some insight into the computa-
tional cost of computing a value of type A. In philosophy we might study judgments such
as P knows A. In this miniproject we study an abstraction of those two examples where
the basic judgment is A true in world w. This could then be applied or refined further in
more specific circumstances. For example, a world w refers to a time or place or state of
memory, etc.

A crucial part of reasoning with worlds is an abstract accessibility relation w ≤ w′. As
examples, for time we might think of w′ to be in the future of w and for locations, we might
think of there being a path to reach w′ from w. So modal logic with an accessibility relation
actually uses two judgments A true in world w and w ≤ w′.

We assume that the logical connectives have their usual meaning at each world. Since
the meaning is given by introduction and elimination rules, these rules are localized to a
particular world. We show some sample rules. We abbreviate the judgment A true in world w
as A[w] which we read as “A at w”.

A [w]
x

...
B [w]

A⊃B [w]
⊃Ix

A ∨B [w]

A [w]
x

...
C [w′]

B [w]
y

...
C [w′]

C [w′]
∨Ex,y

The locality of inference in the ∨Ex,y rule is evident from the transition of A ∨ B at w to
A at w and B at w. Nevertheless, we can make this case distinction even if we ultimately
want to prove what may be true at world w′. We can interpret this by saying that we are
omniscient: we can see and reason from everything we happen to know at any world, but
in general truth at one world does not imply truth at another.

There are two modal operators that let us reason within the logic about what may be
true in other worlds. 2A is true at w if A is true at every world reachable from w. We refer
to 2 as necessity. Dually, ♢A is true at w if there is a reachable world w′ such that A is true
at w′. We refer to ♢ as possibility.

As a syntactic convention, the 2 and ♢ modalities bind more tightly than the logical
connectives so that, for example, 2A⊃A is parsed as (2A)⊃A.

3.1 Natural Deduction (50 pts)

We show the rules for 2A and leave the rules for ♢A for you to design and test.

w ≤ α
...

A [α]

2A [w]
2Iα

2A [w] w ≤ w′

A [w′]
2E

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP3.2

In 2Iα we introduce a new parameter α into the derivation whose scope is limited to be
above this inference. This is analogous to the ∀Ia rule. We further introduce the hypothesis
that α is accessible from w with the same scope.

Task 1 (5 pts). Show the local soundness of 2E. Which properties related to the judgment
w ≤ w′ do you need?

Task 2 (5 pts). Show the local completeness of 2E. Again, which properties related to the
judgment w ≤ w′ do you need?

Task 3 (5 pts). Prove 2(A ⊃ B) ⊃ (2A ⊃ 2B) [α]. Just like A and B stand for arbitrary
propositions, α here stands for an arbitrary world.

We obtain different modal logics depending on which reasoning principles we allow
for the accessibility relation, or which worlds we may explicitly reference. Of particular
significance are the following rules:

w ≤ w
refl

w1 ≤ w2 w2 ≤ w3

w1 ≤ w3
trans

w ≤ w′

w′ ≤ w
sym

Assumptions about the properties of accessibility will never be formally made inside the
logic, but we will explicitly or disallow allow the use of these rules in our study of modal
logics.

Task 4 (10 pts). Prove each of the following and state for each which properties of the
accessibility relation you need.

(a) 2A⊃A [α]

(b) 2A⊃22A [α]

Task 5 (15 pts). Design introduction and elimination rules for ♢A that satisfy the intended
meaning of possibility explained above.

Task 6 (5 pts). Show that your elimination rules is locally sound. If this requires a property
of the accessibility relation, please state it explicitly.

Task 7 (5 pts). Show that the elimination is locally complete. If this requires a property of
the accessibility relation, please state it explicitly.

Checkpoint

3.2 Verifications (30 points)

Task 8 (10 pts). Give the rules for verifications A [α]↑ and uses A [α]↓. We do not annotate
the accessibility judgment.

Task 9 (20 pts). Prove each of the following and state which properties of accessibility you
needed (none, reflexivity, transitive, both). Try to use as few as possible.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP3.3

(a) ♢⊥⊃⊥ [α]↑

(b) (♢P ⊃2Q)⊃2(P ⊃Q) [α]↑

(c) P ⊃2♢P [α]↑

(d) 2♢2♢P ⊃2♢P [α]↑

3.3 Sequent Calculus (45 pts)

In the sequent calculus for modal logic with explicit words we have we two forms of succe-
dents: A [w] and w ≤ w′. Both of these can also be antecedents.

Antecedents Γ ::= A [w] | w ≤ w′ | · | Γ1,Γ2

In a sequent Γ =⇒ w ≤ w′ only assumptions wi ≤ wj may be used, so we write Γ≤ for the
result of erasing all antecedents A [w] from Γ.

As a start, we show the counterparts of the two natural deduction rules from above.

Γ, A [w] =⇒ B [w]

Γ =⇒ A⊃B [w]
⊃R

Γ, A [w] =⇒ C [w′] Γ, B [w] =⇒ C [w′]

Γ, A ∨B [w] =⇒ C [w′]
∨L

In the left rule we have omitted the redundant antecedent A ∨ B [w] in the premise, and
you may do the same (but only if they are truly redundant!).

Task 10 (5 pts). Write out the left and right rules for the 2 modality.

Task 11 (5 pts). Write out the left and right rules for the ♢ modality.

Task 12 (5 pts). Derive ♢(P ∨Q)⊃(♢P ∨♢Q) [α] without any assumptions about properties
of the accessibility relation.

Task 13 (5 pts). Prove that P⊃2P is not derivable unless we have a degenerate accessibility
relation, and state what that would be.

Task 14 (5 pts). Prove that 2P ⊃ P is not derivable unless we assume the property of the
accessibility relation you identified in Task 4.

The cut rule has the form

D
Γ =⇒ A [w]

E
Γ, A [w] =⇒ C [w′]

Γ =⇒ C [w′]
cut

Task 15 (10 pts). Show the principal case in the proof of cut either for 2A or ♢A. Which
admissible rules for the accessibility judgment do you need? (You do not need to prove
them.)

Task 16 (10 pts). Show a case in the proof of cut where either D ends in a left rule for 2B
or ♢B or E ends in a right rule for C = 2C ′ or C = ♢C ′. Again, clarify which admissible
rules for the accessibility judgment you need for the case you are considering.

MINIPROJECTS MARCH/APRIL 2023



Miniprojects MP3.4

3.4 Natural Deduction and Sequent Calculus (10 pts)

As in Lecture 9, we can show that A [α] iff =⇒ A [α] iff A [α]↑.

Task 17 (10 pts). Show the cases for 2I and 2E in the proof that the sequent calculus
is complete with respect to natural deduction. You may use the admissibility of cut and
identity.

3.5 Proof Terms (30+15 pts)

For the proof terms and functional computation we restrict ourselves to the fragment with
2A, A ⊃ B, and A ∧ B. For the particular operational interpretation we have in mind,
we think of M : A [w] as a computation of M of type A that takes place at location w.
Furthermore, w ≤ w′ means that there is a path from w to w′.

w ≤ α
...

M : A [α]

box(α.M) : 2A [w]
2Iα

M : 2A [w] w ≤ w′

fetch [w′]M : A [w′]
2E

We interpret box(α.M) as a mobile value and fetch [w′]M can fetch M from w provided
M is a value and w ≤ w′.

Task 18 (15 pts). Write out the rules for M value and M −→ M ′ for box and fetch. They
should satisfy preservation, progress, and determinism, but you do not need to prove that.

Task 19 (15 pts). (bonus) Write out the proof terms for

(a) 2(A⊃B)⊃ (2A⊃2B)

(b) 2A⊃A

(c) 2A⊃22A

In each case, explain the intuitive computational meaning of the programs. Also, if you
needed assumptions about the accessibility relation for the proof, explain what they mean
in this context of location-aware computation.

MINIPROJECTS MARCH/APRIL 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/09-proofverifs.pdf

	Axioms and Combinators (150+15 points)
	Relating Hilbert's Calculus to Natural Deduction (50 pts)
	Combinator Terms (35 pts)
	Local Reductions (30 pts)
	Values and Computations (35+15 pts)

	Truth and Necessity (150+15 points)
	Natural Deduction (40 pts)
	Verifications (10 pts)
	Sequent Calculus (65 pts)
	Natural Deductions and Sequent Calculus (15 pts)
	Quotation (35+15 points)

	Multiple Worlds (150+15 points)
	Natural Deduction (50 pts)
	Verifications (30 points)
	Sequent Calculus (45 pts)
	Natural Deduction and Sequent Calculus (10 pts)
	Proof Terms (30+15 pts)


