
Lecture Notes on
Proofs as Programs

15-317: Constructive Logic
Frank Pfenning

Lecture 4
Thursday, January 26, 2023

1 Introduction

In this lecture we investigate a computational interpretation of constructive proofs and re-
late it to functional programming. On the propositional fragment of logic this is called the
Curry-Howard isomorphism [Howard, 1969]. From the very outset of the development
of constructive logic and mathematics, a central idea has been that proofs ought to represent
constructions. The Curry-Howard isomorphism is only a particularly poignant and beau-
tiful realization of this idea. In a highly influential subsequent paper Martin-Löf [1980]
developed it further into a more expressive calculus called intuitionistic type theory.

2 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce a new
judgment:

M : A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will also interpret
M : A as “M is a program of type A”. These dual interpretations of the same judgment are
at the core of the Curry-Howard isomorphism. We either think of M as a syntactic term
that represents the proof of A true, or we think of A as the type of the program M . As we
discuss each connective, we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A for some
appropriate proof term M . But we want something more: every deduction of M : A
should correspond to a deduction of A true with an identical structure and vice versa.
In other words we annotate the inference rules of natural deduction with proof terms.
The property above should then be obvious. In that way, proof term M of M : A will
correspond directly to the corresponding proof of A true.

As a point of terminology, we refer to A true as a synthetic judgment since we need
external evidence for it in the form of a natural deduction. On the other hand, M : A

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.2

is a analytic judgment in that it contains its own evidence and we can effectively check it.
Martin-Löf [1994] further elaborates on this important distinction.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair of proofs: one
for A true and one for B true. So if M is a proof of A and N is a proof of B, then the pair
⟨M,N⟩ is a proof of A ∧B.

M : A N : B

⟨M,N⟩ : A ∧B
∧I

The elimination rules correspond to the projections from a pair to its first and second
elements to get the individual proofs back out from a pair M .

M : A ∧B

fstM : A
∧E1

M : A ∧B

sndM : B
∧E2

Hence the conjunction A∧B, as a proposition, corresponds to the product type A×B. And,
indeed, product types in functional programming languages have the same property that
conjunctions A ∧ B have. Constructing a pair ⟨M,N⟩ of type A × B requires a program
M of type A and a program N of type B (as in ∧I). Given a pair M of type A × B, its
first component of type A can be retrieved by the projection fstM (as in ∧E1), its second
component of type B by the projection sndM (as in ∧E2).

In general, the introduction rules for a logical connective correspond to the constructors
for the corresponding type. Conversely, the elimination rules correspond to destructors.

Truth. Constructively, we think of a proof of ⊤ true as a unit element that carries no
information.

⟨ ⟩ : ⊤
⊤I

Hence ⊤ corresponds to the unit type 1 with one element. There is no elimination rule and
hence no further proof term constructs for truth. Indeed, we have not put any information
into ⟨ ⟩ when constructing it via ⊤I , so cannot expect to get any information out by an
elimination rule.

Implication. Constructively, we think of a proof of A⊃B true as a function which trans-
forms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f of a variable
x by writing f(x) = . . . where the right-hand side “. . .” depends on x. For example,
we might write f(x) = x2 + x − 1. In functional programming, we can instead write
f = λx. x2 + x − 1, that is, we explicitly form a functional object by λ-abstraction of a
variable (x, in the example).

In the concrete syntax of Standard ML language, λx. M is written and fnx ⇒ M ,
but we will use the universal and original notation due to Church and Rosser [1936]. In
general, we use a dot (“.”) to separate so-called bound variable from its scope. This is exactly
the same notion of scope as for hypotheses in natural deduction.

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.3

We now use the notation of λ-abstraction to annotate the rule of implication introduc-
tion with proof terms.

u : A
u

...
M : B

λu.M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis labeled u in the
proof of B corresponds to an occurrence of u in M .

Notice how a constructive proof of B true from the additional assumption A true to
establish A ⊃ B true also describes the transformation of a proof of A true to a proof of
B true. But the proof term λu.M explicitly represents this transformation syntactically as
a function, instead of leaving this construction implicit by inspection of whatever the proof
does.

As a concrete example, consider the simple proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(λu. u) : A⊃A
⊃Iu

So our proof corresponds to the identity function id at type A which simply returns its
argument.

Constructively, a proof of A ⊃ B true is a function transforming a proof of A true to a
proof of B true. Using A⊃B true by its elimination rule ⊃E, thus, corresponds to providing
the proof of A true that A ⊃ B true is waiting for to obtain a proof of B true. The rule for
implication elimination corresponds to function application. Following the convention in
functional programming, we write M N for the application of the function M to argument
N , rather than the more verbose M(N).

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A ⊃ B as a type? From the discussion above it should be clear
that it can be interpreted as a function type A→B. The introduction and elimination rules
for implication can also be viewed as typing rules for functional abstraction λu.M and
application M N . Forming a function λu.M corresponds to a function that accepts input
parameter u of type A and produces M of type B (as in ⊃I). Using a function M : A→ B
corresponds to applying it to an argument N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for implication if we
erase the proof terms. This will continue to be true for all rules in the remainder of this
section and is immediate evidence for the soundness of the proof term calculus, that is, if
M : A then A true.

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.4

Disjunction. Constructively, we think of a proof of A ∨B true as either a proof of A true
or B true. Disjunction therefore corresponds to a disjoint sum type A + B, whose values
are either of type A or type B. In order to make sure we can tell which one, such a value
is tagged with either inl (if it is of type A) or inr (if it is of type B). We say that inl and inr
injects a value of type A or B, respectively, into the sum type A+B.

M : A

inlM : A ∨B
∨I1

N : B

inrN : A ∨B
∨I2

When using a disjunction A ∨ B true in a proof, we need to be prepared to handle A true
as well as B true, because we don’t know whether ∨I1 or ∨I2 was used to prove it. The
elimination rule corresponds to a case construct which discriminates between a left and
right injection into a sum type.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
P : C

case(M,u.N,w. P) : C
∨Eu,w

Recall that the hypothesis labeled u is available only in the proof of the second premise
and the hypothesis labeled w only in the proof of the third premise. This means that the
scope of the variable u is N , while the scope of the variable w is P . By writing u.N and
w.P we indicate both that u and w are bound with their corresponding scope N and P .

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore view it as
the empty type 0. The corresponding elimination rule allows a term of ⊥ to stand for an
expression of any type when wrapped with abort. However, there is no computation rule
for it, which means during computation of a valid program we will never try to evaluate a
term of the form abortM .

M : ⊥
abortM : C

⊥E

3 Some Examples

Consider (A ∧ (A⊃B))⊃B true. Let’s first write a natural deduction.

A ∧ (A⊃B) true
x

A⊃B true
∧E2

A ∧ (A⊃B) true
x

A true
∧E1

B true
⊃E

(A ∧ (A⊃B))⊃B true
⊃Ix

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.5

While we construct this in a combination of bottom-up and top-down steps, annotating it
with proof terms is best to do top-down. We start with the hypotheses.

x : A ∧ (A⊃B)
x

A⊃B
∧E2

x : A ∧ (A⊃B)
x

A
∧E1

B
⊃E

(A ∧ (A⊃B))⊃B
⊃Ix

Then the conjunction eliminations, since we now have proof terms for their premises (x,
actually, in both cases).

x : A ∧ (A⊃B)
x

sndx : A⊃B
∧E2

x : A ∧ (A⊃B)
x

fstx : A
∧E1

B
⊃E

(A ∧ (A⊃B))⊃B
⊃Ix

Next we can annotate the implication elimination

x : A ∧ (A⊃B)
x

sndx : A⊃B
∧E2

x : A ∧ (A⊃B)
x

fstx : A
∧E1

(sndx) (fstx) : B
⊃E

(A ∧ (A⊃B))⊃B
⊃Ix

and finally introduce the λ-abstraction at the root:

x : A ∧ (A⊃B)
x

sndx : A⊃B
∧E2

x : A ∧ (A⊃B)
x

fstx : A
∧E1

(sndx) (fstx) : B
⊃E

λx. (sndx) (fstx) : (A ∧ (A⊃B))⊃B
⊃Ix

We can also go the other way, write the program first and then expand it into a natural
deduction. For example, consider the task of writing a program of type (A×B)→ (B×A).
This would often be written as (α×β)→(β×α) or more concretely as ’a * ’b -> ’b * ’a.
Such a function is easy to construct: it should swap the elements of a pair.

λx. ⟨sndx, fstx⟩ : (A ∧B)⊃ (B ∧A)

Now we can “unwind” this into a natural deduction. For this direction, we work entirely
bottom-up.

...
λx. ⟨sndx, fstx⟩ : (A ∧B)⊃ (B ∧A)

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.6

The term starts with a λ-abstraction, which means the natural deduction starts with ⊃I .

x : A ∧B
x

...
⟨sndx, fstx⟩ : B ∧A

λx. ⟨sndx, fstx⟩ : (A ∧B)⊃ (B ∧A)
⊃Ix

The fact that the proof term is a pair tells us the next rule should be ∧I .

x : A ∧B
x

...
sndx : B

x : A ∧B
x

...
fstx : A

⟨sndx, fstx⟩ : B ∧A
∧I

λx. ⟨sndx, fstx⟩ : (A ∧B)⊃ (B ∧A)
⊃Ix

Now we can fill in the remaining gaps, reading the rules ∧E2 and ∧E1 off the proof terms
sndx and fstx, respectively.

x : A ∧B
x

sndx : B
∧E2

x : A ∧B
x

fstx : A
∧E1x

⟨sndx, fstx⟩ : B ∧A
∧I

λx. ⟨sndx, fstx⟩ : (A ∧B)⊃ (B ∧A)
⊃Ix

Programs in constructive propositional logic are somewhat uninteresting in that they
do not manipulate basic data types such as natural numbers, integers, lists, trees, etc. We
introduce such data types later in this course, following the same method we have used in
the development of logic.

Summary. To close this section we recall the guiding principles behind the correspondence

1. Every proposition corresponds to a type and vice versa.

2. Introduction rules correspond to value constructors.

3. Elimination rules correspond to value destructors.

4. For every deduction of A true there is a proof term M and deduction of M : A. We
can effectively construct this top-down.

5. For every deduction of M : A there is a deduction of A true. We can effective con-
struct this bottom-up.

We can also observe that a given term can correspond to more than one proof. For
example, λx. x could be a proof of A⊃A, but it is equally suitable as a proof of (A⊃B)⊃
(A⊃ B). From the theory of programming languages Milner [1978] we know that there is

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.7

always a most general type for a (well-typed) term, which corresponds to the most general
proposition proved by a given proof term. Concretely, this means we can obtain all other
natural deductions from the most general one by instantiating the schematic variables (like
A, B, etc.) with other propositions without affecting the structure of the deduction.

We can also disambiguate the terms by adding type information. For example λx:A ⊃
A. x then must be proof of (A⊃A)⊃ (A⊃A). We will develop this idea further in a future
lecture (perhaps already the next one).

4 Reduction

In the preceding section, we have introduced the assignment of proof terms to natural
deductions. If proofs are programs then we need to explain how proofs are to be executed,
and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the first step we
introduce a judgment of reduction written M =⇒R M ′ and read “M reduces to M ′”. In the
second step, a computation then proceeds by a sequence of reductions M =⇒R M1 =⇒R

M2 =⇒R . . ., according to a fixed strategy, until we reach a value which is the result of the
computation. In this section we cover reduction; we may return to reduction strategies in
a later lecture.

As in the development of propositional logic, we discuss each of the connectives sep-
arately, taking care to make sure the explanations are independent. This means we can
consider various sublanguages and we can later extend our logic or programming lan-
guage without invalidating the results from this section. Furthermore, it greatly simplifies
the analysis of properties of the reduction rules.

As mentioned before, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination rules as the
destructors. The key guiding principle is:

Reduction arises when a destructor is applied to a constructor.

It turns out this is exactly the same as:

A proof reduction arises when we apply an elimination rule to the result of an intro-
duction rules.

Therefore, local proof reductions (our evidence for local soundness of the elimination
rules) correspond precisely to term reductions.

Conjunction. Recall one of the two local reductions for conjunction:

D
A true

E
B true

A ∧B true
∧I

A true
∧E1

=⇒R

D
A

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.8

Let’s annotate these deduction with proof terms

D
M : A

E
N : B

⟨M,N⟩ : A ∧B
∧I

fst ⟨M,N⟩ : A
∧E1

=⇒R M : A

We can read off the term reduction (and its symmetric form) as

fst ⟨M,N⟩ =⇒R M
snd ⟨M,N⟩ =⇒R N

We can see in each rule we have a destructor (fst or snd) applied to a constructor (⟨ , ⟩).
The fact that they can both reduce follows from the fact that the elimination rules are locally
sound: each elimination (destructor) applied to the result of an introduction (constructor)
can be reduced.

In terms of programming language theory, this foreshadows the result that well-typed
programs cannot go wrong [Milner, 1978], which in modern language we call progress (see,
for example, Harper [2016]). Moreoever, the fact that the derivation before and after the
reduction prove the same proposition implies preservation, that is, if M : A and M =⇒R M ′

then M ′ : A.

Truth. The constructor just forms the unit element, ⟨ ⟩. Since there is no destructor, there
is no reduction rule.

Implication. The constructor forms a function by λ-abstraction, while the destructor ap-
plies the function to an argument. In general, the application of a function to an argument
is computed by substitution. As a simple example from mathematics, consider the follow-
ing equivalent definitions

f(x) = x2 + x− 1 f = λx. x2 + x− 1

and the computation

f(3) = (λx. x2 + x− 1)(3) = [3/x](x2 + x− 1) = 32 + 3− 1 = 11

In the second step, we substitute 3 for occurrences of x in x2 + x − 1, the body of the λ-
expression. We write [3/x](x2 + x− 1) = 32 + 3− 1.

In general, the notation for the substitution of N for occurrences of x in M is [N/x]M .
We therefore write the reduction rule as

(λx.M)N =⇒R [N/x]M

We have to be somewhat careful so that substitution behaves correctly. In particular, no
variable in N should be bound in M in order to avoid conflict. We can always achieve this
by renaming bound variables—an operation which clearly does not change the meaning of

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.9

a proof term. Again, this computational reduction directly relates to the logical reduction
from the local soundness using the substitution notation for the right-hand side:

x : A
x

...
M : B

λx.M : A⊃B
⊃Ix

N : A

(λx.M)N : B
⊃E

=⇒R [N/x]M : B

Disjunction. There are two local reductions for disjunction. We show one of the two

D
A true

A ∨B true
∨I1

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
A true

u

E
C true

and annotate it with proof terms:

M : A

inlM : A ∨B
∨I1

u : A
u

...
N : C

w : B
w

...
P : C

case(inlM,u.N,w. P) : C
∨Eu,w

=⇒R [M/u]N : C

Computationally, the constructors (inl and inr) inject into a sum type, and the destructor
(case) distinguishes these two cases. Summarizing the computational reduction rules, we
have

case(inlM,u.N,w. P) =⇒R [M/u]N
case(inrM,u.N,w. P) =⇒R [M/w]P

Falsehood. Since there is no constructor for the empty type there is no reduction rule for
falsehood. There is no computation rule and we will not try to evaluate abortM .

5 Example Computations

We return to an example of proof reduction from last lecture:

C ⊃ C true
x

B ⊃ (C ⊃ C) true
⊃Iy

(C ⊃ C)⊃ (B ⊃ (C ⊃ C)) true
⊃Ix

C true
z

C ⊃ C true
⊃Iz

B ⊃ (C ⊃ C) true
⊃E

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.10

Annotating it with proof terms (recall this is best done top-down):

x : C ⊃ C
x

λy. x : B ⊃ (C ⊃ C)
⊃Iy

λx. λy. x : (C ⊃ C)⊃ (B ⊃ (C ⊃ C))
⊃Ix

z : C
z

λz. z : C ⊃ C
⊃Iz

(λx. λy. x) (λz. z) : B ⊃ (C ⊃ C)
⊃E

We can reduce this proof term.

(λx. λy. x) (λz. z) =⇒R [(λz. z)/x](λy. x) = λy. λz. z

We can unwind the result back into a natural deduction and (as our theory predicts) we
obtain the same one as in the last lecture, just written with proof terms.

z : C
z

λx. z : C ⊃ C
⊃Iz

λy. λz. z : B ⊃ (C ⊃ C)
⊃Iy

As a final example we consider a simple program for the composition of two functions.
It takes a pair of two functions, one from A to B and one from B to C and returns their
composition which maps A directly to C.

comp : ((A⊃B) ∧ (B ⊃ C))⊃ (A⊃ C)

We transform the following implicit definition into our notation step-by-step:

comp ⟨f, g⟩ (w) = g(f(w))
comp ⟨f, g⟩ = λw. g(f(w))

compu = λw. (sndu) ((fstu)w)
comp = λu. λw. (sndu) ((fstu)w)

The final definition represents a correct proof term, as witnessed by the following deduc-
tion that directly follows the proof term.

u : (A⊃B) ∧ (B ⊃ C)
u

sndu : B ⊃ C
∧E2

u : (A⊃B) ∧ (B ⊃ C)
u

fstu : A⊃B
∧E1

w : A
w

(fstu)w : B
⊃E

(sndu) ((fstu)w) : C
⊃E

λw. (sndu) ((fstu)w) : A⊃ C
⊃Iw

(λu. λw. (sndu) ((fstu)w)) : ((A⊃B) ∧ (B ⊃ C))⊃ (A⊃ C)
⊃Iu

This proof can be read off directly from the proof term we constructed above, since it
directly describes the shape of the proof and the rule to apply. For example sndu indicates

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.11

that ∧E2 has been used on u. We could also have first conducted the proof of ((A ⊃ B) ∧
(B⊃C))⊃ (A⊃C) true in the same way that the above proof works and then annotate the
proof with proof terms.

We now verify that the composition of two identity functions reduces again to the
identity function. First, we verify the typing of this application.

(λu. λw. (sndu) ((fstu)w)) ⟨(λx. x), (λy. y)⟩ : A⊃A

For this typing, we use the substitution [A/A,A/B,A/C], which we can apply without
changing the proof term or the structure of the natural deduction (just the propositions
appearing in it)

Now we show a possible sequence of reduction steps. This is by no means uniquely
determined. In each step we have underlined the redex, that is, the subterm that is reduced.

(λu. λw. (sndu) ((fstu)w)) ⟨(λx. x), (λy. y)⟩

=⇒R λw. (snd ⟨(λx. x), (λy. y)⟩) ((fst ⟨(λx. x), (λy. y)⟩)w)

=⇒R λw. (λy. y) ((fst ⟨(λx. x), (λy. y)⟩)w)

=⇒R λw. (λy. y) ((λx. x)w)

=⇒R λw. (λy. y)w

=⇒R λw.w

We see that we may need to apply reduction steps to subterms in order to reduce a proof
term to a form in which it can no longer be reduced. We postpone a more detailed discus-
sion of this.

6 Summary of the Proofs as Programs Correspondence

The proofs-as-programs correspondence consist of three interconnected relationships.

Propositions as Types.

Connective Proposition Type Values
conjunction A ∧B A×B products ⟨ , ⟩
implication A⊃B A→B functions λx.
disjunction A ∨B A+B sums inl inr

truth ⊤ 1 unit ⟨ ⟩
falsehood ⊥ 0 void (no value)

Proofs as Programs. For a proposition A, the synthetic judgment A true corresponds to
the analytic judgment M : A where M is a proof term. The inference rules for M : A are
given in Figure 1. Erasing the proof terms and adding true yields rules for the judgment

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.12

A true. The correspondences between rules and terms can be read off the rules and are
summarized here.

Proposition Rules Terms Type
A ∧B ∧I ⟨ , ⟩ A×B

∧E1,∧E2 fst , snd

A⊃B ⊃Ix λx. A→B
⊃E

A ∨B ∨I1,∨I2 inl , inr A ∨B
∨Eu,w case(, u. , w.)

⊤ ⊤I ⟨ ⟩ 1
(no ⊤E) (no destructor)

⊥ (no ⊥I) (no constructor) 0
⊥E abort

Proof Reduction as Computation. The local reductions that serves as witnesses for the
local soundness of the connections are interpreted as basic rule of computation for the
terms. The basic judgment is M =⇒R M ′, where we presuppose M : A and find that
M ′ : A.

A×B fst ⟨M,N⟩ =⇒R M
snd ⟨M,N⟩ =⇒R N

A→B (λu.M)N =⇒R [N/u]M

A ∨B case(inlM,u.N,w. P) =⇒R [M/u]N
case(inrM,u.N,w. P) =⇒R [M/w]P

1 no reduction for ⟨ ⟩

0 no reduction for abortM

7 Revisiting Local Expansion

We saw in the last lecture, that eliminations (destructors) applied to the result of introduc-
tions (constructor) give rise to computation in the form of a reduction.

What about local expansion as a witness for completeness? It turns out that the local
expansions are less relevant to computation. What they tell us, for example, is that if we
need to return a pair from a function, we can always construct it as ⟨M,N⟩ for some M
and N . Another example would be that whenever we need to return a function, we can
always construct it as λu. . M for some M .

We can derive what the local expansion must be by annotating the deductions wit-
nessing local expansions on proofs from this lecture with proof terms. We leave this as an
exercise to the reader. The left-hand side of each expansion has the form M : A, where M
is an arbitrary term and A is a logical connective or constant applied to arbitrary proposi-
tions. On the right hand side we have to apply a destructor to M and then reconstruct a
term of the original type. The resulting rules are summarized below.

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.13

Constructors Destructors

M : A N : B

⟨M,N⟩ : A ∧B
∧I

M : A ∧B

fstM : A
∧E1

M : A ∧B

sndM : B
∧E2

⟨ ⟩ : ⊤
⊤I

no destructor for ⊤

u : A
u

...
M : B

λu.M : A⊃B
⊃Iu

M : A⊃B N : A

M N : B
⊃E

M : A

inlM : A ∨B
∨I1

N : B

inrN : A ∨B
∨I2

M : A ∨B

u : A
u

...
N : C

w : B
w

...
P : C

case(M,u.N,w. P) : C
∨Eu,w

no constructor for ⊥
M : ⊥

abortM : C
⊥E

Figure 1: Proof term assignment for natural deduction

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.14

M : A ∧B =⇒E ⟨fstM, sndM⟩
M : A⊃B =⇒E λu.M u for u not free in M
M : ⊤ =⇒E ⟨ ⟩
M : A ∨B =⇒E case(M,u. inlu,w. inrw)
M : ⊥ =⇒E abortM

8 Programs as Proofs

The strong correspondence between proofs and programs means that we can also use it in
the opposite direction. In particular, we can (to some extent) use a functional language as
a proof checker! We use SML, in which sum types are not native but are available in the
form of datatype declaration. We show here the SML code we live-coded in lecture, with
a few additional annotations.

A key issue is that we have to check, by hand, that the purported proof terms don’t use
recursion, exceptions, or effects. You can find the source file at pcheck.sml.

1 datatype (’a,’b) sum = inl of ’a | inr of ’b
2 datatype zero = void of zero
3 type ’a not = ’a -> zero
4
5 (* case_ : (’a, ’b) sum * (’a -> ’c) * (’b -> ’c) -> ’c *)
6 fun case_ (M, F, G) = case M
7 of inl x => F x
8 | inr y => G y
9

10 fun fst (x,y) = x
11 fun snd (x,y) = y
12
13 (* A /\ B => B /\ A *)
14 val ex1 : ’a * ’b -> ’b * ’a =
15 fn x => (snd x, fst x)
16
17 (* A /\ (A => B) => B *)
18 val ex2 : ’a * (’a -> ’b) -> ’b =
19 fn x => (snd x) (fst x)
20
21 (* A \/ B => B \/ A *)
22 val ex3 : (’a, ’b) sum -> (’b, ’a) sum =
23 fn x => case_ (x, fn y => inr y, fn z => inl z)
24
25 (* T => F *)
26 (* incorrect proof using recursion *)
27 (*
28 val rec ex4 : unit -> zero = fn () => ex4 ()
29 *)
30
31 val ex4 : (’a * ’a not) not =
32 fn x => (snd x) (fst x)

LECTURE NOTES THURSDAY, JANUARY 26, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/04-pap/pcheck.sml

Proofs as Programs L4.15

33
34 (* incorrect proof to see error message *)
35 (*
36 val ex5 : (’a * ’a not) not =
37 fn x => (fst x) (snd x)
38 *)

9 Revisiting Equivalence1

Picking up some optional material from last lecture, we assign proof terms and examine
local reductions and expansions on such terms. The local reduction should give us a rule
of computation; the local expansion an extensional equality principle.

x : A true
x

...
N : B true

y : B true
y

...
M : A true

Lx.N, y.MM : A ≡ B true
≡Ix,y

M : A ≡ B true N : A true
, M N : B true

≡E1
M : A ≡ B true N : B true

/ M N : A true
≡E2

We can now annotate the local reductions and expansion with proof terms and read off:

, Lx.N, y.MM P =⇒R [P/x]N
/ Lx.N, y.MM P =⇒R [P/y]M

M : A ≡ B =⇒E Lx., M x, y./ N yM

Introducing new syntax for new connectives and programs can be tedious and difficult
to use. Therefore, in practice, we probably wouldn’t define logical equivalence as a new
primitive, but use notational definition (as we did for negation):

A ≡ B ≜ (A⊃B) ∧ (B ⊃A)

whose meaning as a type is simply a pair of functions between the types A and B.

References

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the American
Mathematical Society, 39(3):472–482, May 1936.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, second edition, April 2016.

1Not covere in lecture

LECTURE NOTES THURSDAY, JANUARY 26, 2023

Proofs as Programs L4.16

W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An an-
notated version appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, 479–490, Academic Press (1980), 1969.

Per Martin-Löf. Constructive mathematics and computer programming. In Logic, Method-
ology and Philosophy of Science VI, pages 153–175. North-Holland, 1980.

Per Martin-Löf. Analytic and synthetic judgements in type theory. In P. Parrini, editor,
Kant and Contemporary Epistemology, pages 87–99. Kluwer Academic Publishers, 1994.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, August 1978.

LECTURE NOTES THURSDAY, JANUARY 26, 2023

	Introduction
	Propositions as Types
	Some Examples
	Reduction
	Example Computations
	Summary of the Proofs as Programs Correspondence
	Revisiting Local Expansion
	Programs as Proofs
	Revisiting Equivalence

