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1 Introduction

The verificationist approach to the foundation of logic explains the meaning of the indi-
vidual connectives by their introduction rules, from which we justify the elimination rules.
What then is the meaning of a proposition? It is given by its verifications, which essentially
composes the meaning of the individual connectives, because a verification is built only
by introductions (reading bottom-up) and the justified eliminations (reading top-down).
The important aspect of a verification is that it is composed only of subformulas of the
proposition we are trying to prove.

General proofs do not have this property, because it is entirely legitimate to prove C true
by proving A true and A⊃C true, in which case A functions as a kind of lemma in the proof
of C.

But does every true proposition have a verification and vice versa? If not, I would say,
the verificationist approach has failed, or at least is in jeopardy. We have tested the waters
with the local properties and established harmony for each connective, but this does not
automatically entail this global property.

Fortunately for the verificationist (including myself), the property does hold and we
now have the tools to prove it mathematically. The central technique is induction over the
structure of derivations (also known as rule induction), and the central property we exploit
is the admissibility of cut, proved in the last lecture.

In sequence, we prove the following theorems:

1. If A true then =⇒ A succ

2. If A succ then A ↑

3. If A ↑ then A true

Together these theorems show that, from the point of view of provability, the systems of
natural deduction, sequent calculus, and verifications all coincide. Of course, the structure
of proofs (which we very much care about, because they are related to programs) is very
different in these three systems.
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The property that we can go from A true to A ↑ is often called normalization because we
may think of deductions of A ↑ as a normal form of proofs of A true. In part, this refers to
the observation that a verification cannot be (locally) reduced.

2 From Natural Deduction to Sequent Calculus

We show how to translate an arbitrary natural deduction to the sequent calculus. This is
sometimes called completeness of the sequent calculus with respect to natural deduction. If we
understand natural deduction as defining (intuitionistic!) truth, the we can abbreviate that
and just say completeness of the sequent calculus.

Just as a reminder, this sequent calculus does not include the rule of cut, and includes
the rule of identity only for atomic propositions. To compensate for this, we have proved
the admissibility of the following properties:

Γ =⇒ A Γ, A =⇒ C

Γ =⇒ C
cut

Γ, A =⇒ A
id

Γ =⇒ C

Γ, A =⇒ C
weaken

Γ, A,A =⇒ C

Γ, A =⇒ C
contract

Precisely because they are known to be admissible, we can use them freely if we want to
construct a sequent derivation.

In both natural deduction and sequent calculus we reason from assumptions: hypothe-
ses in natural deduction and antecedents in sequents. We need to account for them in the
statement of the theorem, from which the unconditional version above follows as a spe-
cial case. In the statements of the theorems today we abbreviate A1 true, . . . , An true as
Γ true and similarly for other judgments. For sequents, we generally omit the explicit
“antecedent” and “succedent” judgments.

Theorem 1 (From Natural Deduction to Sequent Calculus)

If
Γ true
D

A true
then Γ =⇒ A

Proof: By rule induction on D. We show a few representative cases; the others follow a
similar pattern.
Case:

D =

Γ true
D1

A1 true

Γ true
D2

A2 true

A1 ∧A2 true
∧I

where A = A1 ∧ A2. In this case we just apply the induction hypothesis to both D1

and D2 and mimic conjunction introduction with the right rule for conjunction.

IH(D1)

Γ =⇒ A1

IH(D2)

Γ =⇒ A2

Γ =⇒ A1 ∧A2
∧R
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Case:

D =

D′

A ∧B true
A true

∧E1

Again, we apply the induction hypothesis in order to construct a sequent proof.

IH(D′)

Γ =⇒ A ∧B...
Γ =⇒ A

We note that we do not have a rule to complete this proof now! This shouldn’t come
as a surprise, since when we constructed the sequent calculus we translated the elim-
ination rules of natural deduction to left rules in the sequent calculus. But there A∧B
shows up on the right-hand side of a sequent.

Fortunately, we have some powerful principles, and, in particular, the admissibility
of cut, which will make the conjunction appear on the left-hand side of a sequent.

IH(D′)

Γ =⇒ A ∧B

...
Γ, A ∧B =⇒ A

Γ =⇒ A
cut

Now we can complete this construction with the left rule followed by the (admissi-
ble) identity.

IH(D′)

Γ =⇒ A ∧B

Γ, A ∧B,A =⇒ A
id

Γ, A ∧B =⇒ A
∧L1

Γ =⇒ A
cut

Case: D proceeds with the use of a hypothesis A true labelled u. The two-dimensional
notation is a bit awkward, but the hypothesis is part of Γ in this case.

D =
A true

u

where Γ = (Γ′, A true
u
). Then we construct

Γ′, A =⇒ A
id

Case:

D =

Γ
D′

⊥ true
A true

⊥E
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Then we construct, similar to the case for ∧E1:

IH(D′)

Γ =⇒ ⊥ Γ,⊥ =⇒ A
⊥L

Γ =⇒ A
cut

2

3 From Sequent Calculus to Verifications

When we translate from sequent calculus derivations to verifications, we once again have
to navigate the fact that left rules are the reverse of elimination rules. Once we understand
that, though, the proof cases are not that difficult. The key insight is that we do not have to
consider cut or general identity (and also neither weakening nor contraction) since these
are all “just” admissible.

Theorem 2 (From Sequent Calculus to Verifications)

If
D

Γ =⇒ A then
Γ ↓
E
A ↑

Proof: By rule induction on D. Again, we show only a few representative cases.

Case:

D =

D1

Γ =⇒ A1

D2

Γ =⇒ A2

Γ =⇒ A1 ∧A2
∧R

where A = A1 ∧A2. Then we appeal to the induction hypothesis twice and construct
a verification with ∧I .

Γ ↓
IH(D1)

A1 ↑

Γ ↓
IH(D2)

A2 ↑
A1 ∧A2 ↑

∧I

Case:

D =

D1

Γ′, B1 ∧B2, B1 =⇒ A

Γ′, B1 ∧B2 =⇒ A
∧L1

where Γ = (Γ′, B1 ∧B2). The induction hypothesis gives us a derivation of A ↑ from
one additional hypothesis, B1 ↓.

Γ′ ↓, B1 ∧B2 ↓, B1 ↓
IH(D1)

A ↑
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What we need is a derivation without the additional hypothesis B1↓. Fortunately we
can justify it by ∧E1 applied to the conjunction:

Γ′ ↓, B1 ∧B2 ↓,
B1 ∧B2 ↓

B1 ↓
∧E1

IH(D1)

A ↑

The hypothesis B1 ∧ B2 ↓ now appears more than once, but that’s permissible for
verifications (and natural deduction in general). The important observation is that
the deduction no longer depends on B1 ↓, because this has now been justified.

2

4 From Verifications to Proofs

We constructed the system of verifications by restricting the free application of inference
rules, keeping the rules and even reusing their names. As such, it should be quite straight-
forward that we can translate verifications to proofs. Nevertheless, the proof illustrates a
general principle. Looking back at our definition, we see that A ↑ refers to A ↓ and vice
versa. Most of the time this means we cannot prove a property of A ↑ in isolation, but need
to generalize our induction hypothesis to include both judgments. Sometimes, that’s very
tricky. Here, it’s easy.

Theorem 3 (From Verifications to Proofs)

1.

If
Γ ↓
D
A ↑

then
Γ true
E

A true

2.

If
Γ ↓
D
A ↓

then
Γ true
E

A true

Proof: By simultaneous rule induction on the given derivation. “Simultaneous” here means
that induction hypothesis (1) can apply induction hypothesis (2) on a smaller derivation
and vice versa. Because the Γ ↓ and Γ true aren’t relevant in most cases and just carry over,
we reduce syntactic overhead by not writing them down.

Case:

D =

D1

A1 ↑
D2

A2 ↑
A1 ∧A2 ↑

∧I
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The we just apply the first induction hypothesis on both subderivations and reapply
the ∧I rule.

IH1(D1)

A1 true
IH1(D2)

A2 true

A1 ∧A2 true
∧I

Case:

D =

D′

A ∧B ↓
A ↓

∧E1

This time we are in the induction part (2), and we only need the second induction
hypothesis.

IH2(D′)

A ∧B true
A true

∧E1

Case: Finally, one case where the two judgments interact. We leave others (like ∨E or ⊃E
to the reader).

D′

P ↓
P ↑

↓↑∗

Then just appealing to the induction hypothesis (2) already yields the correct deriva-
tion.

IH2(D′)

P true

2

5 Classical Sequent Calculus

One of Gentzen’s [1935] remarkable discoveries was the encoding of classical logic in the
sequent calculus. We already know in natural deduction it can be incorporated by the law
of excluded middle, by double negation elimination, or by the rule of indirect proof. All
of these are clearly outside the simple beauty of the natural deduction rules as defined by
introductions and eliminations.

How do we obtain classical logic? Simply by allowing a sequent to have multiple

conclusions! A sequent then has the form Γ
CL
=⇒ ∆, where ∆ is also a collection of propo-

sitions. Now succedents as well as antecedents in the rules are persistent in all the rules.
Remarkably, this is all we need to do!
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We can then prove the law of excluded middle as follows, remembering that ¬A ≜
A⊃⊥:

A
CL
=⇒ A ∨ ¬A,A,¬A

id

CL
=⇒ A ∨ ¬A,A,¬A

⊃R

CL
=⇒ A ∨ ¬A,A

∨R2

CL
=⇒ A ∨ ¬A

∨R1

Somehow, by allowing us to “hedge our bets” about which disjunct is true (first we say
“A”, send we say “¬A”) and then using the second possibility to establish the first we
have circumvented the usual constructive nature of the disjunction.

I don’t know how Gentzen discovered this, but I know why: because it allowed him to
prove cut elimination for both intuitionistic and classical logic at the same time. One just
needs to inspect every case in the proof and verify that if the two given derivations are
intuitionistic (that is, have a single succedent), so is the resulting derivation.

Let’s try another classical proof, which is also a neat application of cut. We do not
construct it step-by-step, bottom-up, although this is certainly the way you should read it.

CL
=⇒ A ∨ ¬A

A
CL
=⇒ A

id
¬A CL

=⇒ ¬A
id

⊥ CL
=⇒ A

⊥L

¬A,¬¬A CL
=⇒ A

⊃L

A ∨ ¬A,¬¬A CL
=⇒ A

∨L

A ∨ ¬A CL
=⇒ ¬¬A⊃A

⊃R

CL
=⇒ ¬¬A⊃A

cut

We have omitted redundant antecedents and succedents. For example, in the only appli-
cation of ⊃R, we may keep a copy of ¬¬A⊃A in the succedent if we wish.

6 Conclusion

There are other ways to prove the overall connections we established. Here, the central
step uses the admissibility of cut and identity. We can instead directly reason on natu-
ral deduction, for example, using the powerful technique of logical relations. This is often
applied in programming languages because it has a more direct connection to proof reduc-
tion, which in our approach is hidden in the proof of the admissibility of cut.
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