
Lecture Notes on
From Proof Systems to Programming Languages

15-317: Constructive Logic
Frank Pfenning

Lecture 10
Thursday, February 16, 2023

1 Introduction

We have seen a strong correspondence between logic and computation, according to the
following table:

Intuitionistic Logic Computation
Proposition Type

Introduction rule Constructor
Elimination rule Destructor

Proof Program
Proof reduction Computation step

This gives us a lot of confidence that we are designing both logical and computational rules
in a manner that has a strong philosophical foundation. The influence goes both ways. For
example, Prawitz’s [1965] important book on natural deduction, for all its good qualities,
could be more elegantly rewritten using notation and concepts from Church’s [1936] λ-
calculus after Howard’s [1969] discovery of the correspondence between them.

Despite this strong correspondence and mutual influence, we also have to be aware of
some differences. We’ll investigate two of the three today, and another in the next lecture.

1. Proof reduction, especially the way we have looked at it so far using only local reduc-
tion, applies whenever an introduction for a connective is immediately followed by
its elimination. In programming language terms, this corresponds to a destructor im-
mediately applied to a constructor. But for programming languages we need more:
we also need to impose a “strategy” or “discipline” of reduction so that computation
proceeds in a predictable way. This is because we very much care about the cost of
computation, say in terms of time or space, which was not so much a concern in the
early days of intuitionistic mathematics.

2. For programming languages we have to decide which outcomes of computation we
can directly observe and which we cannot. Almost all languages, including functional
languages like ML or Haskell, take an extensional view of functions which means we
cannot directly observe their structure. Instead, we can apply functions and observe

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.2

their results. On the other hand, values of concrete types such as booleans or nat-
ural numbers are directly observable and therefore intensional in nature. There do
exist corresponding concepts in proof theory, and we will return to them later in the
course.

3. Both types and programs use recursion, something we have not yet considered from
the proof-theoretic point of view. We postpone their study to the next lecture, al-
though we will take first steps in that direction at this end of this lecture.

2 Reduction

Recall the steps of local reduction, which we write on proof terms as M −→ M ′.

Reduction Type Proposition
(λx.M)N −→ [N/x]M (A→B) (A⊃B)

fst⟨M,N⟩ −→ M (A×B) (A ∧B)
snd⟨M,N⟩ −→ N

case(inlM,x.N, y. P) −→ [M/x]N (A+B) (A ∨B)
case(inrM,x.N, y. P) −→ [M/y]P

no reductions for ⟨ ⟩ 1 ⊤

no reductions for abortM 0 ⊥

There are no reductions for ⟨ ⟩ because there is no destructor for type 1, and no reductions
for abortM because there is no constructor for type 0.

Thinking of reduction as a binary judgment on terms, the rules in the table above would
be axioms in the sense that they would be rules with no premises. Those axioms by them-
selves are not sufficient to define computation. For example, under the definitions

bool = 1 + 1 (∼ ⊤ ∨⊤)
true = inl ⟨ ⟩
false = inr ⟨ ⟩

we might expect
snd (fst ⟨ ⟨true, false⟩, true ⟩) −→2 false

where −→2 means reduction in two steps. However, with the axioms so far we are stuck,
because at the top level we have snd applied to a term that’s not a pair.

This means we need rules that allow us to apply reductions to subterms. This example
suggests the following two

M −→ M ′

fstM −→ fstM ′
M −→ M ′

sndM −→ sndM ′

We also need multistep reduction. Mathematically, we say that −→∗ is the reflexive and
transitive closure of −→.

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.3

An important subtext of today’s lecture is that we communicate information via infer-
ence rules. If you open proceedings of programming languages conferences you will see
that inference rules are indeed ubiquitous. So we should consider how to define multistep
reduction via inference rules. Here is one approach, expressing directly the reflexive and
transitive closure idea.

M −→ M ′

M −→∗ M ′
step

M −→∗ M
refl

M −→∗ M ′ M ′ −→∗ M ′′

M −→∗ M ′′ trans

There are other perfectly good definitions. For example, we could use the following two
rules instead:

M −→∗ M
refl

M −→ M ′ M ′ −→∗ M ′′

M −→∗ M ′′ trans+

Or we could replace the second premise in the original trans rule with a single step. These
three definitions would be extensionally equivalent in that M −→∗ M ′ relates the same M
and M ′ in all three forms. But rule induction over the three forms of definitions would be
different induction principles. Once we prove, at the metalevel, that they are extensionally
equivalent we can freely move back and forth between them as we see fit.

Back to reduction: at the moment, we have the axioms given to us by local reduction
and so-called congruence rules for fst and snd. Which other rules do we need? In order to
decide that we need to consider observability.

3 Observation

One fundamental decision for (almost?) all programming languages is that we cannot
directly observe the structure of functions that are returned as the result of computation.
For example, Standard ML of New Jersey

- val f = fn x => fn y => x;
val f = fn : ’a -> ’b -> ’a

happily gives us the most general type of λx. λy. x but it prints the function just as fn.
If we continue by apply this, say, to 1 we still do not get much information, just that the
answer is still just fn.

- val g = f 1;
stdIn:3.5-3.14 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)
val g = fn : ?.X1 -> int

It also gives us a warning, but let’s ignore that since it is a consequence of an advanced
feature of SML not relevant here. When we apply it to two arguments instead, we get the
expected answer.

- val one = f 1 2;
val one = 1 : int

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.4

Hiding the definition of functions has a number of important consequences:

• It allows the language (like ML) to compile functions to efficient low-level binary
code because it never has to display such code. The main requirement is that its
observable behavior (input to output) is the same as that of the function the pro-
grammer wrote.

• It affords a degree of abstraction because we can always replace a function with an-
other one (say, improving efficiency or just refactoring the code) without disturbing
the code using the function. As long as we preserve its observable behavior (that is,
the argument/result relation) such a change is otherwise invisible.

• A function by itself is already a value, that is, an outcome of a computation. We do
not need to apply any reduction underneath an λ-abstraction. If we decide to do so,
it would be a program transformation, not a computation.

From these considerations it should be clear that we actually need two distinct notions:
M −→ M ′ (M reduces to M ′, which we started on) and M value (M is a value, that is,
the outcome of a computation). Because the outcome of a computation is a value we often
refer to functional computation as evaluation.

Before considering further rules for these judgments, it is helpful to write out the the-
orems we eventually want to prove about them. Similarly, we considered local reductions
and expansions as our guide when we wrote the introduction and elimination rules for the
logical connectives.

The first is easy, coming from proof theory: if we reduce a deduction of A true we want
to obtain (more direct) deduction of the same judgment A true. On terms, this is called type
preservation.

Theorem 1 (Type Preservation) If M : A and M −→ M ′ then M ′ : A.

It also make sense from the programming perspective: if our term M denotes, say, and
integer, we want its value to be an integer and not a value of some other type like a Boolean.

The second is about the relationship between values and reduction: we want values
to characterize precisely the outcome of computations. In the theory of programming lan-
guages, this is called progress.

Theorem 2 (Progress) If M : A then either M −→ M ′ or M value (but not both).

The disjointness condition on the two judgments is sometimes separated out as a different
theorem.

Finally, in our particular language (although not in general), we like the next step in a
computation to be uniquely determined.

Theorem 3 (Small-Step Determinism)
If M : A, M −→ M ′, and M −→ M ′′ then M ′ = M ′′.

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.5

4 Reductions and Values

With these design considerations settled, we now come back to our original goal of writing
rules for M −→ M ′ and also M value. We do this type-by-type, because the considerations
are largely orthogonal due to our care in defining proofs and typing.

Pairs A × B (∼ A ∧ B). It turns out that a language a priori has two kind of pairs:
those with fst and snd as destructors, and one with a case destructor. This second one we
explored in Assignment 1 where we wrote it as A♠B, although a more common notation
is A ⊗ B or even just A × B. Since in intuitionistic logic we have (A ∧ B) ⊃ (A ⊗ B) and
(A⊗B)⊃ (A∧B), usually only one is considered even if their behavior in a programming
language is different: the version of first and second projections should be lazy while the
one with a case-like elimination should be eager. In the terminology of proof theory, A∧B
is negative while A ⊗ B is positive. We cannot justify this very well at this point, but just
think of fst and snd as ways to observe the components of a pair which is considered a
value. So we have:

⟨M,N⟩ value

fst ⟨M,N⟩ −→ M snd ⟨M,N⟩ −→ N

M −→ M ′

fstM −→ fstM ′
M −→ M ′

sndM −→ sndM ′

It may be worth your time to consider how these rules satisfy the three desired theorems,
even if we don’t formally proof them (at least at this point).

Functions A→B (∼ A⊃B). As we said in the previous section, the structure of functions
is not observable so they are values, no matter what the body of the function is.

λx.M value

For function applications we need rules to reduce the function or the argument, because
neither might be a value. Different languages take different approaches here: Standard ML
evaluates first M then N , OCaml evaluates first N then M , and Haskell evaluates M but
not N .

We chose left-to-right evaluation, where the argument has to be reduced to value.
Again, we can’t fully justify this choice now, but it comes from A⊃B being a so-called neg-
ative connective which forces A to be positive. We are not aware of a strong proof-theoretic
argument of whether to evaluate left-to-right or right-to-left.

M −→ M ′

M N −→ M ′N

M value
M N −→ M N ′

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.6

Note the premise in the second rule that enforces determinism. Similarly, we need such a
premise for function application.

N value
(λx.M)N −→ [N/x]M

Sums A + B (∼ A ∨ B). Values of sum type are observable. For example, with the
definition of Booleans as 1 + 1 we would like the two values to be inl ⟨ ⟩ and inr ⟨ ⟩, one of
which should represent true and the other false. Therefore they have to be “eager” in this
sense:

M value
inlM value

M value
inrM value

So here we have to be able to reduce the terms underneath the constructors in order to reach
a value.

M −→ M ′

inlM −→ inlM ′
M −→ M ′

inrM −→ inrM ′

Also, the subject of a case needs to be reduced until we reach a value.

M −→ M ′

case(M,x.N, y. P) −→ case(M ′, x.N, y. P)

M value
case(inlM,x.N, y. P) −→ [M/x]N

M value
case(inrM,x.N, y. P) −→ [M/x]P

To preserve determinism, we force the case subject to be a value.

Unit 1 (∼ ⊤). The constructor here is simply a value, and there is no destructor and
therefore no computation rule.

⟨ ⟩ value (no computation rule for 1)

Void 0 (∼ ⊥). There is no constructor (and therefore no value), but we have a rule to
reduce the subject of an abort construct. Because the subject of an abort has the empty
type 0, it can never actually reduce down to a value.

(no value rule for 0)

M −→ M ′

abortM −→ abortM ′

This completes our investigation into values and computation in a programming lan-
guage. We would now be in a position to actually prove the theorems of type preservation,
progress, and determinism, but we prefer not to go into this detail which can be found in
textbooks in theory of programming languages and requires no new techniques beyond
those we already introduced (specifically: rule induction). See, for example, Harper [2016].

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.7

5 Natural Numbers

Another aspect of the differences between intuitionistic logic and programming languages
so far is the presence of recursion in programming languages. In logic, we usually study
this mostly using the exemplar of natural numbers. From a theoretical perspective, other
types like lists, trees, etc. can be coded as natural numbers [Gödel, 1931] or they can be
given a direct treatment in which case we are in the transition between logic and type
theory. The boundary between these subject is quite fluid, however. This course will focus
on logic, but will prepare you for further study in type theory.

Back to the numbers. If we want to write out the propositions we have so far consid-
ered, we can do it in so-called EBNF style.

Propositions A ::= P | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ⊤ | ⊥

We tend not to do this because it suggest “that’s all there is” while our enterprise is inher-
ently an open-ended one, but sometimes it can be useful. In a similar way, we can define
the natural numbers as being built from a zero 0 and a successor constructor s.

Natural Numbers n ::= 0 | sn

Before we get to the judgments of Heyting arithmetic in a later lecture, let’s consider some
simple judgments on natural numbers and the rules that define them.

As a first example, let’s write a judgment eqmn which should have a derivation if and
only if m = n. Nobody mentioned this in lecture, but the simplest form is just an axiom
eqmm. But we can also think about it in terms of breaking down the structure of the
natural numbers.

eq 0 0
eq00

eqmn

eq (sm) (sn)
eqss

This only let’s us infer that two numbers are equal, but it does not allow us to infer when
two numbers are not equal. One way to do that is to define an explicit judgment neqmn.
The first two rules are just axioms, because 0 is different from any success.

neq 0 (sn)
neq0s

neq (sm) 0
neqs0

There is one more case that has to be written as an inference rule: sm is different from sn
if m is different from n.

neqmn

neq (sm) (sn)
neqss

Now we can prove properties about these judgment by rule induction. Here is one exam-
ple:

Theorem 4 (Disjointness) ∀m.∀n.¬(eqmn ∧ neqmn)

Proof: To prove the negation, we assume eqmn and neqmn and prove a contradiction.
This proof proceeds by rule induction on the derivation D of eqmn. Would could also
proceed by induction over E of neqmn or by simultaneous induction over both.

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.8

Case:

D =
eq 0 0

eq00

where m = n = 0. There is no rule with conclusion neq 0 0 even though we have
assumed there is a derivation neqmn, which is a contradiction, as required.

Case:

D =

D′

eqm′ n′

eq (sm′) (sn′)
eqss

where m = sm′ and n = sn′. We have assumed there is a derivation E of neqmn
which in this case has the form neq (sm′) (sm′). There is only one rule for the neq
judgment that could have been used to derive this judgment, namely neqss. So there
must be a derivation E ′ of the premise of this rule of the judgment neqm′ n′. Now we
can apply the induction hypothesis to D′ to arrive at a contradiction.

2

This proof uses the important principle of inversion: from the shape of a judgment we
know to have a derivation, we consider all the possible ways this judgment might have
been derived. In the first case above there were zero (giving us a contradiction), in the
second case there was one (giving us a subderivation and an opportunity to apply the
induction hypothesis).

In this particular proof, because we we derive a contradiction, the computational con-
tent is not particularly interesting. Let’s consider the counterpart: coverage.

Theorem 5 (Coverage) ∀m.∀n. eqmn ∨ neqmn

Proof: This time, we are not given a derivation to perform an induction over, but we have
m and n. So we can do a simultaneous induction over m and n were we stipulate that both
must get smaller to apply the induction hypothesis. (Other forms of induction also work
here, but contain a little less information.)

Case: m = n = 0. Then eq00 applies and eq 0 0.

Case: m = 0 and n = sn′. Then neq0s applies and neq 0 (s n′).

Case: m = sm′ and n = 0. Then neqs0 applies and neq (sm′) 0.

Case: m = sm′ and n = sn′. By induction hypothesis we know that either eqm′ n′ or
neqm′ n′. In the first case we use the rule eqss to conclude eq (sm′) (sn′). In the
second case we use the rule neqss to conclude neq (sm′) (sn′).

2

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

From Proof Systems to Programming Languages L10.9

In this last proof we saw the importance of designing the rules to follow the structure of
the natural numbers, breaking them down from the conclusion to the premises.

From this latter proof it is easy to extract a decision procedure for equality over natural
numbers, written in SML. We assign true to equality eqmn, and false to disequality
neqmn.

1 datatype nat = Zero | Succ of nat
2
3 (* val eq_neq : nat -> nat -> bool *)
4 fun eq_neq Zero Zero = true
5 | eq_neq Zero (Succ n’) = false
6 | eq_neq (Succ m’) Zero = false
7 | eq_neq (Succ m’) (Succ n’) = eq_neq m’ n’

References

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the American
Mathematical Society, 39(3):472–482, May 1936.

Kurt Gödel. Über formal unentscheidbare sätze der Principia Mathematica und ver-
wandter system I. Monatshefte für Mathematik und Physik, 38:173–198, December 1931.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, second edition, April 2016.

W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An an-
notated version appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, 479–490, Academic Press (1980), 1969.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

LECTURE NOTES THURSDAY, FEBRUARY 16, 2023

	Introduction
	Reduction
	Observation
	Reductions and Values
	Natural Numbers

