
Lecture Notes on
Natural Numbers

15-317: Constructive Logic
Frank Pfenning*

Lecture 11
Tuesday, February 21, 2023

1 Introduction

In this lecture we discuss the data type of natural numbers. They serve as a prototype for
a variety of inductively defined data types, such as lists or trees. Together with quantifica-
tion coming up in Lecture 13, this allow us to reason constructively about natural numbers
and extract corresponding functions. The constructive system for reasoning logically about
natural numbers is called intuitionistic arithmetic or Heyting arithmetic Heyting [1934, 1956].
The classical version of the same principles is called Peano arithmetic Peano [1889]. Both
of these are usually introduced axiomatically rather than as an extension of natural deduc-
tion as we do here. We will check some local properties (reduction and expansion), but
the global ones are rather complex. The consistency of arithmetic was proven by Gentzen
[1936] using an analysis of the structure of derivations using ordinals, which goes beyond
the scope of this course.

2 Induction

It is somewhat unintuitive to think of nat as a proposition. But remember that the meaning
of a proposition is determined by what counts as a verification of it, so we can analyze the
verifications of nat to understand it. Not surprisingly, the verifications of nat will exhibit
the structure of natural numbers as defined from zero and a successor function.

An equally sound and more intuitive approach is to think of nat as a type, especially if
we remember the correspondence between propositions and types. If we start from this
point of view, the best judgment is M : A rather than A true because it makes the inhabitant
M of a type A explicit.

Under this view, there are two introduction rules, one for zero and one for successor.

0 : nat
natI0

M : nat

sM : nat
natIs

*Contributions by André Platzer

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/13-quant.pdf


Natural Numbers L11.2

Intuitively, these rules express that 0 is a natural number (natI0) and that the successor sn is
a natural number if n is a natural number. This definition has a different character from the
previous definitions. For example, we defined the meaning of A∧B true from the meanings
of A true and the meaning of B true, all of which are propositions. It is even different from
the proof term assignment rules where, for example, we defined ⟨M,N⟩ : A ∧ B in terms
of M : A and N : B. In each case, the proposition is decomposed into its parts.

Here, the types in the conclusion and premise of the natIs rules are the same, namely
nat. Fortunately, the term M in the premise is a part of the term sM in the conclusion, so
the definition is not circular, because the judgment in the premise is still smaller than the
judgment in the conclusion.

In (verificationist) constructive logic truth is defined by the introduction rules. The
resulting implicit principle, that nothing is true unless the introduction rules prove it to
be true, is of deep significance here. Nothing else is a natural number, except the objects
constructed via natIs from natI0. The rational number 7

4 cannot sneak in claiming to be a
natural number (which, by natIs would also make its successor 11

4 claim to be natural).
But what should the elimination rule be? We cannot decompose the proposition into

its parts, so we decompose the term instead. Natural numbers have two introduction rules
just like disjunctions. Their elimination rule, thus, also proceeds by cases, accounting for
the possibility that a given n of type nat is either 0 or sx for some x. A property C(n) is
true if it holds no matter whether the natural number n was introduced by natI0 so is zero
or was introduced by natIs so is a successor.

n : nat C(0) true

x : nat
x

C(x) true
u

...
C(sx) true

C(n) true
natEx,u

In words: In order to prove property C of a natural number n we have to prove C(0) and
also C(sx) under the assumption that C(x) for a new parameter x. The scope of x and u
is just the rightmost premise of the rule. This corresponds exactly to proof by induction,
where the proof of C(0) is the base case, and the proof of C(sx) from the assumption C(x)
is the induction step. That is why natEx,u is also called an induction rule for nat.

We should immediately check local soundness and completeness, but let’s postpone
until Sections 6 and 10. But let’s notice a few other things about this rule.

• The rules mixes the judgment M : A with the judgment C true so it looks more like
a traditional rule of induction. We can equally well use the judgment N : C instead,
which we will do later in this lecture.

• The proposition C can mention terms—natural numbers in this case. We write C(x)
for a proposition with a free variable x and C(M) for substituting a term M for x in
C.

• We managed to state this rule without any explicit appeal to universal quantification,
using parametric judgments instead. We could, however, write it down with explicit

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.3

quantification, in which case it becomes:

∀n:nat. C(0)⊃ (∀x:nat. C(x)⊃ C(sx))⊃ C(n)

for an arbitrary property C of natural numbers. It is an easy exercise to prove this
with the induction rule above, since the respective introduction rules lead to a proof
that exactly has the shape of natEx,u.

In the next section we will introduce equality of natural numbers as a form of proposi-
tion we can reason about.

3 Equality on Natural Numbers

Generally speaking, arithmetic (whether classical or intuitionistic) uses a primitive notion
of equality on natural numbers that is defined by a collection of axioms.

There are many ways to define and reason with equality. The one we choose here is
the one embedded in arithmetic where we are only concerned with numbers. Thus we
are trying to define n = k only for natural numbers n and k. Of course, n = k must be
a proposition, not a term. As a proposition, we will use the techniques of the course and
define it by means of introduction and elimination rules!

The introduction rules are straightforward.1

0 = 0 true
=I00

n = k true
sn = s k true

=Iss

If we take this as our definition of equality on natural numbers, how can we use the knowl-
edge that n = k? If n and k are both zero, we cannot learn anything. If both are successors,
we know their argument must be equal. Finally, if one is a successor and the other zero,
then this is contradictory and we can derive anything.

no rule E00

0 = s k true
C true

=E0s
sn = 0 true

C true
=Es0

sn = s k true
n = k true

=Ess

Local soundness is very easy to check, but what about local completeness? It turns out to
be a complicated issue so we will not discuss it here.

4 Equality is Reflexive

As a simple inductive theorem we now present the reflexivity of equality.

Theorem 1 Given n : nat. Then n = n.

Proof: By induction on n.

1As a student observed in lecture, we could also just state x = x true as an inference rule with no premise.
However, it is difficult to justify the elimination rules we need for Heyting arithmetic from this definition.

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.4

Base: n = 0. Then 0 = 0 by rule =I00

Step: Assume x = x for an arbitrary natural numbers x. We have to show sx = sx, which
follows by =Iss.

2

This proof is small enough so we can present it in the form of a natural deduction. For the
induction, we use C(x) = (x = x).

n : nat 0 = 0 true
=I00

x = x true
u

sx = sx true
=Iss

n = n true
natEx,u

Note how in the first branch we have to prove C(0) = (0 = 0) and in the second branch
we have to prove C(sx) = (sx = sx) assuming C(x) = (x = x).

The hypothesis x : nat introduced by natEx,u is implicitly used to establish that x = x
is a well-formed proposition, but is otherwise not explicit in the proof.

Now we can define a derived rule of inference:

n : nat

n = n true
refl

by using what we just proved. We usually suppress the premise n : nat since we already
must know n : nat for the proposition n = n to be well-formed.

5 Decidability of Equality

Another fundamental property that is important in Heyting arithmetic is the decidability of
equality.

Theorem 2 (Decidability of Equality) ∀n:nat.∀k:nat. n = k ∨ ¬(n = k).

Proof: Let’s carry out an induction proof in a mathematical style. From there is could be
rewritten in the form of natural deduction, but since we are used to this it shouldn’t be
difficult to do so. In this proof we write ¬(a = b) as a ̸= b. Something we missed in lecture
is that we need an inner quantifier on k, which we don’t formally introduce until Lecture
13. So let’s stick with the mathematical presentation for this lecture.

The proof is by induction on n. We have hypotheses n : nat and have to prove ∀k. n =
k ∨ n ̸= k. Our proposition C(x) is therefore ∀k. x = k ∨ x ̸= k and our first inference
(working bottom-up) is natEx,u, with two cases.

Case: n = 0. Then we have to show ∀k. 0 = k ∨ 0 ̸= k. This means we have to prove, for
an arbitrary k : nat that either 0 = k ∨ 0 ̸= k. To do that we apply natEy,w on k : nat
with two further branches.

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.5

Subcase: k = 0. Then 0 = 0 by =I00.

Subcase: k = s y for an arbitrary y : nat. Then we have to prove 0 ̸= s y, so we
assume 0 = s y and derive a contradiction by rule =E0s.

This use of natE did not require a use of the induction hypothesis w.

Case: n = sx. We have to show that, under the hypothesis ∀k. x = k ∨ x ̸= k, we can
conclude that

∀k. sx = k ∨ sx ̸= k

As in the previous case, we now apply natEy,w to the hypothesis k : nat and obtain
the following two subcases.

Subcase: k = 0. Then sx ̸= 0 by implication introduction and =Es0.

Subcase: k = s y. Then we instantiate the induction hypothesis ∀k. x = k ∨ x ̸= k
with y to conclude x = y ∨ x ̸= y. We distinguish two more subcases.

Subsubcase: x = y. Then sx = s y by =Iss.
Subsubcase: x ̸= y. Then sx ̸= s y by implication introduction, =Ess (to get

x = y), and implication elimination with x ̸= y.

2

6 Local Proof Reduction

We would like to check that the rules for natural numbers are locally sound and complete.
For soundness, we verify that no matter how we introduce the judgment n : nat, we can
find a “more direct” proof of the conclusion. In the case of natI0 this is easy to see, because
the second premise already establishes our conclusion directly.

0 : nat
natI0

E
C(0) true

x : nat
x

C(x) true
u

F
C(sx) true

C(0) true
natEx,u

=⇒R
E

C(0) true

The case where n = sn′ is more difficult and more subtle. Intuitively, we should be
using the deduction of the second premise for this case.

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.6

D
n′ : nat

sn′ : nat
natIs E

C(0) true

x : nat C(x) true
u

F
C(sx) true

C(sn′) true
natEx,u

=⇒R

D
n′ : nat

D
n′ : nat

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(n′) true
natEx,u

[n′/x]F ′

C(s n′) true

It is difficult to see in which way this is a reduction: D is duplicated, E persists, and
we still have an application of natE. The key is that the term we are eliminating with the
applicaton of natE becomes smaller: from sn′ to n′. In hindsight we should have expected
this, because the term is also the only component getting smaller in the second introduction
rule for natural numbers. Fortunately, the term that natE is applied to can only get smaller
finitely often because it will ultimately just be 0, so will be back in the first local reduction
case.

The computational content of this reduction is more easily seen in a different context,
so we move on to discuss primitive recursion.

The question of local expansion is trickier and postponed to Section 10 which we did
not cover in lecture.

7 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we can notice that we exploit the
knowledge that n : nat, but we only do so when we are trying to establish the truth of a
proposition, C(n). However, we are equally justified in using n : nat when we are trying
to establish a typing judgment of the form M : A. The rule, also called rule of primitive
recursion for nat, then becomes

n : A M0 : A

x : nat r : A
...

Ms : A

R(n,M0, x. r.Ms) : A
natEx,r

Here, R is a new term constructor,2 the term M0 is the zero case where n = 0, and the
term Ms captures the successor case where n = sn′. In the latter case x is a new parameter

2R suggests recursion

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.7

introduced in the rule that stands for n′. And r stands for the result of R when applied
to n′, which corresponds to an appeal to the induction hypothesis. The notation x. r.Ms

indicates that occurrences of x and r in Ms are bound with scope Ms. The fact that both
are bound corresponds to the assumptions x : nat and r : A that are introduced to prove
ts : A in the rightmost premise.

The local reduction rules may help explain this. We first write then down just on the
terms, where they are computation rules.

R(0,M0, x. r.Ms) =⇒R M0

R(sn′,M0, x. r.Ms) =⇒R [R(n′,M0, x. r.Ms)/r][n
′/x]Ms

The second case reduces to the term Ms with parameter x instantiated to the number n′

of the inductive hypothesis and parameter r instantiated to the value of R at n′. So the
argument M0 of R indicates the output to use for n = 0 and Ms indicates the output to
use for n = sx as a function of the smaller number x and of r for the recursive outcome of
R(n,M0, x. r.Ms).

These are still quite unwieldy, so we consider a more readable schematic form, called
the schema of primitive recursion. If we define f by cases

f(0) = M0

f(s x) = Ms(x, f(x))

where the only occurence of f on the right-hand side is applied to x, then we could have
defined f explicitly with

f = λn.R(n,M0, x. r.Ms(x, r))

To verify this, apply f to 0 and apply the reduction rules and also apply f to sn for an
arbitrary n and once again apply the reduction rules.

f(0) =⇒R R(0,M0, x. r.Ms(x, r))
=⇒R M0

noting that the x in x.r.Ms(. . .) is not a free occurrence (indicated by the presence of the
dot in x.) since it corresponds to the hypothesis x : nat in natEx,r. Finally

f(sn) =⇒R R(sn,M0, x. r.Ms(x, r))
=⇒R Ms(n,R(n,M0, x. r.Ms(x, r)))
= Ms(n, f(n))

The last equality is justified by a (meta-level) induction hypothesis, because we are trying
to show that f(n) = R(n,M0, x. r.Ms(x, r))

Again, we emphasize that we go freely back and forth between propositions and types,
using what is most convenient. Here it is easier to read nat → (nat → nat) as opposed to
nat⊃ (nat⊃ nat).

Now we can define double via the schema of primitive recursion.

double(0) = 0
double(sx) = s (s (doublex))

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.8

We can read off the closed-form definition if we wish:

double = λn. R(n, 0, x. r. s (s r))

After having understood this, we will be content with using the schema of primitive
recursion. We define addition and multiplication as exercises.

plus(0) = λy. y
plus(sx) = λy. s ((plusx) y)

Notice that plus is a function of type nat → (nat → nat) that is primitive recursive in its
(first and only) argument.

times(0) = λy. 0
times(sx) = λy. (plus ((timesx) y)) y

Sometimes slow-growing functions are actually more difficult to represent with primi-
tive recursion. The predecessor, though, it easy because we can mention it directly on the
right-hand side:

pred(0) = 0
pred(sx) = x

or:
pred = λx:nat. R(x, 0, x. r. x)

On the other hand, it is not so obvious how to turn the “half” function into the form of a
primitive recursion. We can specify it easily with a set of equations, though.

half(0) = 0
half(s 0) = 0
half(s sx) = s (half(x))

Give it a shot!

8 Proof Terms for Induction

With proof terms for primitive recursion in place, we can revisit and make a consistent
proof term assignment for the elimination form with respect to the truth of propositions,
and it is the exact same.

n : nat M0 : C(0)

x : nat
x

u : C(x)
u

...
Ms : C(sx)

R(n,M0, x. u.Ms) : C(n)
natEx,u

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.9

The local reductions we discussed before for terms representing data, also work for
these proofs terms.

R(0,M0, x. u.Ms) =⇒R M0

R(sn′,M0, x. u.Ms) =⇒R [R(n′,M0, x. u.Ms)/u][n
′/x]Ms

We can conclude that proofs by induction correspond to functions defined by primitive
recursion, and that they compute in the same way.

9 Decidability of Equality Revisited

Now we can look back at our earlier proof and write the corresponding proof term, even
without writing out a full natural deduction! To write them out in full detail requires the
proof terms for the equality rules, so let’s restate them here with proof terms.

eqI00 : 0 = 0
=I00

M : n = k

eqIssM : sn = s k
=Iss

no rule E00

M : 0 = s k

eqE0sM : C
=E0s

M : sn = 0

eqEs0 : C
=Es0

M : sn = s k

eqEssM : n = k
=Ess

Using these proof terms we can write out the (almost) primitive recursive form of the
function decide:

decide 0 0 = inl eqI00
decide 0 (s y) = inr (λu. eqE0su)
decide (sx) 0 = inr (λu. eqEs0u)
decide (sx) (s y) = case(decidex y, u. inl (eqIssu), u. inr (λw. u (eqEssw)))

As before, we can create a λ-abstraction for the second argument, but we must also have a
case distinction over it. That’s a primitive recursion without a use of the recursive call, or
an induction without an appeal the induction hypothesis. The only appeal to the induction
hypothesis here is decidex which is then applied to y.

We can also write this out using the R notation, but there doesn’t seem to be much
point. But we can erase all proofs of equality and disequality and just replace them with
unit. Then we obtain:

decide 0 0 = inl ⟨ ⟩
decide 0 (s y) = inr ⟨ ⟩
decide (sx) 0 = inr ⟨ ⟩
decide (sx) (s y) = case(decidex y, u. inl ⟨ ⟩, u. inr ⟨ ⟩)

At this point we have a function we might write in SML, except we would probably replace
inl⟨ ⟩ with true and inr⟨ ⟩ with false. The original version above produces a proof term, but
the version below erases the “proof” aspect, replacing the equality just with truth. We
have already carried out this kind of erasure several times in this course.

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023



Natural Numbers L11.10

10 Local Expansion3

Using primitive recursion, we can now write a local expansion.

D
n : nat =⇒E

D
n : nat 0 : nat

natI0
x : nat

x

sx : nat
natIs

R(n, 0, x. r. sx) : nat
natEx,r

Perhaps surprisingly, there is another option which uses the recursive result.

D
n : nat =⇒E

D
n : nat 0 : nat

natI0
r : nat

r

s r : nat
natIs

R(n, 0, x. r. s r) : nat
natEx,r

One of these expands into a simply proof by cases, the other into a primitive recursion.

id1 0 = 0
id1 (sx) = sx

id2 0 = 0
id2 (sx) = s (id2 x)

It seems the second somehow more accurately reflects the structure of introduction rules,
but it is difficult to formulate a precise criterion that would prefer the second version over
the first.

References

Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Zeitschrift, 112:493–565, 1936. English translation in M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, 1969.

A. Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer,
Berlin, 1934.

Arend Heyting. Intuitionism: An Introduction. North-Holland Publishing, Amsterdam,
1956. 3rd edition, 1971.

Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita. Fratres Bocca, 1889.

3not covered in lecture

LECTURE NOTES TUESDAY, FEBRUARY 21, 2023


	Introduction
	Induction
	Equality on Natural Numbers
	Equality is Reflexive
	Decidability of Equality
	Local Proof Reduction
	Primitive Recursion
	Proof Terms for Induction
	Decidability of Equality Revisited
	Local Expansion

