Lecture Notes on
Logic Programming

15-317: Constructive Logic
Frank Pfenning

Lecture 18
Tuesday, March 28, 2023

1 Introduction

There are multiple roles for judgments and the inference rules defining them. For one,
we used them to define fundamental notions such as truth and verification. For another,
we used them to communicate basic algorithmic ideas such as bidirectional type-checking
or decision procedures for intuitionistic propositional logic. In the latter case, we typically
interpreted the rules bottom-up and extracted a functional implementation. More formally,
this functional implementation was the computational contents of an intuitionistic proof
about the judgment and its rules.

We now take this second role a step further: we define a programming language where
construction of a derivation according to inference rules is the basic notion of computa-
tion. Proof construction must then adhere to a fixed strategy, otherwise the computational
behavior of a program would be unpredictable. This echoes a similar relationship between
proof reduction and steps of computation: the latter must follow a fixed strategy for pre-
dictable outcomes.

The class of languages operating via proof search are called logic programming languages.
They can be roughly classified as either backward chaining (like Prolog [Kowalski, 1988,
Colmerauer and Roussel, 1993]) or forward chaining (like Datalog [Maier et al., 2018]). These
have quite different characteristics, and we examine them in turn. In this lecture we con-
sider backward chaining and Prolog.

We now examine the various decisions on how to interpret a collection of inference
rules as programs.

2 Goal-Directed Proof Construction
We use some very simple program to illustrate the fundamental concepts of how proof

construction in a backward chaining logic programming language proceeds. Let’s consider
the judgment plus = y z to express that x 4+ y = z on the unary natural numbers defined

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.2

from 0 and the successor s(z) for a natural number .

pluszy z

—— p0 ps
plus 0y y plus (sx) y (sz)

We can start by asking
?—plus (s0) (s(s0)) (s(s(s0))).

It will match this query against the conclusions of the rules in the order they are given. The
query is not an instance of the plus 0 y y because 0 # s0 so p0 will fail immediately and it
will try ps. The conclusion matches our goal under the substitution + = 0, y = s(s0), and
z =s(s(s0)). So our partial derivation looks like

plus O (s (sO)) (s(s0))
plus (s0) (s(s0)) (s(s(s0)))

Now rule p0 applies with substitution y = s 0 and the derivation is complete.

ps

p0
plus 0 (s(s0)) (s(s0))

plus (s0) (s(s0)) (s (s(s0)))
A Prolog interpreter would not show this proof, but only say “yes” to indicate that the

query is successful.
If we instead ask

ps

?—plus 0 (s0) 0.

the query would fail immediately because it does not match the conclusion of any rule. So
the answer would be “no”.

We can also compute answers beyond “yes” by leaving free variables in the goal. If the
search is successful, the interpreter will report the substitution for this variable. Coming
back to our original query, we can instead ask

?—plus (s0) (s(s0)) Z.

which we interpret existentially: is there a term Z such that plus (s0) (s(s0)) Z can be
derived by the rules? Again the first rule does not match, but the second does. While
matching the conclusion of the rule against the goal, it instantiates variables, both in the
query and the conclusion of the rule it tries to use.

plus 0 (s(s0)) Zo
plus (s0) (s(s0)) Z

ps (Z =sZ3)

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.3

Now it matches the first rule (p0) with the substitution y = s(s0) and Zs = s(s0). Since
there is no premise there is no subgoal and we succeed.

PO (Z2 = s(s0))

plus 0 (s(s0)) Za os (7 — s 20)

plus (s0) (s(s0)) Z

We elided the substitution for y since it doesn’t appear in the original query. Now we
see that Z = s Z3 and Z» = s(s0) which works out to Z = s(s(s0)). This is the answer
returned overall in lieu of the full proof.

Logically, logic programming is generally based (on a fragment of) the predicate cal-
culus, but one where elements ¢ (satisfying the judgment ¢ elem from our presentation of
quantifiers) can be constructed from arbitrary constants (like 0) and function symbols (like
s).

In particular, there is no static type-checking and this leads to some counterintuitive
results. For example, the query

?— plus 0 junk Z

will succeed(!) with answer substitution Z = junk. Also, a query such as
?— plus foo 0 0

will simply fail with the result “no” rather than being rejected as meaningless.
As discussed in lecture, the unexpected success could be fixed. For example, we could

write
nat x

————ns
nat 0 n0 nat (sz)

nat y pluszy z

—— p0 ps
plusOy y plus (sz) y (sz)

However, this is not generally done because when the query has proper natural numbers,
then this check is redundant and expensive. Also, in logic the idea is to relativize the quan-
tifiers in order to simulate types with logical predicates. However, a query such as

?—nat Z Aplusty tg Z

for terms ¢; and ¢ would have entirely the wrong behavior. As we will see shortly, it
would enumerate the natural numbers until it finds one that is the sum of ¢; and ¢s.

3 Backtracking

The rules in the program (called clauses) are tried in the order they are presented. This
sometimes leads to unexpected results. Consider

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.4

If presented in this order, then
?7—p.
will loop infinitely because it reduces the goal of proving p to the subgoal of proving p, etc.

On the other hand, if we switch these two clauses then it will succeed infinitely often. This
may be clearer using the nat predicate from the previous section:

?—nat X.

will succeed with X = 0, then X = s0 (if more solutions are needed), then X = s(s0), etc.

Such backtracking behavior is occasionally quite cool, but often the programmer has to
tight against over-generation of solutions.

Can we use plus in order to compute subtraction? Yes: a query such as plus n Y m will
find a Y such that n + Y = m if n and m are representations of concrete numbers. You
may try this out in Prolog, or you can simulate it with goal-directed search as the other
examples. Essentially, it will count down 7 to 0, meanwhile removing one successor from
m on each step. When n = 0 then the third argument will be n — m which is then copied
toY.

We can also split a natural number n into = and y such that x +y = n. Consider a query

?—plus X Y (s(s0)).

Trying the rules in order, the first answer is X = 0 and Y = s(s0). After backtracking, we
get X =s0and Y =s0, then X =s(s0) and Y = 0. Further backtracking will fail because
no more rules will match.

4 Subgoal Ordering

Let’s consider a rules with more than one premises. Here are two for multiplication which
uses the defining equation (z + 1) x y = 2 X y + .

timesxyw pluswyz

——t0 ts
times 0y 0 times (sx) y z
Let’s say we want to multiply times (s0) (s(s0)) Z. If we construct the proof of the first
premise first, it will solve and succeed with W = 0, and then find a proof of plus 0 (s (s0)) Z
in a straightforward way.
However, if we tried to prove the second subgoal first, it would try to prove plus W (s (s0)) Z,
essentially enumerating the numbers W and Z such that W + 2 = Z. For each such pair it
will then check the multiplication in the first premise. This is clearly the wrong behavior
in general, so it is important to keep subgoal ordering in mind.
Returning to an earlier example, the query

?—nat Z Aplusmn Z.

for unary numbers m and n will actually enumerate all possible natural numbers as Z and
check until is finds one Z that satisfies plus m n Z. Again, this is clearly not the right
behavior (even if the answer may ultimately be correct).

So: subgoals are ordered left to right.

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.5

5 Unification

The process of solving the equations as they arise during search is called unification. We
will discuss the details of an algorithm in a future lecture. You can think of the equations
being solved by substitution, as we often do in algebra. When an answer substitution is
presented, it is projected onto the free variables occurring in the query. Other variables
represent intermediate constraints that arise during search that are not shown to the user.

Whenever a rule is being used, we instantiate its schematic variables with fresh vari-
ables, so when a rule is used multiple times during search it allows fresh instances every
time it is applied.

There is one strange phenomenon you should be aware of. For efficiency reason (which
played a big role in the early days of logic programming), problems such as X = t are
solved by just binding X to the term ¢. This is actually logically incorrect in some circum-
stances. For example, the equation X = s X does not have a (finite) solution because the
right-hand side will always be strictly bigger than the left-hand side no matter what X is.
However, Prolog will happily bind X to s X, creating a circular term.

As we explain with the example of type inference in Section 8, we can work around
this unsoundness, but it takes care.

6 Summary So Far

We refer to the logic programming interpreter as Prolog, also interpreters for similar backward-
chaining languages are based on similar decision.

¢ When attempting to prove a judgment (= solve a goal) the rules (= clauses) are tried in
a bottom-up manner in the order they are presented.

* We backtrack to the most recent decision when a subgoal fails.

¢ If there are multiple premises (= multiple subgoals) their proofs are attempted in left-
to-right order.

¢ Conceptually, the result of computation is a derivation, although only the substitu-
tion for the free variables in the query is presented upon success together with “yes”.

* When proof construction fails without further alternatives for search, the result of
computation is presented as “no”.

¢ Equations between schematic variables in the rules and the goals are solved by unifi-
cation (although in Prolog in an unsound manner).

* Because classical logic programming is based on the predicate calculus, there is no
static type checking. All terms belong to the same universal domain. Typographical
errors often lead to failure (answer “no”) or unexpected, incorrect answers rather
than static errors.

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.6

7 Prolog Syntax and Interpreter

The examples in this and the following section, can be found in the file lec18.pl.
In Prolog, rules such as

pluszy z
—— p0 ps
plusOy y plus (sz) y (s2)
timesxyw pluswyz
— - t0 ; ts
times 0y 0 times (sz) y z
are presented as
plus (0, Y, Y).
plus(s(X), Y, s(z2)) :— plus(X, Y, 2).
times (0, Y, 0).
times(s(X), Y, Z) :— times (X, Y, W), plus((W, Y, Z).

We see variables are in uppercase, while constant and function symbols are in lower-
case. The inference rule (seen as a reverse implication) is shown as : -, and they are not
named.

To load a file (consult, in Prolog terminology) we write its name, leaving out the .pl
extension, as list at the top level. We used here GNU Prolog (gprolog), but Ciao (available
on the Andrew machines) has a similar interface.

o)

% gprolog

GNU Prolog 1.4.5 (64 bits)

Compiled Jul 14 2018, 19:58:18 with clang

By Daniel Diaz

Copyright (C) 1999-2018 Daniel Diaz

| ?— [lecl8].

compiling lecl8.pl for byte code...

lecl8.pl:4: warning: singleton variables [Y] for times/3
lecl8.pl:17-18: warning: singleton variables [Gamma] for tpof/3
lecl8.pl:20-22: warning: singleton variables [B] for tpof/3
lecl8.pl compiled, 22 lines read - 2979 bytes written, 7 ms

(1 ms) yes
| 2=

Now we can ask queries as sketched in the lecture on the board, but using Prolog
syntax. We chain a few of them together. The line after the prompt | 2- is typed by the
user, as is the semicolon (; ) in order to obtain further solutions.

| 2= plus(s(0), s(s(0)), 2Z).

Z = s(s(s(0)))

LECTURE NOTES TUESDAY, MARCH 28, 2023



http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/18-lp/lec18.pl

Logic Programming L18.7

X:

Y = s(s(s(0))) ? ;
X = s(0)

Y = s(s(0)) ? ;
X = s(s(0))

Y = s(0) ?

8 Implementing Type Inference

In Lecture 6 we implemented a bidirectional type checker based on verifications. Since
verifications are at the very heart of logic, this approach is highly robust and extends to
many languages with advanced features [Dunfield and Krishnaswami, 2022]. Functional
languages such as ML and Haskell are instead based on type inference [Milner, 1978]. The
basic observation is that the typing rules are syntax-directed (there is exactly one rule for
each program constructs), so we always know the shape of a typing derivation. It remains
to solve the equations between the types imposed by the rules. This is precisely what
unification does! This means we can rewrite the typing rules as a logic program and have
it perform type inference for us.
We use a list I to record types for all variables. It has the form of a Prolog list

[tp(x1,al), ..., tp(xn,an)]

where tp is a constructor, the x; are variables, and a; are types. We show the rules only
for functions lam (x,m), applications app (m, n), and variables x. It is straightforward to
extend to all the constructs in our language. The types on this fragment just have the form
arrow (a, b), but they may also contain free variables that represent polymorphism.

We begin with the first approximation of the code with a two significant bugs in List-
ing 1. The notation of a list with head head and tail tailis [head | tail].

The first bug pertains to the last two clauses. The problem is that an expression such
as lam(x, lam(x,x)) could be assigned type arrow (A, arrow (B,2)) even though x
should only be able to refer to the inner binding (and therefore only have type
arrow (A, arrow (B, B))). The solution is to guard the second clause with a test X # Y
and can be found in Listing 2.

LECTURE NOTES TUESDAY, MARCH 28, 2023



http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/06-algo.pdf

Logic Programming L18.8

o\o

%% Warning: this code has bugs!

tpof (Gamma, lam(X,M), arrow(A,B)) :-
tpof ([tp(X,A) |Gamma], M, B).

tpof (Gamma, app(M,N), B) :-
tpof (Gamma, M, arrow(A,B)),
tpof (Gamma, N, A).

tpof ([tp(X,A) |Gamma], var(X), A).

tpof ([tp(Y,B) |Gamma], var(X), A) :-—
tpof (Gamma, var(X), A).

Listing 1: Type inference with two bugs

$%% Warning: this code has bugs!

oo
oo
o\e

tpof ([tp(X,A) |Gamma], var(X), A).

tpof ([tp(Y,B) |Gamma], var(X), A) :-
X \= Y,
tpof (Gamma, var(X), A).

Listing 2: Type inference with one bug

LECTURE NOTES TUESDAY, MARCH 28, 2023



Logic Programming L18.9

eqg(X,Y) :— unify_with_occurs_check (X,Y).

tpof (Gamma, lam(X,M), arrow(A,B)) :—
tpof ([tp(X,A) |Gamma], M, B).

tpof (Gamma, app(M,N), B) :-—
tpof (Gamma, M, arrow(Al,B)),
tpof (Gamma, N, A2),
eq(Al,A2).

tpof ([tp (X,Al) |Gamma], var(X), A2) :-—
eq(Al,A2).

tpof ([tp(Y,B) |Gamma], var(X), A) :-
X \=Y,
tpof (Gamma, var(X), A).

Listing 3: Type inference corrected

The second problem has to do with the unsoundness of unification in Prolog. Indeed,
if we asked (and we did)

| ?— tpof([], lam(x, app(var(x), var(x))), A).

we would find that Prolog thinks there is such an 2 but that it cannot be printed because it
is circular. In languages such ML this will indeed fail to type check because it leads to the
equations A = B D C'and B = B D C which has no solution.

Prolog has a workaround, namely a built-in predicate unify_with_occurs_check
which implements a sound unification algorithm. We need this in two places: when look-
ing up variable in the context and in an application. The corrected code is in Listing 3.

You can find a few queries testing our code in Listing 4.

References

Alain Colmerauer and Philippe Roussel. The birth of Prolog. ACM SIGPLAN Notices, 28
(3):37-52, 1993.

Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Computing Surveys, 98
(5):1-38, 2022.

Robert. A. Kowalski. The early years of logic programming. Communications of the ACM,
31(1):38-43, 1988.

David Maier, K. Tuncay Tekle, Michael Kifer, and David S. Warren. Datalog: Concepts,
history, and outlook. In Michael Kifer and Yanhong Annie Liu, editors, Declarative Logic

LECTURE NOTES TUESDAY, MARCH 28, 2023




Logic Programming L18.10

| ?— tpof([], lam(x, wvar(x)), A).
A = arrow(B,B) ? ;
no
| ?2— tpof([], lam(x, lam(y, var(x))), A).
A = arrow(B,arrow(_,B)) ? ;
no
| ?— tpof([], lam(x, app(var(x), var(x))), A).
no
| ?— tpof([], lam(x, lam(y, lam(z, app(app(x,z), app(y,z))))), A).
no
| ?— tpof([], lam(x, lam(y, lam(z, app (app (var (x),var(z)),
app (var (y) ,var(z)))))), A).
A = arrow (arrow(B,arrow(C,D)),arrow(arrow(B,C),arrow(B,D))) ? ;
no

Listing 4: Testing type inference

LECTURE NOTES TUESDAY, MARCH 28, 2023




Logic Programming L18.11

Programming: Theory, Systems, and Applications, pages 3-100. ACM and Morgan & Clay-
pool, 2018.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, August 1978.

LECTURE NOTES TUESDAY, MARCH 28, 2023



	Introduction
	Goal-Directed Proof Construction
	Backtracking
	Subgoal Ordering
	Unification
	Summary So Far
	Prolog Syntax and Interpreter
	Implementing Type Inference

